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W.T. GOWERS

1. Introduction

Endre Szemerédi is a towering figure in the area of mathematics known as combinatorics,

with particularly important contributions to the subarea called extremal combinatorics. I

will explain what these terms mean in a moment, but first here are a few bald facts about

his extraordinary mathematical output. The achievement for which he is best known is

his proof, in 1975, of what is now called Szemerédi’s theorem but which at the time was

a notorious and decades-old conjecture of Erdős and Turán. This theorem is one of the

highlights of twentieth-century mathematics, but it also lies at the heart of a great deal of

very recent research. He also gave us Szemerédi’s regularity lemma, a result that originated

in the proof of Szemerédi’s theorem but went on to become a major tool in extremal

combinatorics. As well as these results, he has published over 200 papers, many of them

representing important advances. I shall pick one or two, but it should be understood that

they are just a small sample from a huge output that has profoundly influenced many areas

of mathematical thought.

What, then, is combinatorics? One possible definition is that it is the study of discrete

structures. And what are they? Well, the word “discrete” is typically contrasted with the

word “continuous”: a structure is continuous if you can move smoothly from one part to

another, whereas it is discrete if you have to jump. For example, if you are modelling the

flow of a fluid, then the mathematical structures you study will be continuous, since you

will specify things like velocities and pressures at various points, and these vary smoothly.

By contrast, if you are modelling the inside of a computer, then you will be interested in

sequences of 0s and 1s, which is an example of a discrete structure, since to get from one

such sequence to another you have to cause at least one 0 to jump to a 1 or vice versa.

Another discrete structure, and perhaps the single most important in combinatorics, is

the graph. A graph is an object that looks like this.
1
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In other words, it consists of some points, some of which may be joined by lines. The

points are called vertices and the lines are called edges.

You might think that a graph is continuous, because you can move continuously along

its edges. However, it is just the picture that is continuous rather than the graph itself.

All we care about with a graph is which pairs of vertices are joined by edges, and this can

be specified as a simple list. For example, if the graph looks like the vertices and edges of

a square, we can specify it by saying that the vertices are a, b, c and d and listing the edges

as ab, bc, cd and da.

2. Szemerédi’s theorem

Not all study of discrete structures would be classified as combinatorics. Another char-

acteristic feature of much of the subject is that its problems can be stated in a way that is

easy to understand, or at least far easier than it is for the problems in many other areas.

Also, the proofs are often elementary, not in the sense that Sherlock Holmes would use
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the word but in a rather special mathematical sense. When a mathematician describes a

proof as elementary, it means that the argument does not make use of advanced concepts

or rely on previously established difficult results. It should not be taken to imply that

the proof is easy: one can put together basic ingredients in extremely complicated and

sophisticated ways, and some “elementary” proof are amongst the hardest in mathemat-

ics. Conversely, some advanced proofs may actually be quite easy when you have invested

enough time in understanding the theories on which they depend. (Of course, there are

also easy elementary proofs and difficult advanced ones.)

Szemerédi’s theorem is a perfect illustration of what I have just said. It has a very

appealing statement, and the proof that Szemerédi gave was both elementary and extremely

difficult. Let me begin by explaining what the theorem says.

In order to do this, I need the notion of an arithmetic progression. An arithemetic

progression is a sequence of numbers that advances in steps of the same size. So the

sequence 3, 9, 15, 21, 27, 33, 39 is an arithmetic progression, with steps of size 6, while

the sequence 4, 7, 11, 14, 17, 21 is not an arithmetic progression because the differences

between successive terms are not all the same (some being 3 and some being 4).

One way of understanding Szemerédi’s theorem is to imagine the following one-player

game. You are told a small number, such as 5, and a large number, such as 10,000. Your

job is to choose as many integers between 1 and 10,000 as you can, and the one rule that

you must obey is that from the integers you choose it should not be possible to create a five-

term arithmetic progression. For example, if you were accidentally to choose the numbers

101, 1103, 2105, 3107 and 4109 (amongst others), then you would have lost, because these

five numbers form a five-term progression with step size 1002.

Obviously you are destined to lose this game eventually, since, to give an argument

that is both elementary and extremely easy, if you keep going for long enough you will

eventually have chosen all the numbers between 1 and 10,000, which will include many

five-term arithmetic progressions. But Szemerédi’s theorem tells us something far more

interesting: even if you play with the best possible progression-avoiding strategy, you will

lose long before you get anywhere near choosing all the numbers.

