
From quadratic reciprocity
to Langlands’ program

A major task in mathematics is to solve equa-
tions. Early sources, like the Rhind Papyrus, writ-
ten around 1650 BCE by Ahmes, contains methods
for solving linear equations. Rational numbers and
complex numbers were created to solve certain equa-
tions. And still today, equations and their solutions
in various number systems, continue to be an excel-
lent source of new knowledge, in mathematics as well
as in other scientific disciplins.

Finding integer solutions of equations is of par-
ticular interest to mathematicians. This problem is
closely related to the many attempts at understand-
ing the most basic mathematical object, the natu-
ral numbers; N = {1, 2, 3, . . . }. The additive struc-
ture of the natural numbers is easily accessible; ev-
ery positive integer is obtained from 1 by repeated
addition. The multiplicative structure is more sub-
tle. The prime numbers 2, 3, 5, , 7, . . . , which are the
multiplicative basis for the natural numbers, are still
hiding a lot of secrets; e.g. how to efficiently decide
whether a given number is a prime or not.

A first attempt to decide whether a polynomial
equation P (x1, . . . , xn) = 0 has an integer solution
is to reduce the problem modulo m, i.e. look for
solutions in the ring Zm = {0, 1, 2, . . . ,m − 1} for
various positive integers m. By using the Chinese
Remainder Theorem this is equivalent to the prob-
lem of finding solutions modulo powers pk, where p
is a prime and k ≥ 1. Solving the congruence (this
is the technical term for an equation when we work
modulo an integer)

P (x1, . . . , xn) ≡ 0 (mod pk)

is called a ”local” problem since we focus on one prime
or ”place” p ∈ Z at a time. The counterpart is a
”global” problem, where we solve the equation over
the integers Z.

Kurt Hensel (1861-1941) reformulated the local
problem i 1897 by introducing the p-adic integers;

Ẑp = lim←−
k

Z/pkZ

a construction which embraces all powers pk, for
k ≥ 1. Hensel’s reformulation says that solving the

equation for any integer m is equivalent to solving
the equation in the p-adic integers for all primes p.
In addition to the prime solutions the existence of a
solution over the real numbers R is of course a neces-
sary condition in order to have a solution over Z.

The p-adic integers is defined as an inverse limit,
and has the corresponding ”completion” topology.
The topology can be defined via the p-adic metric;

Definition 1. For a rational number

q =
pαm

n

where n and m are not divisible by p, the p-adic met-
ric of q is given by

|q|p = p−α

It follows that two natural numbers are p-close (i.e.,
with respect to the p-adic metric) if their difference
is divisible by a high power of p. In this way 14
and 15 are not so 2-close since their difference is not
divisible by any positive power of 2, while 31 and 63
with difference 63− 31 = 32 = 25 are much 2-closer.

We can localize Ẑp in the multiplicative set of non-

zero elements to obtain the p-adic numbers Q̂p.
The real numbers R is the completion of the rational
numbers Q with respect to the ordinary norm. We
use the notation |q|∞ for this norm, and call R the

completion of Q at the ”infinite” prime, i.e. R = Q̂∞.
Each Q̂p, p ≤ ∞, is called a ”local field”, and Q it-

self a ”global” field. The Hasse-Minkowski Theorem
gives a positive example of the local-global princi-
ple: A statement is valid over Q if and only if it is
valid over all local fields Q̂p for p ≤ ∞.

Theorem 2 (Hasse-Minkowski). Let Q be a non-
degenerate quadratic form. Then

Q(x1, . . . , xn) = 0

has a non-trivial integer solution if and only if it has
a real solution and a p-adic solution for every prime
p.

Notice that the Hasse-Minkowski Theorem tells us
something about quadratic polynomials. The result
is not true for polynomials of higher degree. It was
already known in 1909 that the Fermat equation xn+



yn = zn has p-adic solutions for all p. But as we now
know, there are no non-trivial integer solutions.

Another example of an equation which is solvable
locally, but not globally was found by Ernst Selmer
(1920-2006) in 1951. It is given by the formula

3x3 + 4y3 + 5z3 = 0

and Selmer showed that this equation can be solved
modulo p for any prime p, as well as over R, but there
are still no solutions in Z.

