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1. The hardest IQ question ever

What is the next term in the following sequence: 1, 2, 5, 14, 41, 122? One can imagine

such a question appearing on an IQ test. And one doesn’t have to stare at it for too long

to see that each term is obtained by multiplying the previous term by 3 and subtracting

1. Therefore, the next term is 365.

If you managed that, then you might find the following question more challenging. What

is the next term in the sequence

1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264?

I will leave that question hanging for now, but I promise to reveal the answer later.

2. A giant of modern mathematics

There are many mathematicians with extraordinary achievements to their names, and

many who have won major prizes. But even in this illustrious company, John Milnor stands

out. It is not just that he has proved several famous theorems: it is also that the areas

in which he has made fundamental contributions have been very varied, and that he is

renowned as a quite exceptionally gifted expositor. As a result, his influence can be felt

all over modern mathematics. I will not be able to do more than scratch the surface of

what he has done, partly because of the limited time I have and partly because I work in

a different field.

The areas that he has worked in include differential topology, K-theory, group theory,

game theory, and dynamical systems. He has written several books that have become

legendary for their high quality. Princeton University Press describes one of his best-

known books thus:

One of the most cited books in mathematics, John Milnor’s exposition of

Morse theory has been the most important book on the subject for more

than forty years.
1
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I recently read the following sentiment on the website Mathoverflow: “Usually when Milnor

explains, things are easy ...” One reviewer on Amazon describes Milnor’s book, Topology

from the Differentiable Viewpoint as the “best math book ever written”. These are just

opinions, of course, but similar opinions are held by many people.

Milnor was awarded a Fields medal in 1962, the Wolf Prize in 1989, and is the only

person to have won all three AMS Steele Prizes (for seminal contribution to research in

1982, for mathematical exposition in 2004, and for lifetime achievement this year). And

now he has been awarded the Abel Prize. Let me attempt to explain why.

3. Differential structures on spheres

One of the most important concepts in mathematics is that of a manifold. To get an

idea of what a manifold is, think of the surface of a sphere, or of a torus.

If you cut out a very small piece of one of these surfaces, then it looks like a flat sheet

of paper (though in fact it won’t necessarily be perfectly flat). A sheet of paper is two-

dimensional, so we say that these surfaces are two-dimensional as well. We also call them

“locally Euclidean”. This means that if you look at a very small region in such a surface,

then its geometry is just like the ordinary two-dimensional geometry of the plane, the

geometry we are all familiar with that goes back to Euclid. However, and this is what

makes manifolds interesting, the global behaviour of manifolds is not Euclidean at all. For

instance, if you take two parallel lines on the surface of a sphere – where “line” no longer

means straight line but does still mean the shortest path between two points – and continue

them for long enough, then they will eventually meet. (For example, imagine two lines

that point due north from the equator. They will start out parallel and will meet at the

North Pole. This can be seen in the picture above.)

There are three further important points to make about manifolds. The first is that

although the examples I have just given, a sphere and a torus, are most naturally visualized
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as surfaces that live inside three-dimensional space, it is possible to talk about manifolds

intrinsically. That is, one can discuss the geometry of a manifold by mentioning just the

points in the manifold itself and making no reference to any external space inside which

the manifold lives. Secondly, there can be manifolds of any dimension. It is not easy to

visualize 23-dimensional manifolds, but as abstract concepts they exist every bit as much

as the more familiar two-dimensional surfaces.

The third point is essential background to one of John Milnor’s most remarkable results.

In my description of manifolds above, I said that the main characteristic feature of a

manifold is that its geometry is locally just like Euclidean geometry. I deliberately left the

words “just like” a little vague, because it turns out that there are several different notions

of “just like” that can be useful here. I would like to focus on just two of these.

The first notion comes from topology: we say that two shapes are homeomorphic if

each one is a continuous deformation of the other. For example, the surface of a cube is

homeomorphic to the surface of a sphere,

and (to give a famous example) the surface of a teacup is homeomorphic to the surface of

a doughnut.

If we have a shape of which we can say that all small enough patches are homeomorphic

to a little patch of Euclidean space, then we call that shape a topological manifold.

The second notion is more demanding and comes from calculus: we say that two shapes

are diffeomorphic if they are not just continuous deformations of each other but differen-

tiable deformations of each other.