To state the result precisely I need just a tiny bit of algebra, though all I mean by that is

that I would like to represent the two numbers we start with by letters. Let k stand for the

length of the progression we are trying to avoid, and let n stand for the number of numbers

we get to choose from. (In the discussion just above, k was 5 and n was 10,000.) Now let

us write S(k, n) for the largest number of numbers it is possible to choose while avoiding
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any k-term progression. What Szemerédi showed was that when n is large, S(k, n) is a

very small percentage of n. How small? Well, as small as you like – provided only that n

is large enough.

If, for instance, we are trying to avoid progressions of length 23, Szemerédi’s theorem

tells us that there is some n (which may be huge, but the point is that it exists) such that

if we play the game with n numbers, then we cannot choose more than n/1000 of those

numbers – that is, a mere 0.1% of them – before we lose. And the same is true for any

other progression length and any other positive percentage.

How does the proof go? I’m not going to tell you. I’m just going to repeat that is

elementary in the technical sense, and attempt to convince you that it is difficult by

reproducing a diagram from Szemerédi’s original paper.
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3. Why should we care about finding arithmetic progressions?

I know of no situation in real life where it is important to be sure that a smallish

set of integers is forced to contain an arithmetic progression of length 10. And even if

such a situation were to arise, the n you would need for Szemerédi’s theorem to tell you

anything interesting would be far larger than the number of atoms in the universe, or even

the exponential of that number. That puts the theorem well beyond the realms of any

practical applications. What is it, then, about Szemerédi’s theorem that mathematicians

find so fascinating?

There are several answers to this. The most obvious one is the contrast between the

simplicity of the statement of Szemerédi’s theorem and the difficulty of its proof (and all

subsequently discovered proofs). Usually, a simple and natural mathematical statement

either has a simple proof or a simple counterexample. From time to time, however, one

is surprised: an innocent-seeming question is much harder to resolve than one expects. A

significant proportion of such questions turn out to be so hard that nobody believes that

they will be solved without ideas that are way beyond anything we have at the moment

(an example is the question of whether e+π is an irrational number). But some questions

are just right: they are simple to ask and very hard to answer, but they have just enough

connection with what we do know to make one feel that trying to solve them is not a

completely hopeless task. The Erdős-Turán conjecture came into that category.

A second answer is that Szemerédi’s theorem has mathematical applications even if

it does not have practical ones. A particularly notable one is a theorem of Ben Green

and Terence Tao, which states that you can find arbitrarily long arithmetic progressions

that consist only of prime numbers. This result does not follow directly from Szemerédi’s

theorem, but Green and Tao found an extremely clever way of converting their problem

into a form that allowed them to use Szemerédi’s theorem to solve it.

If, however, you insist on practical applications, then all is not lost, provided that you

are ready to accept indirect applications rather than direct ones. An important and not

sufficiently appreciated aspect of mathematics is that the result you prove is often less

interesting than the methods you use to prove it. This tendency is especially pronounced

in combinatorics, where open problems often become popular not because we are desperate

to know the answers to them but because they encapsulate some more general difficulty

that we feel is holding us back mathematically. When such a problem is solved, the solution

often involves the development of new mathematical tools that go on to be used in many

other contexts.
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Szemerédi’s theorem provides a wonderful illustration of this phenomenon too, as we are

about to see.

4. Szemerédi’s regularity lemma

I have not yet said what extremal combinatorics is, but let me do so now. Here is a

question in extremal graph theory: if a graph has n vertices, then how many edges can

it have without any three of them forming a triangle? In general, questions in extremal

combinatorics ask how big some quantity can be before something else is forced to happen.

Szemerédi’s theorem itself is another example: it addresses the question of how many

numbers you can choose between 1 and n before you are forced to include an arithmetic

progression of length k.

Such questions fall naturally into two parts. One part is to find examples of structures

that avoid what you want to avoid in such a way that the quantity you are interested in

is as big as possible. The other part is to show that if the quantity in question reaches a

certain size, then you cannot avoid what you want to avoid. A profound insight of Erdős

was that in many situations a surprisingly good way of carrying out the first part is to

choose your structures randomly. For example, if your structure is a graph with n vertices,

there are some problems for which you get very good answers if for each pair of vertices

x and y you simply toss a coin to decide whether to join them by an edge. (If you want

your random graph to contain fewer edges, then you can use a biased coin.) It might seem

as though there is nothing you can say about a structure that has been defined randomly,

and indeed that is more or less true if you are looking for complete certainty. But, and this

is the point, there is a huge amount that we can say if we merely ask for near certainty.

