
Two number theory problems solved by ergodic theory methods,
Szemerédi’s theorem and Oppenheim’s conjecture.

The first problem is about arithmetic progressions. An

arithmetic progression is a sequence of integers with fixed

difference. The sets {5, 8, 11, 14, 17} and
2Z = {. . . ,−4,−2, 0, 2, 4, 6, . . . } are two examples of

arithmetic progressions. The first one has length 5 and

difference 3, and the second one has infinite length and

difference 2. Now, consider a subset A of the integers Z.

Based on a paper from 1936 by the two Hungarian

mathematicians Paul Erdős and Pál Turán it has been

conjectured that if the subset A has positive density, then

it contains arithmetic progressions of arbitrary length.

The density of a set A reflects the probability that an

arbitrary chosen integer is a member of A. The formal

definition is as follows;

Definition. A set A of integers has positive upper density if

lim sup
N→∞

|A ∩ {−N, . . . , N}|
2N + 1

> 0

The set 2Z has density 2, a finite set has density 0. Also

infinite sets can have 0 density, as is the case of the set of

primes.

The Erdős-Turán conjecture was first proved in 1975 by the

2012 Abel Prize Laureate Endre Szemerédi, using

combinatorial arguments.

Theorem (Szemerédi, 1975). Let k ≥ 1 be an integer, and

let A be a set of integers of positive upper density. Then A
contains a non-trivial arithmetic progression of length k.

In 1977 Furstenberg gave another proof of the conjecture,

by establishing what is now called the Furstenberg multiple

recurrence theorem:

Theorem (Furstenberg, 1977). Let k ≥ 1 be an integer,

(Z, χ, µ, T) a measure-preserving system on Z and E ⊂ Z

a set of positive measure. Then there exists an r > 0 such

that

E ∩ T−rE ∩ · · · ∩ T−(k−1)rE 6= ∅

To see that Furstenberg’s multiple recurrence theorem

implies Szemerédi’s theorem (avoiding some deeper

technicalities) we let E correspond to the set A and view T
as the shift operator x → x + 1 on Z. Then if A contains

no arithmetic progression of length k, the intersection

A ∩ T−r A ∩ · · · ∩ T−(k−1)r A = ∅ for all r > 0

In fact, if the intersection is non-empty we can find

elements a0, . . . , ak−1 in A such that

a0 = a1 − r = a2 − 2r = · · · = ak−1 − (k − 1)r

but then

ak−1, ak−2 = ak−1 + r, . . . , a0 = ak−1 + (k − 1)r

is an arithmetic progression in A, of length k, contradicting
the conclusion of the multiple recurrence theorem.



The second problem is known as Oppenheim’s conjecture,

named after the British mathematician Alexander

Oppenheim. The conjecture is about solutions of quadratic

equations in rational numbers. An old result by A. Meyer

from 1884 states that a huge class of quadratic equations

(corresponding to indefinite quadratic forms) in 5 or more

variables and with integer coefficients have rational

solutions.

Theorem (A. Meyer, 1884). Let Q be an indefinite quadratic

form in 5 or more variables over the rational numbers Q. If

Q(x) = 0

has a non-zero solution in R, then it also has a non-zero

solution in Z.

The theorem is sharp in the number of variables; Consider

the quadratic form

Q(x1, x2, x3, x4) = x2
1 + x2

2 − p(x2
3 + x2

4),

where p is a prime number congruent to 3 modulo 4. The

equation Q = 0 has obviously real solutions, but no integer

solutions. In fact, a perfect square is congruent to 0

modulo 4 or congruent to 1 modulo 8. Suppose

x1, x2, x3, x4 have no common factor. Then at least one of

them is congruent to 1 modulo 8, and one can show that

there are no solutions of the congruence

Q(x1, x2, x3, x4) = 0, modulo 8. But then it is impossible

that there exixts any integer solutions.

Oppenheim conjectured that quadratic equations in the

same class, but with more general coefficients and only in

three or more variables, can be approximated by rational

numbers. The precise formulation of Oppenheim’s

conjecture is as follows:

Conjecture (Oppenheim, 1929). Let Q be a real

non-degenerated indefinite quadratic form in 3 or more

variables. Suppose Q is not a multiple of a form with

rational coefficients. Then for any ε > 0 there exist a

non-zero rational vector x such that |Q(x)| < ε.

The conjecture is not true for quadratic equations in two

variables. In fact, it is known that for an algebraic number α
which is a solution of a quadratic equation with integer

coefficients, there exists a real number C such that

|α − p
q | ≥

C
q2 for any rational number

p
q . Consider the

quadratic form Q(x, y) = α2x2 − y2. For integers p, q we
then have

|Q(p, q)| = |α2 p2 − q2|
= |(αx − y)(αx + y)|

≥ C
x
|αx + y|

≥ C|α|

which shows that the conjecture is not true for quadratic

forms in two variables.

Oppenheim’s conjecture was proved in 1987 by Margulis

in complete generality using methods of ergodic theory.


