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PARTIAL DIFFERENTIAL
EQUATIONS - A UNIVERSAL

MATHEMATICAL TOOL

Partial differential equations (or
PDEs for short) are used to describe
the basic laws of phenomena in physics,
chemistry, biology, and other sciences.
They are also useful in the analysis of
geometric objects, as demonstrated by
numerous successes in the past decades.
John F. Nash Jr. and Louis Nirenberg
have played a leading role in the devel-
opment of this theory, by the solution
of fundamental problems and the intro-
duction of deep ideas.

Jean-Baptiste Joseph Fourier (1768-1830)
was an orphan, a revolutionary, an advicer
for Napoleon Bonaparte and ended up as Per-
manent Secretary of the French Academy of
Sciences. But he is mainly known as a highly
influential mathematician and physicist.

In 1822 Fourier published his work on heat
flow in Théorie analytique de la chaleur (The
Analytic Theory of Heat) where he intro-
duced the heat equation,

∂u

∂t
− α∇2u = 0

The function u = u(t,x) measures the tem-
perature at a given point at a given time and
the equation gives a mathematical model for
heat transfer. The equation is a mathemat-
ical expression for the fact that in a point
where it is colder than the average of the
nearby surrondings the temperature will in-
crease over time. This type of differential
equation is called a parabolic PDE.

The first bowed string instruments may
have originated in the equestrian cultures of
Central Asia, but the instrument we today
recognize as a violin was developed in South-
ern Europe during the renaissance through
the noble art of violin making of the Stradi-
vari family and others. The virtuosos en-
thralled their audience and the scientists won-
dered how the beautiful sound was created by
the vibrating string. In 1746, Jean le Rond
d’Alembert discovered the one-dimensional
wave equation, and within ten years Leon-
hard Euler had described the phenonema in
three dimensions. The wave equation trans-
lates the dynamics of a wave into mathemat-
ics. It is usually written as

∂2u

∂t2
− c2∇2u = 0

where u = u(t,x) describes the amplitude of
the wave function, as it propagates in time
and space. Considering a vibrating string or
wave in general, we notice that some times
the wave look like _ and some times it looks
like ^. In the first case the wave has started
to fall, and in the other case it grows. The
mathematical model for this is a hyperbolic
PDE.

The parabolic and the hyperbolic PDEs
are typical models for dynamical systems, i.e.
systems that evolve over time. The distinc-
tion between the two types is the speed of
the propagation, there is much more vigor in
a system where the speed rather than the ac-
celeration is caused by a convexity in the solu-
tion. Heat transfer, modelled by a parabolic
equation, propagates by infinte speed. Every
part of the silver spoon is instantly affected by
the hot tea, even if it takes some time before



your fingers hurt. Waves propagate at finite
speed; the sea is completely calm before the
wave enters.

John F. Nash, Jr. and Luis Nirenberg are
mainly associated to a third type of PDEs,
called elliptic PDEs. The elliptic equations
have much in common with hyperbolic equa-
tions, but they differ on one crucial point,
namely whether there exist a time-like vari-
able. In an elliptic PDE there is no such vari-
able, all coordinates are space-like.

The elliptic partial differential equation
will typically look like

∇2u = f

with no time-coordinate involved. The solu-
tions of elliptic equations are purely spatial,
there is no natural way to introduce a time
coordinate. Elliptic equations therefore typi-
cally model static physical problems.

The Abel Prize Commitee emphasizes the
influence of the Laureates in the development
of the theory of elliptic PDEs: Regularity
issues are a daily concern in the study of
partial differential equations, sometimes for
the sake of rigorous proofs, and sometimes
for the precious qualitative insights that they
provide about the solutions. It was a break-
through in the field when Nash proved, in
parallel with De Giorgi, the first Hölder es-
timates for solutions of linear elliptic equa-
tions in general dimensions without any reg-
ularity assumption on the coefficients; among
other consequences, this provided a solution
to Hilbert’s 19th problem about the analyt-
icity of minimizers of analytic elliptic inte-
gral functionals. A few years after Nash’s
proof, Nirenberg established, together with Ag-
mon and Douglis, several innovative regu-

larity estimates for solutions of linear ellip-
tic equations with Lp data, which extend the
classical Schauder theory and are extremely
useful in applications where such integrability
conditions on the data are available. These
works founded the modern theory of regular-
ity, which has since grown immensely, with
applications in analysis, geometry and proba-
bility, even in very rough, non-smooth situa-
tions.