And that is enough: if we can say that a randomly chosen structure almost certainly has

the properties we want, then we can also draw the much weaker conclusion that at least

one structure has the properties we want.

Erdős’s insight gave birth to random graph theory, which became a major subarea of

combinatorics. As a result, combinatorialists think of random graphs not as unpleasant

chaotic objects but as objects that are in many ways easy to understand. Just to be clear,

I am not saying that random graph theory is an easy area: if you ask sufficiently detailed

questions about a random graph, then answering them requires very delicate and difficult

probabilistic estimates. But there is nevertheless an important sense in which random

graphs are (almost always) predictable and well-behaved.
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It is against this background that Szemerédi’s regularity lemma should be understood.

Before the regularity lemma, graphs were thought of as rather structureless objects. After

all, when you are specifying a graph, you decide for each pair of vertices x and y whether to

join them by an edge, and there are no constraints whatsoever on your decision. However,

Szemerédi realized that once you have lost your fear of randomness you can give a useful

structural description to a completely arbitrary graph.

I cannot give a precise statement of the result here, but the rough idea is this. Given

any graph, there is a way of dividing up its vertices into a small number of sets in such a

way that if you take the edges joining any two of those sets, they look as though they have

been chosen randomly. (In fact, even this rough idea is an oversimplification, but it will do

for these purposes.) In short, every graph is made out of a small number of random-like

graphs.

What this tells us is that we can give a good description of our graph using a very small

amount of data: having split the vertices into the sets that the lemma tells us we can

find, we just have to say roughly how many edges there are between each pair of those

sets, and we know that those edges will be distributed in a way that looks random. That

doesn’t tell us exactly what the graph is, but for many purposes the difference between

two random-like graphs is not important – they are both random-like, so they both have

the properties that you expect of a random graph.

Szemerédi’s regularity lemma quickly became, and has remained, a central tool in ex-

tremal graph theory, and its indirect influence, for example through several modifications

and generalizations that have been formulated subsequently, is wider still.

I promised to discuss indirect practical applications of the regularity lemma. So let me

start with an intellectual endeavour of obvious practical importance and work back to the

regularity lemma. Nobody can deny that if one could develop a computer program that

was able learn from experience, then it would have innumerable practical applications.

The branch of artificial intelligence that attempts to do this is called machine learning.

A famous abstract model called PAC learning was proposed by Leslie Valiant as a good

framework for thinking about machine learning. (The letters PAC stand for “probably

approximately correct”.) This gave rise to purely mathematical questions that fall under

the general heading property testing. Roughly speaking, you are presented with a structure

and you want to show that either it has a certain property or it is probably very similar

to a structure that does not have that property. For example, you might be given a graph

and be required to show either that it contains a triangle or that it differs only slightly,
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if at all, from a graph with no triangles. What is interesting from the point of view of

machine learning is that this can often be done extraordinarily fast: the program can carry

out a very small number of simple tests and then form a reliable hypothesis (that is, a

hypothesis that is probably approximately correct). And the tool that allows one to prove

this? Szemerédi’s regularity lemma.

5. Sorting

Szemerédi is also famous for being one third of Miklós Ajtai, János Komlós and Endre

Szemerédi, or AKS for short. I shall discuss a couple of highlights of their work, but I

must stress that this is a small sample. When I say “highlights” I mean something like the

lights on a motorway: they are high, but they are also extremely numerous.

An old topic in computer science is that of sorting algorithms. You are given a collection

of objects and are able to compare any two of them. Your job is to put them in order using

as few comparisons as you can. To think about this, it may help to imagine a collection of

rocks that you have to put in order of weight, and all you have to do it is a pair of scales

that will tell you, given any two rocks, which is the heavier. You have to pay a dollar every

time you use the balance, and you want to spend as little money as possible.

A beautiful argument shows that if you have n objects, then the number of comparisons

you need to make is at least the logarithm (to base 2) of n!. (The exclamation mark denotes

a factorial, so n! is shorthand for 1 × 2 × · · · × n.) The argument is simple enough that I

can even give it here. The number of possible orderings of the n objects is n!. Each time

you ask a question, there are only two possible answers, so you cannot hope to reduce by

more than a factor of 2 the number of orderings that are consistent with the answers you

have so far received. (It’s a bit like playing twenty questions: each question divides what

remains of the world into two, and if you’re unlucky the answer you get will direct you to

the bigger half, so you cannot in general do better than reducing the set of possibilities

by 50%.) Therefore, after k steps you cannot reduce the number of possible orderings by

a factor of more than 2k. Therefore in the worst case the number of steps has to be some

k such that 2k is at least n!, since otherwise there could well be more than one ordering

consistent with the information you have. This is equivalent to saying that k has to be at

least the logarithm of n!.

