
Recurrence of random walks in Z and Z2, but not in Z3

Suppose that we at a certain time were able to localize

every gas molecule in a closed container, writing up their

position and velocity, i.e. decide the state of the gas. Just

after this golden moment the gas molecules will continue

to move around in the container, constantly collide with

each other and the walls in a rather chaotic manner. It

seems a bit paradoxical that the gas once more should

reach the same state as we observed earlier, but according

to Henri Poincarè’s recurrence theorem from 1890 this is

exactly what happens. You may compare it with the fact

that if you continue to write up letters randomly, at some

point you will by accident have written a strict correct

version of the famous Henrik Ibsen play A Doll’s House. It

may take some time, but sooner or later it will happen.

Various results about recurrence have been presented

since Poincarè’s discussion back in 1890. The

mathematical foundation of the concept was laid by

Birkhoff in 1930, in his proof of the ergodicity theorem. The

theorem says that for a measure-preserving transformation

on a finite dynamical system almost every starting point of

a process will be repeatedly reached.

To illustrate the recurrence phenomenon we can study

random walks in Zn for n = 1, 2, 3, with uniform probability

distribution.

Consider a uniform distributed random walk along Z.

Located at x, in the next step we will reach x + 1 with

probability 1
2 and x − 1 with the same probability. Let

M ∈ Z, for simplicity we assume M > 0. For any
0 < x < M we ask the question: Which number do we

reach first, 0 or M? Let m(x) denote the probability that
we reach M first. What happens in the next step? With

probability 1
2 we move to x + 1, where the probability of

reaching M first is m(x + 1). With the same probability we

move to x − 1, where the corresponding probability is

m(x − 1). This sets up a recursion

1
2 m(x − 1) + 1

2 m(x + 1) = m(x)

with boundary condition m(0) = 0 and m(M) = 1. The
solution of this difference equation is m(x) = x

M . The

probability of reaching 0 first is then 1 − x
M . Suppose we

do not reach 0 at all. That is equivalent to the fact that we

reach any positive number M before we reach 0, i.e.
m(x) = x

M = 1 for all M ∈ Z and any start value x. This is
of course impossible, which means that we for sure will

return to 0.

In fact we can compute the probability that the random

walker will be back after 2n steps (it has to be an even

number). Using the Pascal triangle we see that the

probability of returning after 2n steps is

(2n
n )

22n

This number can be approximated for large values of n by

Sterling’s formula. Sterling’s formula says that



n! ∼ nne−n
√

2πn, thus we get

(2n
n )

22n ' (2n)2ne−2n
√

4πn
22n(nne−n

√
2πn)2

=
1√
πn

Let p be the probability of returning to 0. Then the
probability of returning exactly n times is pn−1(1 − p). The
expectation of this distribution is

E =
∞

∑
n=1

npn−1(1 − p) =
1

1 − p

The expectation of number of returns to 0 can be

expressed as the sum of the expectations of only one

return after 2n steps;

E =
∞

∑
n=1

1√
πn

which diverges and it follows that 1 − p = 0, i.e. we will for
sure return to 0.
We can use the same formalism to show recurrence in Z2.

In that case we have to return to 0 in two directions, i.e. the

probability is given by

1√
πn

· 1√
πn

=
1

πn

Again we have that

E =
∞

∑
n=1

1
πn

diverges and 1 − p = 0.
If we continue to increase the rank, i.e. looking at Z3, we

notice that the series

∞

∑
n=1

1
(
√

πn)3

converge, and we get p 6= 1, which means that we can not

sure that we will return to 0. The probability of returning
can be computed to approximately p = 0.3405.


