
The Norwegian Academy of Science and Letters has decided  
to award the Abel Prize for 2017 to 

Yves Meyer 
of the École normale supérieure Paris-Saclay, France 

“for his pivotal role in the development  
of the mathematical theory of wavelets.”

Fourier analysis provides a useful way of decomposing  
a signal or function into simply-structured pieces such as 
sine and cosine waves. These pieces have a concentrated 
frequency spectrum, but are very spread out in space. 
Wavelet analysis provides a way of cutting up functions into 
pieces that are localised in both frequency and space. Yves 
Meyer was the visionary leader in the modern development 
of this theory, at the intersection of mathematics, information 
technology and computational science. 

The history of wavelets goes back over a hundred years, to 
an early construction by Alfréd Haar. In the late 1970s the 
seismologist Jean Morlet analysed reflection data obtained 
for oil prospecting, and empirically introduced a new class of 
functions, now called “ondelettes” or “wavelets”, obtained by 
both dilating and translating a fixed function. 

In the spring of 1985, Yves Meyer recognised that a recovery 
formula found by Morlet and Alex Grossmann was an identity 
previously discovered by Alberto Calderón. At that time, Yves 
Meyer was already a leading figure in the Calderón-Zygmund 
theory of singular integral operators. Thus began Meyer‘s 

study of wavelets, which in less than ten years would 
develop into a coherent and widely applicable theory. 

The first crucial contribution by Meyer was the construction 
of a smooth orthonormal wavelet basis. The existence of 
such a basis had been in doubt. As in Morlet’s construction, 
all of the functions in Meyer‘s basis arise by translating and 
dilating a single smooth “mother wavelet”, which can be 
specified quite explicitly. Its construction, though essentially 
elementary, appears rather miraculous. 

Stéphane Mallat and Yves Meyer then systematically 
developed multiresolution analysis, a flexible and general 
framework for constructing wavelet bases, which places 
many of the earlier constructions on a more conceptual 
footing. Roughly speaking, multiresolution analysis allows 
one to explicitly construct an orthonormal wavelet basis 
from any bi-infinite sequence of nested subspaces of L2(R) 
that satisfy a few additional invariance properties. This work 
paved the way for the construction by Ingrid Daubechies 
of orthonormal bases of compactly supported wavelets. 
In the following decades, wavelet analysis has been 



applied in a wide variety of arenas as diverse as applied 
and computational harmonic analysis, data compression, 
noise reduction, medical imaging, archiving, digital cinema, 
deconvolution of the Hubble space telescope images, and 
the recent LIGO detection of gravitational waves created by 
the collision of two black holes. Yves Meyer has also made 
fundamental contributions to problems in number theory, 
harmonic analysis and partial differential equations, on topics 
such as quasi-crystals, singular integral operators and the 
Navier-Stokes equations. The crowning achievement of his 
pre-wavelets work is his proof, with Ronald Coifman and 

Alan McIntosh, of the L2-boundedness of the Cauchy integral 
on Lipschitz curves, thus resolving the major open question 
in Calderón’s program. The methods developed by Meyer 
have had a long-lasting impact in both harmonic analysis 
and partial differential equations. Moreover, it was Meyer‘s 
expertise in the mathematics of the Calderón-Zygmund 
school that opened the way for the development of wavelet 
theory, providing a remarkably fruitful link between a problem 
set squarely in pure mathematics and a theory with wide 
applicability in the real world. 