What does this mean? Well, very roughly speaking, a continuous deformation is one

where you are allowed to stretch your shape as much as you like, but are not allowed to
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tear it. A differentiable deformation is “smoother” than a continuous one is required to be.

It has the additional property that if you follow a steady path in the first shape, then the

corresponding path in the deformed shape should not have any sudden changes of speed

or direction. Folds, corners, sharp bends: these are disallowed.

In 1956, Milnor found an extraordinary mathematical object: a shape that is homeomor-

phic to a seven-dimensional sphere but not diffeomorphic to a seven-dimensional sphere.

He called this object an “exotic sphere”. I would like to spend a little bit of time explaining

why exotic spheres are so counterintuitive, but once I have done that there is a danger

that I will have persuaded you that they cannot exist at all, so I will then have to try to

explain how in fact they can.

First, let me express in a different way what it means for exotic spheres to exist. It

means that you can take a sphere and continuously deform it to form another shape that

is also smooth, in the sense of not having any “corners”; however, even though the original

sphere is smooth and the continuously deformed sphere is smooth, the only deformations

that turn one into the other are not smooth.

The reason this is so surprising is that one’s intuitions suggest that it ought to be

possible to “iron out the kinks” in any continuous deformation between the two shapes.

For example, suppose we take a one-dimensional sphere – otherwise known as a circle. (I

call this one-dimensional because I am just talking about the curve and not its interior.) In

this case, a smooth shape homeomorphic to the original will just be a smooth closed curve –

that is, a curve that starts and ends in the same place and does not cross itself or have any

sharp bends. Now it is perfectly possible to find continuous deformations from the circle to

the distorted circle that are not smooth: as you go round the original circle, a corresponding

point will go round the distorted circle, and it might well have sudden changes of speed.

However, it is intuitively clear (and can be proved mathematically) that if there are sudden

changes of speed, they are completely unnecessary: instead of instantaneous jumps in

speed we could have rapid accelerations, and would end up approximating our continuous

deformation by a smooth deformation.

It is very tempting to think that one could do something like this process not just in one

dimension but in any number of dimensions. The idea would be this: given a continuous

deformation between a sphere and some distorted, but still smooth-looking, sphere, we

would look at the places where the continuous deformation failed to be smooth and would

modify the deformation at those places to make it smooth.
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Why does this not work? One of the reasons this is hard to explain is that the impos-

sibility of carrying out this smoothing process is a global phenomenon rather than a local

one. That is, if you look at a small patch of the original sphere and the corresponding small

patch of the distorted sphere, you can iron out any kinks that there might be. However,

in a high number of dimensions, there is a much bigger variety of possible kinks than one

finds in just one dimension. For example, if the spheres are five-dimensional, then the

places where the kinks occur could quite easily form a complicated three-dimensional set.

The effect of this is that when you iron them out in one place, you may simply push the

crease to somewhere else (an experience I sometimes have when ironing a shirt).

If you are lucky, you can push the crease until it meets itself and cancels out. But

Milnor’s example shows that this will not always happen. One sign of just how unexpected

this was comes from Milnor’s own reaction to the discovery:

When I first came upon such an example in the mid-50’s, I was very puz-

zled and didn’t know what to make of it. At first, I thought I’d found a

counterexample to the generalized Poincaré conjecture in dimension seven.

But careful study showed that the manifold really was homeomorphic to S7.

Thus, there exists a differentiable structure on S7 not diffeomorphic to the

standard one.

The fact that manifolds could be homeomorphic but not diffeomorphic meant that the

differentiable manifold was an important object in its own right, and not just a way of

looking at a topological manifold. For this reason, Milnor’s construction gave birth to a

whole new field of mathematics, which is known as differential topology and which includes

several other highlights of modern mathematics.

