
Asymptotic properties of groups

A popular family of mathematical objects is the so-called

Lie groups, named after the Norwegian mathematician

Sophus Lie (1842–1899). Lie groups are objects that

describes the symmetries of geometrical objects, such as

rotational symmetry in three dimensional space. Sophus

Lie was inspired by earlier work of Abel and Galois on

solutions of algebraic equations. Abel’s proof of the

non-solvability of the fifth degree equation in radicals, and

Galois’ ground-breaking theory for connecting solutions of

polynomial equations to certain automorphism groups of

field extensions, are both brilliant examples of how one can

understand the details by extending the horizon. Lie’s idea

was to introduce a similar way of studying symmetries of

differential equations. It has ever since been an important

task to understand the structure of such groups, in order to

approach the solution of the underlying differential

equations.

An abstract group is a set with a binary operation,

satisfying certain properties, as associativity and existence

of inverses. The binary operation can be addition,

multiplication or composition of elements or functions,

depending on which group we have in mind. Groups can

have finitely or infintely many elements, and they might

have a rather complex structure. But groups can also have

a more or less trivial structure, such as the additive group

{0} of only one element. Other examples of groups are the

integers Z with ordinary addition as the binary operation,

the set of invertible n × n-matrices with multiplication as

the binary operation, or the set of symmetries of a cube

under composition, which in fact is the same group as the

set of permutations of the set {A, B, C, D}.

In the same way as the symmetry group of a cube acts on

the vertices of the cube, an abstract group can act on an

arbitrary set. The action must reflect the binary structure of

the group, i.e. if ρg(x) denotes the action of the group
element g on the element x ∈ X, it is neccessary that
ρgg′(x) = ρg(ρg′(x)).

The atoms in the world of groups are the simple groups.

For finite groups, simple groups are completely classified,

due to work of a lot of mathematicians through many

decades, among those the 2008 Abel Prize Laureate John

Griggs Thompson played a leading role.

Groups may have additional structure, compatible with the

binary operation of the group, such as topological groups.

A topological group is a group which is also a topological

space with a continuous binary operation.

As an example of a topological group, we consider the

circle group

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}

The group operation is given by adding angles. In fact, the

circle group is what we call a compact topological group.

An important property of a group is the size of the group.

For finite groups we can count the elements to find the

order of the group, but for infinite groups it is not that



simple. We need more sophisticated measures, and we

focus on two different properties, amenability and the

Kazhdan property (T).

In order to define amenability we use the notion of a Følner

sequence. A Følner sequence for an action of a group G
on a countable set X is a sequence of finite sets which

”fills up” X and such that the action on X ”don’t move too

much.” The precise definition is as follows;

Definition. Let G be a group acting on a countable set X. A

Følner sequence for the action is a sequence F1 ⊂ F2 ⊂ . . .
of finite subsets of X such that

⋃∞
j=1 Fj = X and such that

lim
j→∞

|gFj ∆ Fj|
|Fj|

= 0

for all g ∈ G and where ∆ denotes the symmetric

difference, i.e. A ∆ B = (A ∪ B) \ (A ∩ B).
A discret countable group G is amenable if it contains at

least one Følner sequence for the action of the group on

itself.

An example of an amenable group is the integers Z. It has

a Følner sequence Fj = [−j, . . . , j] with union all of Z and

where

(z + Fj)∆ Fj = [j + 1, . . . , j + z] ∪ [−j, . . . ,−j + z]

has cardinality 2z. Since z is fixed, the limit of the fraction

by |Fj| = 2j + 1 is 0.

An equivalent definition for countable discrete groups, due

to J. Dixmier, is that there are unit vectors ξ in `2(G) such
that ||gξ − ξ|| tends to 0 for each g ∈ G. We say that ξ is

an almost invariant vector. Notice that finite, solvable and

finitely generated groups of polynomial growth are

amenable.