The logarithm of n! is roughly n log n (that is, n times the logarithm of n). Interestingly,

sorting algorithms are known that get by with approximately this number of comparisons.

That is, there are methods known for deciding which two objects to compare, given previous
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answers, that require a number of comparisons that is close to the theoretical minimum.

For example, in 1945 John von Neumann invented a method known as Merge Sort that

achieves this.

At the end of 1945, Szemerédi was only five. It might therefore appear that the subject

of sorting algorithms was itself completely sorted out long before he was mathematically

active. However, to think that is to underestimate the capacity of mathematicians to ask

good questions.

Let us go back to the rocks that we want to put in order of weight and vary the game

slightly. This time you have as many scales as you like, so that you can perform several

comparisons simultaneously. So what you do is organize a series of weighings, where in

each weighing you can weigh as many pairs of rocks as you like. The one obvious constraint

is that the same rock cannot be placed on two different scales, so each rock is compared at

most once during each weighing. And your object now is to put the rocks in order using

the smallest number of weighings you can get away with.

Since we already know that around n log n comparisons are needed, and since you can

do at most n/2 comparisons per weighing, the total number of weighings is obviously

going to have to be around 2 log n, at the very least. For a long time it was an open

problem whether one could get away with this theoretical minimum number, and this is

the problem that Ajtai, Komlós and Szemerédi solved. They came up with a brilliantly

clever method of sorting that does indeed require on the order of log n weighings. In the

language of computer science, what Ajtai, Komlós and Szemerédi discovered was a fast

parallel algorithm for sorting.

I cannot describe their method in full here, but I can give some idea about one ingredient

of it. Suppose you have 1000 rocks to start with and you divide them into two groups of

500 each. (At this stage you have absolutely no idea how the weights of the rocks compare

with each other.) One thing you might do is pair up the rocks in one group with the rocks

in the other group, do 500 simultaneous comparisons, and put all the lighter rocks into a

group marked L and the heavier ones into a group marked H. We would be very happy

if all the rocks in L were lighter than all the rocks in H, but so far there is absolutely no

reason to believe that this is true. However, we can repeat the process. Of course, to get

more information, we now want to pair the rocks up in a different way.

Taking our cue from Erdős, we might think, correctly as it happens, that a good thing

to do now is randomly pair up the rocks in L with the rocks in R and repeat the process.
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That is, each time a rock in L is heavier than the rock we pair it up with in H, we swap

them over, and each time it is lighter we leave it where it is.

If we keep randomly pairing up the rocks in L with the rocks in H, then there is a general

tendency for lighter rocks to end up in L and heavier rocks to end up in H. What’s more,

as the process continues, this tendency gets more and more pronounced: if the rocks in L

are already mostly the lighter ones, then it is unlikely that they will get moved up into H

or that rocks in H will get moved down into L. Ajtai, Komlós and Szemerédi proved that

after a constant number of comparisons (that is, a number that does not get bigger with

n), the vast majority of the rocks in L are lighter than the vast majority of the rocks in H.

If all the rocks in L were lighter than all the rocks in H, then we could simply repeat this

process within each group and after about log n rounds we would be finished. However,

all we know is that this is true for almost all the rocks, so although Ajtai, Komlós and

Szemerédi did indeed reach this conclusion, they had to work hard to do so.

One final word about this algorithm: as I described it above it was a randomized algo-

rithm, because of all the random pairings. However, there is a very useful kind of graph

known as an expander that can often be used as a substitute for a random graph. Here,

instead of tossing a coin, one can use the edges of an expander to help one decide how to

pair up the rocks, and the algorithm still works. This is an example of derandomization,

which is one of the fundamental ideas in theoretical computer science, and it means that

the algorithm can be performed in a fully deterministic way.

6. The Ramsey number R(3, k)

A triangle in a graph is what you might expect: three vertices all joined to each other.

An independent set is a collection of vertices none of which are joined. Here is a simple

argument to show that a graph with k2 vertices must contain either a triangle or an

independent set of size k. Equivalently – and this is what I shall actually prove – if a

graph does not contain a triangle or an independent set of size k, then it must have fewer

than k2 vertices.