What do these “exotic spheres” actually look like? Another surprise is just how simple

they are to define. This is true of Milnor’s original construction, but it is slightly easier to

describe a later construction that became known as a “twisted sphere”. (In fact, Milnor’s

example can itself be viewed as a twisted sphere, even though he did not explicitly define it

as one.) Just as a sphere is made from two parts that are topologically equivalent to discs

– the northern and southern hemispheres – so a seven-dimensional sphere can be made out

of two seven-dimensional discs. These discs are joined at a six-dimensional equator. Note

that there are two copies of the equator – one at the boundary of the northern hemisphere

and one at the boundary of the southern hemisphere – and we glue each point to the same

point in the other copy. But what if we were to join points in the southern copy to different

points in the northern copy, by stretching the two copies in some directions and squashing
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them in others? If we do this in the right way, it turns out that we obtain a manifold that

is homeomorphic to a sphere but not diffeomorphic to a sphere: that is, an exotic sphere.

Let me now return to the mysterious sequence from the beginning of this article. Af-

ter Milnor’s discovery that there could be “exotic” differential structures on spheres, the

question naturally arose of how many genuinely distinct such structures there were in each

dimension. With Michel Kervaire, Milnor worked this out for several different dimensions:

the sequence gives the answers, starting at dimension five. Thus, there is only one dif-

ferential structure in five dimensions (the standard one) and six dimensions. In seven

dimensions there are 28. The sequence takes us up to 19 dimensions, where there are

523264 differential structures. As it happens, the next term in the sequence is 24, so that

is the answer to the IQ test question. These remarkable numbers are related to other

topological phenomena and also to the seemingly very different field of number theory.

4. Further geometrical results

In this section, I shall discuss some other beautiful results of John Milnor. However, I

shall be briefer about these.

4.1. The Hauptvermutung. One of the techniques we have for studying curved geomet-

rical shapes such as manifolds is to triangulate them. Here, for example, is a triangulated

sphere.

And here is a picture that gives some indication of what a triangulation of a region of

three-dimensional space can look like.
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Triangulating a manifold breaks it up into little pieces (triangles or tetrahedra or higher-

dimensional versions of these) that are simple to understand. The hope then is that one

can study the manifold by taking careful account of how these little building blocks are

put together.

However, there are difficulties with this idea. It seems pretty obvious that every mani-

fold can be triangulated (that is, continuously deformed into a manifold that is built out

of “triangles” of the appropriate dimension). But how does one prove this? Also, the

same manifold can be triangulated in many different ways. For example, we saw above a

triangulation of a two-dimensional sphere. Here is a much simpler one.

One would like to be confident, when studying a manifold with the help of a triangulation,

that different triangulations give rise to the same conclusions about the manifold. A good

way to do that, it turns out, is to show that the triangulations have a common refinement.

To see what this means, suppose you have a triangulation and you divide up the triangles

into smaller triangles. This gives a new triangulation, which we call a refinement of the
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original one. It is usually easy to show that if you refine a triangulation then the refined

triangulation will have the same essential properties as the original one. This means that

if you start with two different triangulations and find a new triangulation that refines

both the original triangulations, then you know that the two triangulations have the same

essential properties.

In two dimensions, triangulations always exist, and any two triangulations have a com-

mon refinement. That makes it tempting to believe that the same will be true in all

dimensions. The Hauptvermutung (German for “main conjecture”) asks whether any two

triangulations have a common refinement.

Actually, there are two versions of this problem, one for manifolds and one for more

general objects known as “triangulable space”. In 1961 Milnor gave a counterexample to

the more general version of the Hauptvermutung, which had been an open problem since

1908. A few years later Andrew Casson and Dennis Sullivan disproved the version for

manifolds as well. And in 1982 Michael Freedman discovered a four-dimensional manifold

that cannot be triangulated at all.

4.2. The hairy ball theorem and parallelizable spheres. At each point of a two-

dimensional sphere, we can draw a tangent plane.

These tangent planes are of fundamental importance in the theory of differentiable mani-

folds, because they are needed if one wishes to make sense of the notion of the derivative

of a map. Roughly speaking, we think of the tangent plane at a point as being the plane

that best approximates the manifold near that point. For higher-dimensional manifolds,

we talk of a tangent space, but the basic idea is the same.

One thing we like to do with any space is choose a coordinate system. In the two-

dimensional case illustrated, that would mean that we would think of each point as the

origin of its tangent space, and would decide how to draw an x-axis and a y-axis, and also
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which was the positive direction along each axis and which the negative direction. All this

information can be encoded in two arrows, one pointing along the x-axis in the positive

direction and one pointing along the y-axis in the positive direction.

