
17 handwritten pages that shaped

a whole area of mathematical research

”In response to your invitation to come and talk I
wrote the enclosed letter. After I wrote it I realized
there was hardly a statement in it of which I was cer-
tain. If you are willing to read it as pure speculation
I would appreciate that; if not - I am sure you have
a waste basket handy.”

This is the text of the cover page of Robert P. Lang-
lands’ 17-page handwritten letter to André Weil in
January 1967. André Weil, at that time in his early
60s, was one of the most influential individuals in
mathematics during the 20th century, particularly in
algebraic geometry and number theory. Robert Lang-
lands was 30 years younger, a promising mathemati-
cian, but still in an early stage of his career. Weil did
not respond to the letter, but he had it typed, and
this typed version circulated widely among mathe-
maticians. The content of the letter would soon be
known as the ”Langlands conjectures”.

A famous result in number theory states that an
odd prime number p can be written as a sum of two
squares if and only if the prime number has remain-
der 1 when divided by 4. In mathematical terms this
is phrased by saying that p is congruent to 1 mod-
ulo 4. The result was formulated by Fermat already
in 1640, and proved by Euler a hundred years later.
The integers 5, 13, 17 and 29 are the first primes
that are congruent to 1 modulo 4, and correspond-
ing decompositions into a sum of two squares are
5 = 12+22,13 = 22+32, 17 = 12+42 and 29 = 22+52.
On the other hand there are no ways of writing 3, 7,
11 or 19 as sums of two squares, since their remain-

der is 3 when dividing by 4. This result is an example
of a reciprocity law, as it expresses a subtle arith-
metic property of a prime number p, in this case,
representability as a sum of two squares, in terms of
a congruence condition on p.

Representation of a prime p as a sum of two squares
is equivalent to a factorization of p as a Gaussian

integer. A Gaussian integer is a complex number
whose real and imaginary parts are both integers.
The prime number p factors as a Gaussian integer
if and only if there exist integers m and n such that

p = (m+ in)(m� in)

Here i stands for the imaginary unit, with the defining
property i

2 = �1 . A simple computation shows that
the existence of such a splitting is equivalent to p =
m

2 + n

2 , i.e. p has a representation as a sum of two
squares.

The splitting of a prime p as a Gaussian integer
is closely related to what is called the Galois the-

ory of the Gaussian rationals. The set of Gaussian
rationals is the rational counterpart of the Gaussian
integers, i.e. complex numbers whose real and imagi-
nary parts are both rational numbers. For each prime
number p there exists a particular element in the so-
called Galois group of the Gaussian rationals, the
Frobenius automorphism, whose order is crucial
for deciding whether p can be represented as a sum
of two squares. The order of an automorphism is
the least number m such that the m-th iteration of
the automorphism is the identity. The Frobenius au-
tomorphism is given by raising a number to i ts p-
th power. The p-th power of the imaginary unit i

for an odd prime p is either ii or �i, depending on
whether the remainder of p when divided by 4 is 1 or
3. Thus the Frobenius automorphism gives the bridge
between the arithmetic property and the congruence
property of the prime p.

The content of Langlands’ letter to Weil suggests a

far-reaching generalization of the result on represen-

tations of prime numbers as sums of two squares. It

seeks to relate Galois groups in algebraic number the-

ory to automorphic forms and representation theory

of algebraic groups over local fields and adeles.

A major task in number theory is to find integer
solutions to equations with integer coe�cients. It is
rather obvious that if there exists an integer solution,



the equation can also be solved modulo any power
p

k of a prime p, the solution being the remainder of
the integer solution modulo p

k. Kurt Hensel refor-
mulated in 1897 this statement by introducing the
so-called p-adic numbers, which reduced the set of
statements for all powers of p to just one statement
about the p-adic numbers. The set of p-adic num-
bers is an example of a local field. A famous the-
orem, formulated by Hermann Minkowski and later
generalized by Helmut Hasse gives a positive answer
to the question of reversing the order of the state-
ment, featured as the local-global principle; does the
existence of a solution to an equation in the p-adic
numbers ensure the existence of an integer solution?
The Hasse-Minkowski theorem tells us that this is
true for a quadratic equation. But it is not a gen-
eral fact. A famous counterexample is the Fermat
equation x

n + y

n = z

n, for n � 3 proven to have
no integer solutions by Abel Prize Laureate Andrew
Wiles in 1995. But it was known already in 1909 that
the equation has solutions in the p-adic numbers for
any prime p.

Although the local-global principle is not valid in
general, p-adic numbers play a prominent role in num-
ber theory. An even more prominent role is played by
the collection of all p-adic numbers together with the
real numbers, encoded in an algebraic object called
the adeles.

At the beginning of January 1967, Langlands and
Weil met coincidentally in a corridor of the Institute
for Defense Analysis in Princeton, both having ar-
rived early for a lecture by Shiing-Shen Chern. Not
knowing quite how to start a conversation, Lang-
lands began to describe his reflections of the connec-
tions between number theory and automorphic forms.
Weil, using ”a well-known stratagem to escape po-
litely from importunate individuals” (in Langlands
own words), suggested that the young colleague could
send him a letter describing his thoughts.

Automorphic forms were introduced by Henri
Poincar’e in the 1880s as part of his doctoral thesis.
As a first approach one can view an automorphic form
as a function of the upper half complex plane, sub-
ject to a certain periodicity. In Langlands’ visionary
work he uses an extended definition of an automor-
phic form, as a certain representations of the adeles,
still subject to some periodicity.

Remember that the Langlands correspondence seeks

to relate Galois groups in algebraic number theory to

automorphic forms and representation theory of alge-

braic groups over local fields and adeles. Also remem-

ber, that Langlands points out a program of research,

and not necessarily a list of proved theorems.

The most famous example of this correspondence
is the modularity theorem, for which Andrew Wiles
was awarded the Abel Prize in 2016. The Taniyama-
Shimura-Weil conjecture predicts a close connection
between the number of solutions to a type of equa-
tions, called elliptic curves, and a particular type of
automorphic forms, called modular forms. In this ex-
ample the representation theory of the Galois group
of a maximal extension of the rational numbers pro-
duces a sequence of numbers encoding the number of
solutions to an elliptic curve modulo various prime
numbers p. The Langlands correspondence relates
this sequence to a sequence of numbers character-
izing an automorphic form over the adeles. Thus
the Taniyama-Shimura-Weil conjecture, and conse-
quently Fermats last theorem, follows as a special case
of the Langlands correspondence.

This is just one example of how Langlands’ ideas
have influenced di↵erent areas of mathematics. It is
really no exaggeration to say that his 17 handwrit-
ten pages has shaped a whole area of mathematical
research.

Robert P. Langlands


