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FERMAT’S LAST THEOREM
FOR n = 4

The most prominent application of
the modularity theorem is the proof of
Fermat’s Last Theorem. Even if Fer-
mat claimed that he had found a mar-
vellous proof of the statement, it is not
very likely that he actually had found a
proof. What we know, is that Fermat
had a proof of the theorem for n = 4,
using his proof method called infinite
descent.

Diophantus of Alexandria

The case n = 4 is the easiest case of FLT to
prove. The proof uses in a clever way a prop-
erty of the positive integers, called Diophant’s
theorem, named after its originator, Diophan-
tus of Alexandria (lived between 200 and
300). The theorem gives an accurate descrip-
tion of the so-called primitive Pythagorean
triples, i.e. triples (x, y, z) of positive inte-
gers, with no common divisor, satisfying the
Pythagorean equation x2 + y2 = z2.

Diophant’s Theorem. Let x, y, z be posi-
tive integers with no common factor, and such

that
x2 + y2 = z2

Then for some positive integers p > q, with
no common factor, we can write

x = p2 − q2, y = 2pq, z = p2 + q2

We shall use this result to prove that the
equation

x4 + y4 = u2

has no solution among the positive integers.
This is an even stronger result than the FLT
for n = 4 by the substitution u = z2.

Assume that the above equation has at
least one solution, and that we consider the
solution with the smallest value of u. Our
first observation is that x, y, u can have no
common factor, since dividing out by such
a factor would produce a new solution with
strictly smaller u.

To continue we observe that the equation
can be written

(x2)2 + (y2)2 = u2

and by Diophant’s theorem we can find posi-
tive integers p, q with no common factor such
that

x2 = p2 − q2, y2 = 2pq, u = p2 + q2

Another observation is that any square has
remainder either 0 or 1 when divided by 4.
The only way to obtain this in this case is that
p is odd and q is even. So we write q = 2c and
we have y2 = 2pq = 4pc, or (y

2
)2 = pc. The

next observation is that p and c are squares.
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The reason for this is that since p and q have
no common factor, the same is true for p and
c. If we let y

2
= p1p2 · . . . pk be the prime

factorization of y/2, we get

pc = (
y

2
)2 = p21p

2
2 · · · · · p2k.

But p and c have no common prime factor
and for each pi either p2i is a factor of p or
pi is not a factor of p. It follows that p and
c are squares. Using this fact we can write
p = d2, c = f 2. Using x2 = p2 − q2 = (d2)2 −
(2c)2 = (d2)2 − (2f 2)2, we see that

x2 + (2f 2)2 = (d2)2.

It is rather straightforward to see that x, 2f 2

and d2 have no common prime factor, and
again using Diophant’s theorem we can write

x = l2 −m2, 2f 2 = 2lm, d2 = l2 + m2,

with l and m without common factor. Using
the same technique as above for f 2 = lm, it
follows that l and m are squares, i.e. l =
r2,m = s2, and so

r4 + s4 = l2 + m2 = d2

We have found a new solution of the original
equation x4 + y4 = u2, where d < u.

Our initial assumption was that u was the
smallest right hand side among all solutions,
contradicting the existence of the solution
with d as the number on the right hand side.
An assumption that leads to a contradiction
can not be true, thus we have proved that
there can not exist any positive integer solu-
tion to the Fermat equation

x4 + y4 = u2

The 1621-edition of
Diophantus’ Arithmetica.

Diophantus is often called

the father of algebra.