The argument goes as follows. Let v be any vertex in the graph. No two vertices that

are joined to v can be joined to each other, since then we would have a triangle. Thus, the

vertices that are joined to v form an independent set. It follows that v cannot be joined

to more than k − 1 other vertices (since we are assuming that the graph does not contain

an independent set of size k).
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Now imagine that we are trying to find a large independent set. One way we might go

about it is simply to pick a sequence of vertices v1, v2, v3, . . . , making sure that each new

vertex we pick is not joined to any of the previous vertices. Can we do this? Well, suppose

that so far we have chosen the vertices v1, v2, . . . , vj. Each one is joined to at most k − 1

vertices, so between them they are joined to at most (k − 1)j vertices. Therefore, when

it comes to picking a new vertex, there are at most j + (k − 1)j = kj vertices that we

must avoid (the first j being the vertices v1, . . . , vj). So as long as the number of vertices

is greater than kj, we can extend the sequence. If we want to get j all the way up to k,

then we need the number of vertices to be greater than k(k − 1). Since k2 is greater than

this, if we have k2 vertices, we will be able to continue our sequence up to at least vk, and

that will give us an independent set of size k.

Do we really need that many vertices to guarantee a triangle or an independent set of size

k? Well, the argument gives a slightly stronger result than k2: it shows that k(k − 1) + 1

vertices will suffice. But are there graphs with k(k − 1) vertices that do not contain

triangles or independent sets of size k? If not, how many vertices can such a graph have?

The largest possible number is called the Ramsey number R(3, k).

The argument above is (by the standards of research mathematics) very simple, but

deciding whether it can be improved turns out to be much harder. This was the problem

that Ajtai, Komlós and Szemerédi solved: they proved that R(3, k) is at most k2/ log k,

to within a constant factor. If you really want to appreciate this achievement, you should

spend a while thinking about the problem for yourself, but if you do not have the time

for that, then you can at least bear in mind that the problem was decades old, and that

fifteen years later Jeong Han Kim, in another famous paper, proved that the result was

best possible: that is, R(3, k) is not merely at most k2/ log k but actually equal to k2/ log k

(again, up to a constant factor).

In order to prove their result, Ajtai, Komlós and Szemerédi had somehow to do better

than the easy argument sketched above. Very roughly, what they did was to run the same

argument, but to do so in a much more careful way. Recall that the basic idea is to pick

vertices v1, v2, . . . and avoid the neighbours of vertices you have already chosen. We can

describe this process as follows. We start with the entire graph. We pick a vertex v1 and

then we throw away all its neighbours. Then from the remaining part of the graph we

pick a vertex v2 and throw away all its neighbours. And we carry on like this. Because no

vertex has more than k − 1 neighbours, we don’t throw away too many vertices at each

stage, so we can continue for quite a long time.
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Now it is clear that if at any stage of this process we could find a vertex with considerably

fewer than k − 1 neighbours, we would be very pleased: we could choose that vertex, and

then we wouldn’t have to throw away so much of the graph, so the process could go on

for longer. But why should we be able to find such a vertex? To begin with, there is no

reason. But we do have some control over the process: when we choose a vertex vi, we

throw away its neighbours. If these neighbours themselves have many neighbours, then

when we throw them away, we will also have thrown away a large number of edges. So

the basic idea is to choose the sequence v1, v2, . . . in such a way that the number of edges

in the part of the graph that you have not thrown away goes down as much as possible.

Ajtai, Komlós and Szemerédi showed that it was possible to pursue this idea and end up

prolonging the process so that it can be continued for roughly log k times as long as the

simple argument would suggest.

The argument I have just hinted at was not in fact the first proof that Ajtai, Komlós

and Szemerédi came up with, but it is easier to describe. Their earlier argument is also

important, because it was an early example of the so-called semirandom method, which I

shall not discuss here, except to say that it is another general technique that has had many

applications.

7. Conclusion

Some mathematicians are famous for one or two major theorems. Others are famous for a

huge and important body of high-class results. Very occasionally, there is a mathematician

who is famous for both. No account of Szemerédi’s work would be complete without a

discussion of Szemerédi’s theorem and Szemerédi’s regularity lemma. However, there is

much more to Szemerédi than just these two theorems. He has published over 200 papers,

as I mentioned at the beginning, and at the age of 71 he shows no signs of slowing down.

It is extremely fitting that he should receive an award of the magnitude of the Abel Prize.

I hope that the small sample of his work that I have described gives at least some idea of

why, even if I have barely scratched the surface of what he has done.