An innocent looking equation which has drawn a
lot of attention throughout history is the quadratic
equation

x2 = d,

where d is a positive integer. The equation has an
integer solution if and only if d is a perfect square.

Assume d is not a perfect square. Then by the
Hasse-Minkowski Theorem we know that for some
prime p the congruence

x2 ≡ d (mod pk)

fails to have a solution, i.e., for some prime power
pk the number d fails to be a quadratic residue.
Adrien-Marie Legendre (1752-1833) reformulated
this statement in a symbolic way:

Definition 3. Let p be an odd prime and d an inte-
ger. The Legendre symbol

(
d
p

)
is defined as

(
d

p

)
=


1 if x2 ≡ d (mod p) is solvable

−1 if x2 ≡ d (mod p) is not solvable

0 if p divides d

The Legendre symbol is multiplicative and p-
periodic in the top argument. It can be shown that
the symbols satisfy the quadratic reciprocity law:

Theorem 4. Let p and q be two odd primes. Then(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

The special value for the prime p = 2 is given by(
2

p

)
= (−1)

p2−1
8

The Legendre symbol can be computed by Euler’s for-
mula, introduced by Leonhard Euler (1707-1783) in
1748:

Theorem 5. Let p be an odd prime and d an integer.
Then we have (

d

p

)
≡ d

p−1
2 (mod p)

An immediate and useful consequence of Euler’s
formula is the fact that(

−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

Euler’s criterion is easily proved using Fermat’s little
theorem,

dp−1 ≡ 1 (mod p)

Rewriting this as

(d
p−1
2 − 1)(d

p−1
2 + 1) ≡ 0 (mod p)

and using the fact that p is prime, we deduce that
one of the factors has to be congruent to 0 (mod p).
If d is a quadratic residue, i.e., x2 ≡ d (mod p) for
some x, then

d
p−1
2 ≡ (x2)

p−1
2 ≡ xp−1 ≡ 1 (mod p)

which makes the first factor equal to 0. Since the
polynomial x2 − d has degree 2, it can have at most
two roots, x and −x. Thus there are at least p−1

2
non-zero quadratic residues. On the other hand the
polynomial

x
p−1
2 − 1

can have at most p−1
2 non-zero roots. It follows that

the remaining p−1
2 non-quadratic residue classes must

be roots of the second factor, i.e., satisfying

d
p−1
2 ≡ −1 (mod p)

Thus we have d
p−1
2 ≡ ±1 (mod p), depending on

whether d is a quadratic residue modulo p or not.

A general framework for describing solutions of
polynomial equations was introduced by Évariste
Galois (1811-1832) in 1832, a few days before he



died from wounds suffered in a duel, only 20 years of
age. Given a polynomial with integer coefficients, we
can extend the rational numbers by the the solutions
of the equation (found among complex numbers) to
form a field extension E of the rational numbers Q.
Galois’ idea was to consider automorphisms of the ex-
tended field fixing the rational numbers, and thereby
fixing the polynomial itself. The set of such automor-
phisms forms a group, the so-called Galois group
G(E/Q) of the field extension. The Galois groups
have a rich structure which reflects a lot of properties
of the original polynomial equation; e.g., the Galois
group is trivial if and only if the polynomial splits
completely in linear factors with integer coefficients.

The equation x2−d = 0 has at most two roots, and
the only possible non-trivial automorphism of E =
Q(
√
d) fixing Q is the conjugation map σ :

√
d 7→

−
√
d. Thus the Galois group in this case is the unique

group of two elements, Z2 = {Id, σ} where σ2 = Id.

The group Z2 also appears in an arithmetic con-
text, namly as the multiplictaive group (Z4)∗ = {1, 3}
of units in Z4. In this group 1 acts as the identity el-
ement, and 3 satisfies 32 ≡ 1 (mod 4). We define a
map

φ : (Z4)∗ → G(E/Q)

by (p (mod 4)) 7→
(
d
p

)
. The map is well-defined by

Euler’s criterion for all odd primes. It is in fact also
a group homomorphism.

