
Partial differential equations are used to describe 
the basic laws of phenomena in physics, chemistry, 
biology, and other sciences. They are also useful in 
the analysis of geometric objects, as demonstrated 
by numerous successes in the past decades.
	 John Nash and Louis Nirenberg have played a 
leading role in the development of this theory, by the 
solution of fundamental problems and the introduction 
of deep ideas. Their breakthroughs have developed into 
versatile and robust techniques, which have become 
essential tools for the study of nonlinear partial differential 
equations. Their impact can be felt in all branches of 
the theory, from fundamental existence results to the 
qualitative study of solutions, both in smooth and non-
smooth settings. Their results are also of interest for the 
numerical analysis of partial differential equations.
	 Isometric embedding theorems, showing 
the possibility of realizing an intrinsic geometry as a 
submanifold of Euclidean space, have motivated some 
of these developments. Nash’s embedding theorems 
stand among the most original results in geometric 
analysis of the twentieth century. By proving that any 
Riemannian geometry can be smoothly realized as a 
submanifold of Euclidean space, Nash’s smooth (C∞) 
theorem establishes the equivalence of Riemann’s 
intrinsic point of view with the older extrinsic approach. 
Nash’s non-smooth (C1) embedding theorem, improved 
by Kuiper, shows the possibility of realizing embeddings 

that at first seem to be forbidden by geometric invariants 
such as Gauss curvature; this theorem is at the core 
of Gromov’s whole theory of convex integration, and 
has also inspired recent spectacular advances in the 
understanding of the regularity of incompressible fluid flow. 
Nirenberg, with his fundamental embedding theorems for 
the sphere S2 in R3, having prescribed Gauss curvature 
or Riemannian metric, solved the classical problems 
of Minkowski and Weyl (the latter being also treated, 
simultaneously, by Pogorelov). These solutions were 
important, both because the problems were representative 
of a developing area, and because the methods 
created were the right ones for further applications.
	 Nash’s work on realizing manifolds as real 
algebraic varieties and the Newlander-Nirenberg 
theorem on complex structures further illustrate 
the influence of both laureates in geometry.
	 Regularity issues are a daily concern in the 
study of partial differential equations, sometimes for the 
sake of rigorous proofs and sometimes for the precious 
qualitative insights that they provide about the solutions. 
It was a breakthrough in the field when Nash proved, 
in parallel with De Giorgi, the first Hölder estimates for 
solutions of linear elliptic equations in general dimensions 
without any regularity assumption on the coefficients; 
among other consequences, this provided a solution to 
Hilbert’s 19th problem about the analyticity of minimizers 
of analytic elliptic integral functionals. A few years after 
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Nash’s proof, Nirenberg, together with Agmon and Douglis, 
established several innovative regularity estimates for 
solutions of linear elliptic equations with Lp data, which 
extend the classical Schauder theory and are extremely 
useful in applications where such integrability conditions 
on the data are available. These works founded the 
modern theory of regularity, which has since grown 
immensely, with applications in analysis, geometry and 
probability, even in very rough, non-smooth situations.
	 Symmetry properties also provide essential 
information about solutions of nonlinear differential 
equations, both for their qualitative study and for the 
simplification of numerical computations. One of the 
most spectacular results in this area was achieved by 
Nirenberg in collaboration with Gidas and Ni: they showed 
that each positive solution to a large class of nonlinear 
elliptic equations will exhibit the same symmetries 
as those that are present in the equation itself.
	 Far from being confined to the solutions of 
the problems for which they were devised, the results 
proved by Nash and Nirenberg have become very 
useful tools and have found tremendous applications 
in further contexts. Among the most popular of these 
tools are the interpolation inequalities due to Nirenberg, 

including the Gagliardo-Nirenberg inequalities and the 
John-Nirenberg inequality. The latter governs how far a 
function of bounded mean oscillation may deviate from 
its average, and expresses the unexpected duality of 
the BMO space with the Hardy space H1. The Nash-De 
Giorgi-Moser regularity theory and the Nash inequality 
(first proven by Stein) have become key tools in the 
study of probabilistic semigroups in all kinds of settings, 
from Euclidean spaces to smooth manifolds and metric 
spaces. The Nash-Moser inverse function theorem is 
a powerful method for solving perturbative nonlinear 
partial differential equations of all kinds. Though the 
widespread impact of both Nash and Nirenberg on the 
modern toolbox of nonlinear partial differential equations 
cannot be fully covered here, the Kohn-Nirenberg theory 
of pseudo-differential operators must also be mentioned.
	 Besides being towering figures, as individuals, 
in the analysis of partial differential equations, Nash 
and Nirenberg influenced each other through their 
contributions and interactions. The consequences of 
their fruitful dialogue, which they initiated in the 1950s 
at the Courant Institute of Mathematical Sciences, 
are felt more strongly today than ever before.