A very natural question then arises: can we choose our arrows at the various points in

such a way that they vary continuously when the points themselves vary continuously? If

we can, then the sphere is called parallelizable.

In the two-dimensional case, one of the classic results of algebraic topology, proved by

Brouwer in 1912, shows that we cannot. In fact, it is not even possible to choose one axis

in a continuous way. This result is known as the hairy ball theorem, because it can be

thought of as saying that there is no way of combing the hair of a hairy ball without having

points where the hair bunches up.

However, for the three-dimensional sphere things are very different. We can think of this

sphere as consisting of all points of the form (x, y, z, w) such that x2 + y2 + z2 + w2 = 1.

Now each such point can be regarded as an object called a quaternion, a kind of “number”

invented in 1843 by William Rowan Hamilton. Quaternions are a bit like complex numbers,

but we now put in three square roots of -1, which are traditionally called i, j and k. An odd,

but essential, feature of quaternions is that the order in which you multiply them matters:

for example ij = k but ji = −k. The quaternion associated with the point (x, y, z, w)

is x + yi + zj + wk, and if x2 + y2 + z2 + w2 = 1 then it is called a unit quaternion. It

turns out that if you multiply two unit quaternions together, then you get another unit
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quaternion. Also, if you take any unit quaternion q, then the three quaternions qi, qj and

qk are all perpendicular to q. We can therefore use them as directions for the three axes

that we need for the tangent space at q, and they vary continuously in a beautiful way.

Can we define nice notions of “multiplication” for points on spheres in other dimensions?

If we want to use a standard number system, then the ones we have available are the real

numbers (which don’t actually help for this problem), the complex numbers (which give us

the easy result that we can choose a direction at each point on a circle – just go round the

circle and choose the forwards direction at each point), the quaternions and the octonions

or Cayley numbers. A theorem of Hurwitz, proved in 1898, states that these are the only

such systems. (I won’t say precisely what this means.) The octonions are eight-dimensional

numbers, so the unit octonions form a seven-dimensional sphere, and they can indeed be

used to show that a seven-dimensional sphere is parallelizable.

Now the fact that we don’t have convenient number systems around in the other dimen-

sions does not by itself show that spheres in those other dimensions are not parallelizable:

there might be some other method for choosing directions for the arrows. However, Mil-

nor, building on work of Raoul Bott, showed in 1958 that 1, 3 and 7 were in fact the

only dimensions for which a sphere is parallelizable, a result that I have seen described as

“magical”. This result was also obtained independently by Hirzebruch and Kervaire.

Incidentally, the hairy ball theorem is of interest here for two other reasons. First, Milnor

came up with a surprising and beautiful new proof of the theorem in 1978 – surprising

because the proof used multivariable calculus and not the tools of algebraic topology that

had hitherto appeared to be essential, and beautiful because Milnor’s proofs are always

beautiful. Secondly, it gives some hint of the kind of reason that a homeomorphism between

a sphere and an exotic sphere cannot have its kinks ironed out. If you take a hairy ball and

the hair is bunched up somewhere, then you can brush that part to smooth it out, but the

result will be to push the bunch to somewhere else rather than to get rid of it completely.

4.3. How curved must a knot be? Another beautiful geometrical result was proved by

Milnor at the tender age of 19. It provides an answer to the following question. Suppose

you take a curve in three dimensions that starts and ends in the same place and forms a

knot. How curved must it be?

Of course, so far this is not a very precise question, but to get some intuition for it,

consider the following picture, which shows the trefoil knot.
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It is clear that in order for the curve to be knotted, it has to double back on itself rather

more than a circle would. In fact, if you imagine looking at this knot from a point right in

the middle, you can see that there is a sense in which the curve “goes round twice”. And

this, it turns out, is a highly relevant observation.

How can we measure the amount that a curve is curved? One way is to use the concept

of the radius of curvature. The radius of curvature at a point P on a curve C is the radius

of the circle that best approximates the curve near P, as the following diagram illustrates.
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The curvature at P is the reciprocal of the radius of curvature: thus, the bigger the

radius of curvature, the smaller the curvature and vice versa. This makes sense, since the

more rapidly the curve is curving round, the smaller the approximating circle will be, and

thus the bigger the curvature. The total curvature of a curve is what you get when you

sum up (or, more precisely, integrate) the curvature.

