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DYNAMICAL BILLIARD

A dynamical billiard is an idealization
of the game of billiard, but where the
table can have shapes other than the
rectangular and even be multidimen-
sional. We use only one billiard ball,
and the billiard may even have regions
where the ball is kept out.

Formally, a dynamical billiard is a dynami-
cal system where a massless and point shaped
particle moves inside a bounded region. The
particle is reflected by specular reflections at
the boundary, without loss of speed. In be-
tween two reflections the particle moves rec-
tilinear at constant speed. Remember that a
specular reflection is characterized by the law
of reflection, the angle of incidence equals the
angle of reflection.

An example of a dynamical billiard is the
so-called Sinai’s billiard. The table of the
Sinai billiard is a square with a disk removed
from its center; the table is flat, having no
curvature

Sinai’s billiard
(Source: Georg Stamatiou, Wikipedia)

The billiard ball is reflected alternately from
the outer and the inner boundary.

Sinai’s billiard arises from studying the
model of the behavior of molecules in a so-

called ideal gas. In this model we con-
sider the gas as numerous tiny balls (gas
molecules) bouncing inside a square, reflect-
ing off the boundaries of the square and off
each other. Sinai’s billiard provides a sim-
plified, but rather good illustration of this
model.

The billiard was introduced by Yakov G.
Sinai as an example of an interacting Hamil-
tonian system that displays physical thermo-
dynamic properties: all of its possible trajec-
tories are ergodic, and it has positive Lya-
punov exponents. Thus the system shows
chaotic behavior. As a model of a classi-
cal gas, the Sinai billiard is sometimes called
the Lorentz gas. Sinai’s great achievement
with this model was to show that the behav-
ior of the gas molecules follows the trajecto-
ries of the Hadamard dynamical system, as
described by Hadamard in 1898, in the first
paper that studied mathematical chaos sys-
tematically.

A dynamical billiard doesn’t have to be pla-
nar. In case of non-zero curvature rectilinear
motion is replaced by motion along geodesics,
i.e. curves which give the shortest path be-
tween points in the billiard. The motion of
the ball is geodesic of constant speed, thus
the trajectories are completely described by
the reflections at the boundary. The system
is deterministic, thus if we know the position
and the angle of one reflection, the whole tra-
jectory can be determined. The map that
takes one state to the next is called the bil-
liard transformation. The billiard transfor-
mation determines the dynamical system.

In the ordinary rectangular billiard we ob-
serve no chaotic behavior. A small change in
the initial data will induce significant devia-



tion in the long run, but the deviation will
be a linear function of time. Chaotic behav-
ior is characterized by exponential growth in
the deviation. For Sinai’s billiard chaotic be-
havior is observed. For a long time it was
assumed that the reason for the exponen-
tial deviation of trajectories that are close to
each other was the concave shape of the inner
boundary. It was also believed that a concave
shape was necessary to obtain the chaotic
behavior, just like a concave lens spreads
the light. But in 1974 Leonid Bunimovich
proved that a billiard table shaped like a sta-
dium, where two opposing sides are replaced
by semicircles, produces chaotic behavior, in
spite of the fact that this billiard is completely
convex.

Bunimovich billiard
(Source: Georg Stamatiou, Wikipedia)

An example

Consider the following example of a bil-
liard. The physical model consists of two
molecules, moving in a one-dimensional in-
terval [0, 1]. When a molecule hits an end-
point, it is reflected elastically, i.e. the veloc-
ity is the same, in opposite direction. Colli-
sions between the two molecules are elastic
as well, conserving momentum and energy.
Let the mass of the two molecules be m1 and
m2. Suppose that the velocities of the two

molecules are v1 and v2 before the collision
and w1 and w2 after the collision. Thus we
have the two equations

m1v1 + m2v2 = m1w1 + m2w2
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The positions of the two molecules are given
by the coordinates, x1 and x2, written as a
pair (x1, x2). This pair describes a state of
the system. The state space parametrizes
all possible states. In this example the two
molecules are placed on the interval [0, 1],
thus 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. We
also assume that the two molecules are or-
dered, with molecule 1 to the left of molecule
2, i.e. x1 ≤ x2. We form a triangle shaped bil-
liard table, with vertices (0, 0), (0,

√
m2) and

(
√
m1,
√
m2).
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A point (x, y) refers to molecule no. 1
placed at x1 = x√

m1
and molecule no. 2

placed at x2 = y√
m2

. where the molecules



collide, we have x1 = x2, which means that
(x, y) is placed at the hypotenuse of the bil-
liard boundary.

Conservation of momentum and energy
gives

w1 =
2m2v2 + (m1 −m2)v1

m1 + m2

w2 =
2m1v1 + (m2 −m1)v2

m1 + m2

and thus v2 − v1 = w1 −w2. Reflection along
the hypotenuse of the billiard is determined
by

(
√
m1v1,

√
m2v2) · (−

√
m2,
√
m1)

= −(
√
m1w1,
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m2w2) · (−

√
m2,
√
m1)

or −v1 + v2 = w1 − w2. Thus, the triangle
billiard gives a complete description of the
dynamics of the one-dimensional given gas
model.


