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ORTHOGONAL FUNCTION
SYSTEMS

Orthogonal function systems play an
important role in many areas of mathe-
matics. The basic idea is to try to find
a limited number of ”basis functions”,
which can serve as building blocks for
all other functions. The basis functions
should have certain nice properties, in
order to simplify the construction.

About 400 years ago the philosopher
and mathematician René Descartes intro-
duced the concept of a Cartesian co-
ordinate system, which gives a simple
way to describe the location of a point.

What we need is
a reference system.
The reference sys-
tem is determined
by three essential
characteristics; the
location of the ori-
gin, the direction
of the axes, and a

scale. In addition we require the axes to be
mutually orthogonal. Related to this system
the coordinates of a point are unique, and
easily computed.

This simple idea can be generalized to more
abstract applications. Points in space are
substituted by functions. The coordinate
axes are replaced by certain basis functions
and the scalar product which determines the
coordinates is replaced by a more general in-
ner product. As a coordinate of a point is
interpreted as the component of the point in
a given direction, the coordinate of a func-
tion along a basis function will determine the

”component” of the function in that direc-
tion. If the basis functions are orthogonal,
i.e. their mutual inner products vanish, the
system of basis functions is called an orthog-
onal function system. If in addition the
basis functions are normalized, i.e. the inner
product of a function with itself is 1, we say
that the system is orthonormal.

The usual notation for an inner product of
two functions f and g is 〈f, g〉. An inner prod-
uct has many nice properties; one important
fact is that the inner product of a function
with itself is non-negative. Another fact is
that there is only one function with vanish-
ing inner product with itself: the constant
function 0.

There are many examples of orthogonal
function systems. The most famous is
Fourier’s trigonometric system, with basis
functions being the trigonometric functions
sinnx and cosnx for varying values of n =
1, 2, . . . . In this setting we define the inner
product of two functions f and g by

〈f, g〉 =

∫ π

−π
f(t)g(t) dt

and for example we have that

〈sinnx, cosmx〉 = 0

where m and n are integers. Also, similar
results apply regardless of which of the given
trigonometric functions we choose, as long as
they didn’t coincide.

An important application of trigonometric
functions is to interpret them as sound waves
of varying frequencies.



The figure shows an illustration of a three-
tone major chord. This wave function can
be ”tested” against pure sinusoidal waves of
varying frequencies. By testing we mean that
we compute the inner product of this wave
function with the basis functions sinnx. The
basis functions are mutual orthogonal, thus
the inner product will vanish except when
we precisely ”hit” one of the sinusoidal func-
tions that constitute the three-tone chord.
This will give a (theoretical) procedure for de-
composing the sound to its basic ingredients.
Some gifted people are able to do this in prac-
tice, cf. the anecdote about the 14-year-old
Mozart who wrote down the score of Allegri’s
Miserere after listening to it once during the
Wednesday service in the Vatican.

What we really wish for in an orthogonal
function system is completeness. Suppose
we have given an orthogonal function sys-
tem φ1, φ2, φ3, . . . (which we can assume is
orthonormal by just dividing out each func-
tion by the inner product of the function by
itself). We would like to decompose an arbi-
trary function f relative to this system. We
compute the coefficients of the components

〈f, φj〉

and put them together to give a new function

f =
∑
j

〈f, φj〉φj

Because of the orthonormality of the system
this function will have the nice property

f = f

The question is whether we have f = f . If
this is (almost) true, we say that the function
system is complete. This is not always the
case, but if it is true we are able to deduce
important results about the system.

In this case the basis functions are inter-
preted as stationary waves of varying frec-
quencies. The system is thus well-behaved
for decomposing functions of similiar form
as the basis functions. For other functions,
not so regular and with sudden changes, the
trigonometric basis functions are not equally
suited for the decomposition. Suppose that
the function in some way or another describes
the digitalization of a photography. Then the
parts of the picture which are rather homoge-
nous, e.g. the sky, can be considered to be
stationary. But contours and contrasts will
behave very non-stationary.



A tool to handle such rapid changes is to
modify Fourier’s trigonometric basis func-
tions with a certain window technique, i.e. we
only consider a small part of a harmonic os-
cillation. To be able to detect sudden changes
in a signal, or in the describing function,
we need a narrow window. The narrower
the window is, the more precisely we can lo-
cate the change. A consequence is that what
we ”see” through the window might not be
enough to decide the frequency. If we re-
duce the window to only one point, we can of
course decide exactly the time of the change,
but we can not determine the frequency, since
one value is not enough to determine a func-
tion. To obtain a good result we need to vary
the window width and not only the frequen-
cies, which makes the procedure rather com-
plicated and inefficient.

The modern wavelet theory, introduced by
Jean Morlet and developed into a robust
mathematical theory by Yves Meyer, handles
these problems better.

Meyer’s wavelet

The basis for the theory is a ”mother
wavelet”. This function is used to create the
orthogonal function system. Thus the ba-

sis functions all have the same shape. The
mother wavelet may be a scaled part of some
wave equation, as in Meyer’s wavelet. In fact
wavelet means ”small wave”. If we want to
increase the width of the wavelet, we just
stretch the graph. Keeping the shape means
that increasing the width will lower the fre-
quency and vice versa.

The window-scaled trigonometric basis
functions are well suited for handling non-
stationary signals with sudden changes. And
fortunately they form an orthogonal function
system.

Meyer’s wavelet, reduced width

Meyer’s wavelet, extended width

When Meyer had established his general the-
ory, the ground was prepared for constructing
new wavelets, perfectly fitted for certain ap-
plications. As long as one used the mother-
wavelet method, one didn’t have to worry
about the behavior of the associated function
system.