The growth rate of a group is a well-defined notion from

asymptotic analysis. To say that a finitely generated group

has polynomial growth means the number of elements of

length (relative to a symmetric generating set) at most n is

bounded above by a polynomial function P(n). The order
of growth is then the least degree of any such polynomial

function P.

The other property we consider is the so-called Kazhdan

property (T).

Definition. Let G be a locally compact group and

ρ : G → U(H) a unitary representation of G on a Hilbert

space H. For any ε > 0 and a compact subset S ⊂ G a

unit vector ξ ∈ H is called an (ε, S)-invariant if

||ρ(g)ξ − ξ|| < ε ∀g ∈ S

We say that G has Kazhdan property (T) if every unitary

representation of G that has an (ε, S)-invariant unit vector
for any ε > 0 and any compact subset S, has a non-zero
invariant vector.

Using the Dixmier definition of amenability we notice the

relation between the two definitions; Amenability is

equivalent to the existence of a (ε, S)-invariant unit vector
ξ ∈ H, and Kazhdans property (T) says that if G that has an

(ε, S)-invariant unit vector for any ε > 0 and any compact

subset S, then it has a non-zero invariant vector. We have

some examples of groups with property (T): Finite groups,

compact topological groups and simple real Lie groups of

real rank at least two, including the special linear groups

SLn(R) for n ≥ 3.
We also look at some examples of groups that do not have

property (T): The additive groups of integers Z, or of real

numbers R, noncompact solvable groups, nontrivial free

groups and free abelian groups and the special linear

groups SL2(Z) and SL2(R).
To illustrate some of the technicalities in this univers we

give a proof of the fact that any finite group has property

(T):

Proof. Let G be a finite group. Let ρ : G → U(H) be a
unitary representation of G that has a (ε, S)-invariant unit
vector ξ for any subset S ⊂ G and ε > 0. We can obviously

assume that

sup
s∈G

||ρ(s)ξ − ξ|| <
√

2

Then it follows that

1−||ρ(s)ξ − ξ||2
2

= 1 − 1
2 〈ρ(s)ξ − ξ, ρ(s)ξ − ξ〉

= 1 − 1
2 (〈ρ(s)ξ, ρ(s)ξ〉+ 〈−ξ, ρ(s)ξ〉

+ 〈ρ(s)ξ,−ξ〉+ 〈−ξ,−ξ〉)
= 1

2 (〈ξ, ρ(s)ξ〉+ 〈ρ(s)ξ, ξ〉)
= <〈ρ(s)ξ, ξ〉 > 0

Let

η = ∑
g∈G

ρ(g)ξ

By construction this vector is invariant. It is also non-zero,

since

<〈η, ξ〉 6= 0

by the above argument. Thus we have showed that almost

invariant vectors produce a non-zero invariant vector.

We also give a proof of a case where we have the opposite

conclusion; The group R does not satisfy Kazhdans

property (T).

Proof. Let λ : R → `2(R) be the left regular representation
of R, i.e.

λ(t) f (x) = f (x − t)



Let Q ⊂ R be a compact subset, bounded by M, and let

ε > 0 be a real number. Consider the interval I = [a, b] in
R such that b − a > 2M

ε2 , and let

ξ = (b − a)−
1
2 χ : R → R

where χ is the characteristic function of [a, b]. Then we
have

||ξ||2 =
∫

R
ξ2 dx =

∫
R

χ2

b − a
dx = 1

and ξ is unitary. Furthermore, we have

(λ(t)ξ − ξ)2 = (ξ(x − t)− ξ(x))2

=
1

b − a
(χ[a,a+t] + χ[b,b+t])

where we have used that |t| < b − a. Therefore

||λ(t)ξ − ξ||2 =
∫

R
(λ(t)ξ − ξ)2 dx

=
2|t|

b − a
<

2M
b − a

< ε2

It follows that the regular representation almost has

invariant vectors.

On the other hand, the regular representation has no

invariant vectors. In fact, suppose

λ(t) f (x) = f (x − t) = f (x)

for all t ∈ R. Then f is constant, different from 0. But

non-negative constant functions do not belong to

`2(R).