If the curve is itself a circle of radius r, then the approximating circle at each point is

that very circle, so the radius of curvature at each point is r and the curvature is 1/r.

Since the length of the curve is 2πr, it follows that the total curvature is 2πr multiplied by

1/r, which is 2π. (In fact, the same is true for any closed curve in the plane, if we interpret

the curvature as negative when the approximating circle lies on the outside.) If we believe

the intuition that a knot has in some sense to “go round twice” then we might expect the

total curvature of a knot to have to be more than 4π. (I say “more than” rather than “at

least” because a knotted curve cannot actually stay in a single plane.) This expectation

was proved correct by Fáry and Milnor in independent work (Fáry in 1949 and Milnor in

1950).

I cannot resist including the following illustration, which shows Mjölnir, the hammer

of Thor. Its relevance is threefold: “Mjölnir” is almost an anagram of “Milnor”, Thor is

a major god in Norse mythology, and if you look closely at this particular rendition of

Mjölnir you will see two trefoil knots.
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5. Growth in groups

Two years ago the Abel Prize was awarded to Mikhail Gromov, who, like Milnor, has had

a deep influence on many different areas of mathematics. One of Gromov’s most famous

results is his polynomial growth theorem, which generalizes yet another beautiful theorem

of Milnor, this one proved with Wolf in 1968.

I do not want to say here what a group is, but to give some idea of what the theorem

says I shall give two examples, both of groups “generated by the two symbols a and b”. In

both cases, the group consists of sequences of terms, each of which is either a, b, a−1 and

b−1. These sequences are called “words”. For example, aba−1bbbaab−1a is a typical word.

In addition, there is a very basic rule for combining words: given two words, write the

first one and then the second. For example, if I combine the words aba and aab−1 I get

the word abaaab−1. What makes the subject interesting is that we also have rules that tell

us that we want to regard some words as being equal, and these rules vary from group to

group.

The minimal rule we are allowed to apply is a rule that whenever you have the symbols

a and a−1 next to each other, then the word is considered the same as the word that would

result if you cancelled those symbols out. For example,

ab−1aa−1bbba = ab−1bbba = abba,

because we can cancel the aa−1 and then the b−1b. It is not hard to show that if this is the

only rule, then every word in the group has a standard form: it can be written in precisely

one way as a sequence of as, bs, a−1s and b−1s in such a way that no a is next to an a−1

and no b is next to a b−1. (To do this, you just repeatedly cancel as in the example above.)

This group is called the free group on two generators.

A much more drastic rule, in the sense that it makes many more words equal, is to say

that the order of the symbols does not matter. Then we would count aba−1b as the same

word as aa−1bb, which in turn would be equal to bb (since the “inverse pairs” rule always

applies in any group). In this case it is easy to see that every word can be written in

precisely one way as a string of as or a−1s followed by a string of bs or b−1s. For instance,

two typical words are aaaaab−1b−1 and abbbbb. Groups where the order of the symbols does

not matter are called Abelian, after the same Niels-Henrik Abel whose name is attached to

the prize that has just been announced.

The growth rate of a group is the function that tells you, for each n, how many distinct

words there are of length at most n. For the Abelian group above, this is comparable to
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n2, since once you have decided whether you want a or a−1 and whether you want b or

b−1, all that is left is to choose two lengths that add up to at most n. Because n2 is a

polynomial in n, we say that this group has polynomial growth.

In the case of the free group, there are many more words of length at most n. In fact,

there are exponentially many. To see this, note that if you want to build up a word in

such a way that no cancellation is possible, there are four choices for the first letter (a, b,

a−1 or b−1) and three choices for each subsequent letter (all you have to do is avoid the

one symbol that would cancel with the one before it). This means that the number of

non-cancellable words of length n is 4.3n−1, which grows exponentially fast as n grows.

It is quite easy to show that the growth rate in any Abelian group (not necessarily with

just two generators) must be polynomial, and the same is true for a class of groups called

virtually nilpotent, which are “almost Abelian” in a precise mathematical sense. Milnor

and Wolf showed that for a wide class of groups, the solvable groups (so-called because they

are closely related to the famous work of Abel and Galois on solving polynomial equations)

the converse is also true: if a group has polynomial growth then it is virtually nilpotent.

