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NEVER CHANGE A GIVEN
DISTANCE ...

The Abel Commitee explains the
choice of this year’s Abel Prize Lau-
reates: ”Nash’s embedding theorems
stand among the most original results
in geometric analysis of the twenti-
eth century.” . . . ”Nirenberg, with his
fundamental embedding theorems for
the sphere S2 in R3, having prescribed
Gauss curvature or Riemannian met-
ric, solved the classical problems of
Minkowski and Weyl.”

Neurons are not evenly distributed in the
human body. Some parts of the body, like
our hands, our face and our tongue are much
more sensitive to sensations than other parts.
The body has the highest density of neurons
in those parts. A function that measures
the density of neurons is an example of what
mathematicians call a metric. Another ex-
ample of a metric is the so-called Euclidean
metric, named after the ancient Greek math-
ematician Euclid. The Euclidean metric mea-
sures ordinary distances between points and
area of any region of a surface. In a paper
from 1916 Hermann Weyl asked the follow-
ing question: Is it always possible to realise
an abstract metric on the 2-sphere of positive
curvature by an isometric embedding in R3?
If you think of the neuron density metric as
Weyl’s abstract metric and the human body
as the 2-sphere, then the weird body in fig-
ure 1 illustrates the positive answer to Weyl’s
question. The different sizes of the various
body parts correspond to the neuron density.

Figure 1: The different size of the
parts of the body reflects the density
of neurons. (Source: Natural History

Museum, London)

Long time before spacecrafts provided us with
images of the earth, our forefathers concluded
that our planet is round. They based this
knowledge on observations done on the sur-
face of the earth. By performing smart obser-
vations and correct measurements, they were
able to conclude that the earth could not be
flat. If you fix a point on a flat surface and
you walk a circular path at a given distance
R, the path should be 2πR long. But if you
measure carefully on the earth’s surface you
will find that the perimeter is a bit shorter.
A theoretical computation then tells you that
the earth’s surface has positive curvature, i.e.
locally it looks like a sphere.

The fact that it is possible to say anything
about the curvature, merely by observations
performed on the surface, was formulated
by the great mathematician Carl Friedrich
Gauss in 1827, in what is called the Gauss’
Theorema Egregium, the remarkable theorem.
The theorem says that the Gaussian curva-
ture of a surface can be determined entirely



by measuring distances and angles on the sur-
face itself, without further reference to how
the surface is embedded in the 3-dimensional
space. Curvature is an intrinsic property of
the surface, i.e. a property that belongs to
the surface by its very nature. Consequently
it has to be preserved by any isometric em-
bedding.

In the first embedding theorem of John F.
Nash, Jr., published in 1954, he proves that
any Riemannian manifold can be isometri-
cally embedded in Euclidean space by a C1-
map. The striking point of a curve-version
of this theorem is that any curve in the plane
can be arbitrarily prolonged in a smooth way,
without self-crossing and as close to the orig-
inal curve as we want. The prolonged curve
looks like the path of the front-wheel of a
bicycle climbing a steep hill, when the rear-
wheel tracks out the original curve. By in-
creasing the frequency of twists the cyclist
can increase the difference between the length
of the front- and rear-wheel paths. Unlike the
surface case, curvature of a curve does not
have to be preserved by an isometric embed-
ding.

Whereas the one-dimensional version of
Nash’s theorem is rather intuitive, the two-
dimensional version is more or less counter-
intuitive, as the following illustration shows.

Start with a piece of paper and turn it into a
cylindrical shape. This is easy. The next step
is the hard part. To turn the cylinder into
a donut shaped surface without stretching
or tearing the paper. Intuitively this seems
to be impossible. The outer circumference
of the donut is much longer than the inner,
but in the original cylinder they are of the
same length. By Nash’s theorem this is nev-
ertheless possible, at least theoretically. Nash
proved the theorem in 1954, but it was only in
2012 a multidisciplinary team in France, the
HEVEA project, was able to image the pro-
cess where the cylinder is bent into a donut,
in an isometric way. The images in figure 2 il-
lustrate the process; the paper is wrapped by
an infinite sequence of waves, piling up to a
donut surface in such a way that the original
piece of paper is kept intact.

Figure 2: Images of an isometric
embedding of a flat torus in R3.
(Source: HEVEA Project/PNAS)


