
Sir Andrew John Wiles,

Abel Prize Laureate 2016

THE MODULARITY
THEOREM

The modularity theorem asserts that
every elliptic curve defined over the
rational numbers is modular. In this
note we give some background for the
theorem, introducing the two involved
concepts, elliptic curves and modular
forms.

Denote by H the upper half of the complex
plane, i.e. all complex numbers of positive
imaginary part. A modular form of weight
2k for some positive integer k is a holomor-
phic function f on H, such that for all integer
2× 2-matrices α = ( a bc d ) ∈ SL2(Z) we have

f(αz) = (cz + d)2kf(z)

and such that f is holomorphic at the point
of infinity, i.e. as z → i∞.

The action of the 2× 2-matrix α on z ∈ H
is given by the Möbius transformation

z 7→ az + b

cz + d

Substituting α = ( 1 1
0 1 ) we see that

f(z + 1) = f(z)

i.e the function is translation invariant. Since

e2πi(z+1) = e2πiz+2πi = e2πiz

we can write f as a function of q = e2πiz. The
condition that f is holomorphic at z = i∞ is
equivalent to the function being holomorphic
at q = 0, so we can write

f(z) =
∑
n≥0

an q
n, q = e2πiz

A famous modular form is the so-called dis-
criminant function,

∆(z) = q

∞∏
r=1

(1− qr)24, q = e2πiz

Using this modular form we can produce an-
other example

f(z) = 12
√

∆(z)∆(11z)

The Fourier expansion of f(z) as a function
in q is given by

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7

− 2q9 − 2q10 + q11 − 2q12 + . . .

We will come back to this series, but first we
introduce the other concept involved, elliptic
curves.

Elliptic curves is a class of plane curves de-
fined by polynomials of degree three. The
equation

y2 + y = x3 − x2

is an example of an elliptic curve.

The graph of the elliptic curve

E = {(x, y) ∈ R2 | y2 + y = x3 − x2}
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We are interested in the number of integer so-
lutions of the above equation modulo a prime
number p, i.e. we look for solutions of the
equation among the set of remainders Zp =
{0, 1, 2, . . . , p− 1} when dividing by p. As an
example let p = 11. Then (x, y) = (10, 4) is
a solution. The reason for that is that both
sides of the equation give the same remainder
when divided by 11;

42 + 4 = 20 ≡ 9 (mod 11)

and

103 − 102 = 900 ≡ 9 (mod 11)

Let #Ep be the number of solutions of the
above equation in the set of remainders Zp.
For each prime number p let

ap = p−#Ep

For p = 2 there are 4 solutions of the given
equation, (0, 0), (0, 1), (1, 0) and (1, 1), i.e. all
possible remainders are solutions, and a2 =
−2. For p = 3 we have also four solutions;
(0, 0), (0, 2), (1, 0), (1, 2), and a3 = −1. For
the next primes we have a5 = 1 and a7 = −2.

The surprising fact is that for each prime
number p, the number ap for this elliptic curve
equals the Fourier coefficient of the modu-
lar form f(z) = 12

√
∆(z)∆(11z) given above.

This type of phenomenon was first observed
by Tanyama-Shimura, resulting in the TSW
conjecture. TSW became a theroem and
changed name to ”The modularity Theorem”
when Wiles gave a proof of it. Wiles proved
that every semi-stable elliptic curve is mod-
ular. This is a nice way to say that the sim-
ilarity of the two sequences of numbers, the
Fourier coefficients of the modular form and

the number of solutions modulo primes of the
elliptic curve, is no coincidence.

The last piece of the FLT puzzle was
introduced be Gerhard Frey. He claimed
that if there exists a non-trivial solution of
FLT, then there exist a non-modular elliptic
curve. This conjecture was extended further
by Jean-Pierre Serre and later proved by Ken
Ribet.

The figure illustrate the action on the upper
half-plan of the modular group SL2(Z). The
grey area is often called the fundamental area.

p #Ep ap
2 4 -2
3 4 -1
5 4 1
7 9 -2
11 10 1
13 9 4
17 19 -2
19 19 0

The sequence of numbers in the last column
should be compared to the prime number coef-
ficients of the Fourier expansion of the modu-
lar form 12

√
∆(z)∆(11z) given on the previous

page.


