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Arithmetic progressions

An arithmetic progression is a sequence of natural numbers of constant difference. 
The set of natural numbers contains a lot of arithmetic progressions, but if we consider 
smaller proper subsets of the natural numbers, it is not obvious that there are any arith-
metic progressions. A general problem is to decide how small a randomly chosen subset 
can be, and still contain arithmetic progressions.

Endre Szemerédi

  In primary school children learn by heart the 
two times table, 2,4,6,…, the three times table, 
3,6,9,12,15,…, and so on. The mathematical term 
for a times table is arithmetic progression. The 
concept of arithmetic progression also includes 
finite sequences like 10,13,16,19. This is an arith-
metic progression of length 4, of (constant) differ-
ence 3 and initial value 10. The two times table 
is an arithmetic progression of infinite length, of 
difference 2 and initial value 2. An arithmetic pro-
gression is determined by its length, difference and 
initial value. If you are asked to write up the arith-
metic progression of length 5, difference 7 and ini-
tial value 23, you should answer 23,30,37,44,51. 
Notice that 4,5,6,7,8,9 is also an arithmetic pro-
gression, the difference in this case is 1.
  The Dutch mathematician Pierre Joseph Henry 
Baudet formulated in 1921 the following conjec-
ture: If one divides the natural numbers 1,2,3,.. 
ad infinitum into a random number of boxes, then 
there is nevertheless always at least one box which 
contains an arithmetic progression of arbitrary 
length. Baudet died shortly after, at the age of 30. 
The conjecture was proved in 1927 by another 
Dutch  mathematician, Bartel Leendert van der 
Waerden. 
  A strengthening of van der Waerdens result was 
conjectured by Pál Erdős and Pál Turán in 1936. 
They believed that the reason for the existence of 

Colouring
  By colouring the natural numbers using 
only two colours, say red and blue, it is 
easy to see that 9 consequent numbers e.g. 
1,2,...,9, are needed to ensure that there is 
an arithmetic progression of length 3. Why? 
Let us try to prove the opposite, so suppose 
the sequence 1,2,...,9 does not contain arith-
metic progressions of length 3. For this rea-
son, number 1, 5 and 9 cannot be all equally 
coloured. So assume first that 1 and 5 are 
red, and 9 is blue. Since 1 and 5 are red, 3 
has to be blue. But 9 is also blue, so 6 has 
to be red. Now 5 and 6 are red, forcing 4 
and 7 to be blue. Number 8 has to be red 
since 7 and 9 are blue, and number 2 has 
to be red since 3 and 4 are blue. But then 
2, 5 and 8 are all red, which is a contradic-
tion. The case where 1 and 9 are red and 5 is 
blue is treated similarly. On the other hand, 
the sequence of length 8, given by RBRB-
BRBR has no arithmetic progressions of 
length 3. Thus 9 is a sharp bound for this 
property. This means that the socalled van 
der Waerden number W(2,3)=9.



  In 1953, Klaus Friedrich Roth proved that any 
subset of the integers with positive upper density 
contains an arithmetic progression of length 3. In 
1969, Endre Szemerédi proved that the subset must 
contain  an arithmetic progression of length 4, and 
then in 1975 proved that any subset with positive 
upper density must contain arithmetic progressions 
of arbitrary length, known as Szemerédi`s theorem. 
  Erdős formulated in 1973 a stronger version of the 
Erdős-Turán conjecture: Let A be a subset of the 
natural numbers such that the sum of their recipro-
cals exceeds any natural number. Then A must have 
arithmetic progressions of arbitrary length. Erdős 
offered a prize of US$ 3000 for a proof of this con-
jecture at the time. The problem is currently worth 
US$ 5000. One can prove that the sets of natural 
numbers of positive upper density necessarily have 
divergent reciprocal sums. Thus Erdős´ conjecture 
implies Szemerédi`s theorem. It is also known that 
the set of primes have divergent reciprocals, first 
proved by Leonhard Euler in 1737. The theorem 
of Ben Green and Terence Tao from 2004 about 
the existence of arithmetic progressions of arbitrary 
length in the set of prime numbers is a special case 
of this conjecture.
  The results concerning existence of arithmetic 
progressions are based on the interplay between 
size, randomness and structure. The bigger the sets 
are, the more likely it is that they have arithmetic 
progressions. Szemerédi states that positive upper 
density is a sufficient condition. For even smaller 
sets, of zero density, some additional structure is 
needed. The set of prime numbers has zero density, 
but Green and Tao show that this set nevertheless 
has some structural similarities to the natural num-
bers, enough to prove the existence of arithmetic 
progressions, based on Szemerédi`s theorem.

Upper density
  Example 1. Let A be the set of even num-
bers. For a given N the set of even num-
bers between 1 and N has cardinality N/2 
if N is an even number and (N-1)/2 if N is 
odd. Thus the fraction we are looking for is 
1/2, which is the upper density for the even 
numbers. 
  Example 2. Now let A be some finite set, 
say all natural numbers from 1 to 100. For 
N less than 100, the fraction is 1, but for N 
greater than 100 the fraction will decrease 
and eventually tend to zero. So the upper 
density is 0.
  Example 3. We consider the set of  powers 
of 10,  A={10,100,1000,…}. If we compare 
this set to the set {1,2,3,…,10k} for some 
natural number k, it is easy to see that the 
fraction will be k/10k. As k grows, this frac-
tion will tend to 0, and again the upper den-
sity is 0. 

arithmetic progressions is that some colour occu-
pies a set of natural numbers of strict positive up-
per density. For a subset A of the natural numbers, 
the upper density is defined as follows: For each 
natural number N we intersect the set A with the 
set {1,2,…,N}, count the number of integers in the 
intersection and divide by N. This rational number 
between 0 and 1 measures the size of A compared 
to all integers between 1 and N.  We do this for 
increasing numbers N. If the fraction for huge N 
never exceeds a certain number, we say that this 
number is an upper bound for the fractions. The 
smallest possible upper bound for huge N is called 
the upper density for A. 
  Notice that there is also a concept of lower den-
sity, given as the greatest lower bound for the frac-
tion, when N is a huge number.


