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THE NASH-KUIPER
THEOREM

During the mid-50’s John F. Nash, Jr.
published two papers, describing two
theorems known as the Nash embed-
ding theorems. Both papers deal with
so-called isometric embeddings of geo-
metrical objects into Euclidean space,
i.e. embeddings that preserve the
length of every path in the geometrical
object.

The two theorems are very different from
each other; the first one, referred to as the C1

theorem, has a very simple proof and leads to
some very counterintuitive conclusions, while
the proof of the second one, the Ck theorem,
is very technical, but the result is not quite
surprising. The C1 theorem was published in
1954, and was extended by Nicolaas Kuiper
the next year. The Ck theorem was published
in 1956.

The Nash-Kuiper Theorem. Let
(M, g) be a Riemannian manifold of di-
mension m and f : M → Rn a short
C∞-embedding into Euclidean space
Rn, where n ≥ m + 1. Then for ar-
bitrary ε > 0 there is an embedding
fε : M → Rn in class C1, which is

(i) isometric: for any two tangent vec-
tors v, w ∈ Tx(M),

g(v, w) = 〈dfε(v), dfε(w)〉

(ii) ε-close to f :

|f(x)− fε(x)| < ε, ∀x ∈M.

In the proof of the Nash-Kuiper theorem a
short embedding of a Riemannian manifold
into a Euclidean space is converted into a
C1-isometric embedding. A short embedding
is a map that shortens the length of curves.
The following sketch of the proof of the Nash-
Kuiper theorem is a simplified version, con-
ducted in dimension one. The geometrical
object is a circle and the target manifold is
the Euclidean 2-plane.

Let C be a plane regular curve,
parametrized by a map r : [0, 1] → R2.
The curve is traversed at a speed
v0(t) = ‖v(t)‖ = ‖r′(t)‖. Let v(t) be
another speed function, exeeding v0(t), i.e.
v(t) ≥ v0(t) for all t ∈ [0, 1]. The topic of
the one-dimensional Isometric Problem is
whether it is possible to construct a new regu-
lar curve C ′, parametrized by r′ : [0, 1]→ R2

such that the curve is traversed at a speed
v. This is of course no problem, but we have
imposed an additional requirement, the new
curve should be as close to the original curve
as we want, to be precise ‖r′(t) − r(t)‖ ≤ ε
for any choice of ε > 0.

The answer to this question is yes, it is pos-
sible, due to the Nash-Kuiper Theorem.

The new curve C ′ is build on the original by
adding an oscilating curve in the normal di-
rection of the curve. If the added curve has
sufficiently short wavelength and sufficiently
small amplitude, the two requirements, speed
and proximity, are fullfilled. The shorter the
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wavelength, the longer the curve. To be sure
that the distance to the original curve is suf-
ficiently small, the amplitude must be small.
But it is possible to establish a curve, suffi-
ciently long so that it will be traversed at the
given speed.

(Photo by Bernard Thompson)

An illustrating example is a cyclist cycling up
a steep uphill. The original curve is tracked
out by the rear-wheel, the new curve by the
front-wheel. With many rapid oscillations,
the front-wheel will track out a much longer
distance than the rear-wheel in the same time
period. Thus the front-wheel curve is tra-
versed at a higher speed than the rear-wheel
curve.

Whereas the one-dimensional version of
Nash’s theorem is rather intuitive, the two-
dimensional version is more or less counter-
intuitive, as the following illustration shows.
Start with a piece of paper and turn it into a
cylindrical shape. This is easy. The next step
is the hard part. To turn the cylinder into
a donut shaped surface without stretching
or tearing the paper. Intuitively this seems
to be impossible. The outer circumference
of the donut is much longer than the inner,
but in the original cylinder they are of the
same length. By Nash’s theorem this is never

the less possible, at least theoretically. Nash
proved the theorem in 1954, but it was only in
2012 a multidisciplinary team in France, the
HEVEA project, was able to image the pro-
cess where the cylinder is bent into a donut, in
an isometric way. The above images illustrate
the process; the paper is warped by an infi-
nite sequence of waves, piling up to a donut
surface in such a way that the originally piece
of paper is kept intact.

Images of an isometric embedding of
a flat torus in R3. (Source: HEVEA

Project/PNAS )


