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CHAOS

Chaos as a phenomenon of daily life is
something everybody has experienced.
For mathematicians it has been impor-
tant to understand the deeper mean-
ing of this concept, and how to quantify
chaotic behavior.

The term chaos has its origin from the greek
term ycdog, and has been interpreted as “a
moving, formless mass from which the cosmos
and the gods originated”. A more up-to-date
definition of the term is something like a state
of complete confusion and disorder, with no
immediate view of achieving stability.

We have at least two kinds of chaos. A
random system will in many cases appear to
us as chaotic. Throwing a dice may result
in a sequence 3, 1, 5, 3, 3, 2, 6, 1, ... , for
which we are sure to find no pattern. Total
unpredictability is often considered as chaos.

Another kind of chaos is what is denoted
deterministic chaos. Deterministic is more
or less synonymous with predictable, and de-
terministic chaos may therefore seem to be
somewhat paradoxical. But the chaotic be-
havior stems from the fact that the system
is sensitively dependent on its initial state.
As an example, consider the following set-
up. Onto a rather big sphere we drop small
spheres, always trying to hit the top of the
bigger sphere. The smaller spheres jump
or roll in different directions, depending on
which side of the top point they land. The
chaotic behavior is a result of small differences
in the initial state, i.e. the landing point.
This is a deterministic chaotic situation, de-
terministic because the smaller spheres just
obey the physical laws of motion, and chaotic

because of the sensitive initial state depen-
dency.

Another example of deterministic chaos is
the three-body problem. This problem con-
cerns the trajectories of three bodies, which
mutually influence each others’” motion, due
to gravitational forces. The system is deter-
ministic because every single movement can
be predicted using the physical laws of mo-
tion, and it is chaotic because of its sensitive
dependency on the initial state. This depen-
dency is often denoted the butterfly effect, re-
ferring to the theoretical example of a hurri-
cane’s formation being contingent on whether
or not a distant butterfly has flapped its wings
several weeks earlier.

Even the apparently random like system of
throwing dice is in fact deterministic. Fixing
the initial position and velocity of the dice,
the precise shape of the dice and taking into
account our accurate knowledge of the sur-
face of the table, we are able to predict the
result of a throw of a dice, at least theoreti-
cally. But if we impose a small change in an
input parameter, we are lost. So even if the
system is deterministic, it appears to us as
being stochastic.

Let us illustrate some variations of a dy-
namical system using a marble and a pan. We
put the marble in the pan. The initial state
of the system is the position of the marble,
and the dynamical system gives an accurate
description of the trajectories of the marble.
The marble will obviously move towards the
lowest point of the pan. After some oscilla-
tion it will finally reach the equilibrium point.
In this dynamical system all trajectories con-
verge to the same point. If we perform the
same experiment with a marble on a plane



surface, the trajectories will not converge to
one specific point, but spread out rectilinearly
in all directions. A small change in the ini-
tial angle will cause an increasing distance be-
tween the trajectories, but the growth of the
distance will be constant.

The mathematical notion for measuring
this sort of dispersion is Lyapunov’s expo-
nent. In the plane example Lyapunov’s ex-
ponent is 0. In the pan, with all trajectories
ending in the same point, Lyapunov’s expo-
nent is negative. The most interesting case
is when Lyapunov’s exponent is positive. In
this case trajectories may disperse radically,
even if their initial states are very close. Lya-
punov’s exponent gives a quantification of the
rate of dispersion. The French mathematician
Jacques Hadamard described in 1898 a dy-
namical system where Lyapunov’s exponent is
everywhere positive. Thus the dynamical sys-
tem shows chaotic behavior everywhere. It is
said that Hadamard discovered chaos, at least
that he was the first to formally describe a
chaotic dynamical system.

The connection between Kolomogorov-
Sinai-entropy and Lyapunov’s exponent is
given in the so-called Pesin’s Theorem. A
consequence of Pesin’s Theorem is that if the
entropy is positive, then there exists positive
Lyapunov’s exponent, and vice versa. The
result is by no means obvious. The positive
Lyapunov’s exponent tells us that trajectories
may diverge rapidly, even if their initial states
are rather close. Positiv Kolomogorov-Sinai-
entropy indicates that the system as a whole
shows a certain degree of uncertainty. Pesin’s
theorem says that the two ways of measuring
chaotic behavior of a dynamical system are
equivalent.



