THE WORK OF YVES MEYER

In his famous 1960 essay “The unreasonable effectiveness of math-
ematics in the natural sciences”, Fugene Wigner noted the uncanny
ability of mathematical notions and discoveries, that were often pur-
sued for no other reason than their intrinsic structure and beauty, to
become highly relevant in describing the physical world. The work of
the 2017 Abel laureate, Yves Meyer, exemplifies this ability of pure
mathematics to cross over into practical real-world applications.

The Fibonacci numbers 1,1,2,3,5,8,... are a simple example of an
object from pure mathematics that appears in surprising ways in na-
ture. The ratios 1/1,2/1,3/2,5/3,8/5,... of consecutive Fibonacci
numbers converge extremely rapidly to the famous golden ratio ¢ =
%5 = 1.61803. ... This number is special in many ways. The powers
o, 9%, ¢, ... of the golden ratio lie unexpectedly close to integers: for
instance, ¢'' = 199.005... is unusually close to 199. Meyer’s early
work focused on a class of numbers (including the golden ratio) with
this property, known as Pisot numbers. He discovered that one could
use these Pisot numbers to create sets of points (now known as Meyer
sets) in a line, a plane, or in higher dimensions that behaved almost,
but not quite, like the periodic sets of points one sees in the integers on
the real line, or the grid points of a Cartesian plane. A simple example
of such a set would be the collection of numbers, such as ¢ + ¢* + ¢*,
that can be formed by adding together distinct powers of the golden
ratio ¢. Such sets of points are not perfectly periodic, but have a
property known as almost periodicity: any pattern that one sees in
the set will recur infinitely often, albeit not at perfectly regular inter-
vals. Meyer was motivated to construct these sets to answer purely
theoretical questions in the study of Fourier series (superpositions of
sinusoidal waves); but a decade after Meyer’s work, it was discovered
that Meyer sets could be used to help explain the physical properties
of quasicrystals — arrangements of molecules that are not periodic in
the way that genuine crystals are, but still behave like crystals in many
key ways, such as in their diffraction pattern. (The physical discovery
of quasicrystals by Dan Schechtman was recognized by the Nobel Prize
in Chemistry in 2011.)

One of Yves Meyer’s early research interests was the study of singu-

lar integral operators — certain integrals arising in such fields as Fourier
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analysis, complex analysis, and partial differential equations that are
only finite due to delicate cancellations and oscillations in the expres-
sions being integrated. Omne of the basic tools used to analyze these
integrals was the Calderdon reproducing formula, that allowed one to
express an arbitrary function in space as a combination of simpler ob-
jects that were localized in space while also being smooth and some-
what oscillatory. Meanwhile, motivated by applications in geophysics,
Morlet and Grossmann were also experimenting with analyzing time
series data (such as seismic data) in both time and frequency simul-
taneously, by measuring how these data correlated with windowed co-
sine waves, where the width of the window varied inversely with the
frequency of the wave. Meyer realized that the two transforms were
essentially identical to each other; this insight then led to the develop-
ment by Meyer and others of the wavelet transform that allowed one
to efficiently and easily decompose any signal into localized oscillatory
objects now known as wavelets. This transform captured many of the
beneficial features of the more classical Fourier transform (in particu-
lar, the ability to separate out the fine-scale aspects of the data from
coarse-scale aspects), while suffering fewer of the drawbacks (in par-
ticular, information about spatial features of the data, such as edges
or spikes, were much more visible using the wavelet transform than
with the Fourier transform). This began the “wavelet revolution” of
signal processing in the late 1980s and early 1990s, with the wavelet
transform now being routinely used in many basic signal processing
tasks such as compression (e.g. in the JPEG2000 image compression
format) and denoising, as well as more modern applications such as
compressed sensing (reconstructing a signal using an unusually small
number of measurements).

Meyer’s intuition on the interplay between low and high frequency
components of functions led to many important theoretical advances in
the fields of harmonic analysis and partial differential equations, rang-
ing from the solution of key open problems such as the boundedness of
the Cauchy integral operator on Lipschitz curves (solved by Coifman,
MclIntosh, and Meyer), to the development of new tools such as com-
pensated compactness, paraproducts, and paradifferential calculus that
are now indispensable in the understanding of nonlinear effects in par-
tial differential equations, particularly for equations that govern such
oscillatory behavior as the motion of waves in a medium. For instance,
the important but still poorly understood phenomenon of turbulence
in fluids, in which the velocity field becomes increasingly oscillatory
and fine-scaled in behavior, can be at least partially explained by con-
sidering how various wavelet coefficients of the fluid interact with each
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other, and using the technical tool of paraproducts to measure the
strength of such interactions; this has proven to be influential both in
the theoretical analysis of the equations of motion of these fluids, as
well as in the numerical methods used to simulate these fluids. Meyer’s
work and insight has not only advanced the pure and applied sides of
mathematical analysis, it has also brought them together in a tightly
interconnected fashion.