This is a notable fact because an apparently very flexible condition, polynomial growth,

has a highly structural and algebraic consequence, that of being virtually nilpotent.

In 1981 Gromov proved the same result for all (finitely generated) groups, and not just

the solvable ones.

6. Further contributions

I have by no means exhausted Milnor’s work – indeed, there is no hope of my doing so.

But let me finish by mentioning two other areas in which he has made major contributions.

6.1. Algebraic K-theory. A question that I did not address earlier is the important one

of how Milnor was able to show that his exotic spheres really were exotic: how could he be

sure that they were not diffeomorphic to ordinary spheres? In many situations, the best

way to show that two objects are distinct is to find an invariant that distinguishes between

them. What this means is that you find something that you can calculate in terms of the

mathematical object in question, which should have the following two properties:

(i) if the objects are the same (in the sense of “sameness” that you are interested in),

then the values of the invariant for those two objects are equal;

(ii) for the two objects you want to prove are distinct, the values of the invariant are

different.

If you can do this, then you have indeed proved that the objects are distinct.
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To give an example, it is not all that easy to prove rigorously that the trefoil knot is

genuinely distinct from a circle, but people have discovered ways of associating polynomials

with knots with the property that if you manipulate a knot without cutting it, then the

polynomial does not change, and also with the property that the polynomials associated

with the trefoil knot and the circle are distinct.

A very important class of invariants emerged in the 1950s and led to a part of mathe-

matics known as K-theory. It was pioneered by Grothendieck in the context of algebraic

geometry, and later by Atiyah and Hirzebruch in topology.

A fundamental concept in topology is that of a homology class. Without going into de-

tails, we can think of this as something like a lower-dimensional submanifold of a manifold,

except that we regard two such submanifolds as “essentially the same” if one can be contin-

uously moved to the other. (This is a slightly misleading way of putting it, but will do for

the purposes of this discussion.) In algebraic geometry, one likes to deal just with objects

that arise as sets of solutions of polynomial equations: let us call these algebraic sets. The

question then arises of whether we can make sense of topological concepts such as homology

classes in algebraic terms. In particular, can we choose our lower-dimensional submanifolds

to be algebraic sets if the original manifold is an algebraic set? Several questions of this

general flavour are still open and are amongst the deepest in mathematics.

In the 1960s, it became clear that there ought to be an algebraic version of K-theory that

would be helpful for some of these questions. However, it was far from clear how to define

some of the key concepts that would be required in this theory. What was being looked

for was a sequence of groups K0, K1, K2, . . . associated with a ring A. Before Milnor’s

work, it was understood how to define the groups K0(A) and K1(A). Milnor found the

right definition of K2(A), and proposed definitions of all the higher K-groups. Eventually,

Quillen found the right definitions for all the K-groups.

As part of this work, Milnor formulated a conjecture that became sufficiently important

that Vladimir Voevodsky was awarded a Fields medal in 2002 for solving it. (It is notable

just how dense this area is in Fields medallists: Grothendieck, Atiyah and Quillen were all

Fields medallists as well.)

6.2. Holomorphic dynamics. Since about the mid-1980s, Milnor has been working in

the field of holomorphic dynamics, the area of mathematics that concerns iterating maps on

the complex numbers, on more general Riemann surfaces (spaces that look locally like the
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complex numbers rather as a manifold looks locally like Euclidean space), and on higher-

dimensional complex structures. Holomorphic dynamics is the branch of mathematics that

leads to pictures like this.

The results and techniques are substantially different from the results and techniques of

differential topology, but Milnor has an excellent way of dealing with this kind of problem:

he learns what he can from the experts, reworks it, and writes a classic book on the subject,

in this case Dynamics In One Complex Variable.

He has also been working on dynamics in more than one complex variable. Introducing

more variables makes a big difference and makes many of the results much harder. Milnor

has been a key figure in this area.

7. Summary

I intended this description of Milnor’s work to be much shorter, but such is the sheer

quantity, variety and beauty of what he has done that I found myself unable to stick to my

plan. He is truly one of the greats, a mathematician who has hugely enhanced the subject

and inspired many others. The award of the Abel Prize to John Milnor will be welcomed

by mathematicians the world over.