The map φ is called the Artin map, and the im-
age φp := φ(p) of a prime number p is called the
Frobenius element of the Galois group G(E/Q).
The Frobenius element corresponds to the so-called
Frobenius map of a finite field. Let Ep be an ex-
tension of the unique field Fp of order p. The Frobe-
nius map is a map of Ep into itself. It is defined by
x 7→ xp. Since Ep is an extension of Fp the Frobenius
map defines a ring homomorphism. This follows from
the fact that p = 0 in Fp. For a so-called unramified
field extension the Frobenius map can be lifted in a
unique way from G(Ep/Fp) to G(E/Q). The result
of this lifting is the Frobenius element.

In Fp, the Frobenius map is the identity map, by
Fermat’s little theorem. In the quadratic example, as
treated above, we can compute x 7→ xp for an element

v + w
√
d ∈ Fp[

√
d]. We have

(v + w
√
d)p = vp + wp(

√
d)p

= v + wd
p−1
2

√
d

Thus we are interested in the value of d
p−1
2 (mod p).

From Fermat’s little theorem we have

0 = dp − d = d · (d
p−1
2 − 1)(d

p−1
2 + 1)

and since Fp is a field, one of the three factors must
vanish. Our assumption that p does not divide 2d
excludes the first factor, and we are left with the other
two. For

d
p−1
2 = 1,

the Frobenius map is the identity, while for

d
p−1
2 = −1,

the Frobenius map corresponds to the conjugation
automorphism σ :

√
d 7→ −

√
d. But we also have

that the first case corresponds to d being a quadratic
residue, the other one not. Also notice that when d
is a quadratic residue, the polynomial x2 − d splits
completely into linear factors.

Even if the Artin map in this example looks rather
innocent, it reflects a deep connection between two
objects of rather different origin; The Galois group of
the equation on one side, and the arithmetic of Fp on
the other.

In 1923 the Austrian mathematician Emil Artin
(1898-1962) formulated what is now known as the
Artin’s reciprocity law. At first a conjecture, but a
few years later he was able to give a proof. Artin’s
reciprocity law can be viewed as a generalization of
the quadratic reciprocity law. In this generalization
we consider more general field extensions of Q, but
limit ourselves to extensions E such that the Galois
group G(E/Q) is abelian. The corresponding gen-
eralization of the left hand side of the Artin map is
the adele ring, introduced by Claude Chevalley
(1909-1984) in the early 1950s. The adele ring is the
so-called restricted product of all the completions
Q̂p, p ≤ ∞, of the rational numbers. We can consider
the adele ring as the collection of all local properties
of the global field Q.



Artin’s reciprocity law gives a precise correspon-
dence between an abelian field extension, i.e., a field
extension such that the corresponding Galois group
is abelian, and the adele ring. We may think of this
correspondence as an example of the local-global prin-
ciple, where Galois theory represents the global part
and the adele ring the local part. In the above exam-
ple the Galois group is cyclic of order 2 and (Z4)∗ is
the corresponding quotient of the idele class group,
which again is the group of units in the adele ring.

Artin’s reciprocity law was further generalized by
Robert P. Langlands, starting with the letter to
André Weil in 1967. With Artin’s treatment of the
abelian case, it was natural to ask whether it was pos-
sible to extend the Artin map to non-abelian Galois
groups. The question was far from irrelevant, just no-
tice that already the splitting field of the polynomial
x3 − 2 has non-abelian Galois group over Q. The
answer to this problem was to introduce some sort
of non-commutativity also on the ”adele side” of the
correspondence.

As a preparation for such an extension to a non-
commutative setting, we can change our point of view
of Artin’s reciprocity law as a purely commutative
theory. The key point is representation theory for
groups, and the important fact that an abelian group
is completely described by its 1-dimensional repre-
sentations. Thus, instead of studying the group itself
we consider the set of 1-dimensional representations
ρ : G → C∗ = GL1(C) of the group and nothing is
lost. On the other hand, we replace the adele ring
A by an appropriate quotient of GL1(A); the multi-
plicative group of units of A.

Langlands’ suggestion was to find a similar descrip-
tion of higher dimensional representations ρ : G →
GLn(C) of the non-abelian Galois groups. Such rep-
resentations should correspond to representations of
the group GLn(A) on an appropriate quotient of it-
self; the so-called automorphic forms. The de-
scribed correspondence is now known as Langlands’
correspondence.


