
Consider a sheet of paper. It is flat, but possible 
to roll up, although it has a certain inflexibility. 
When it lies flat on a desk, it has perfect straight 
lines along each direction. Now, pick up the 
sheet, and roll 
it up. That is, 
you are allowed 
to roll the paper 
however you 
wish, but you 
are not allowed 
to fold or tear 
it. You should 
easily be able to 
make it into a cylinder or a cone. Observe that 
no matter how you do this, at every point of your 
sheet of paper there will always be a direction 
along which perfect straight lines exist. It seems 
as if you cannot completely destroy the flatness 
of your sheet of paper. The sheet has zero cur-
vature.
Now consider the folowing situation. The presi-
dent of Exxon has a vision about the gas stations 
in the US being equally distributed all over the 
continent. He draws circles around the headquar-
ter, of radius 100 miles, 200 miles, 300 miles and 
so on. Then he asks his staff to count the number 
of gas stations within each circle. The area of a 
circle is proportional to the square of the radius, 
and the number of stations should grow like 1, 4, 
9, 16, ... After some time the result is communi-
cated to the president. It seems that the gas sta-
tions  are concentrated around the headquarter. 

But the strange fact 
is that if they draw 
the circle around 
a completely dif-
ferent center, the 
same phenomena 
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Differential Geometry
Differential geometry is the study of smooth, curved objects. In this popularized exposi-
tion we try to illustrate the subject. 

occurs. There are always more stations close to the 
center of the circle than further out. Actually this 
is no paradox, it reflects the positive curvature of 
the sphere-shaped surface of the earth.
Now consider your arm. The shape of your shoul-
der joint allows you a certain rotational degree of 
freedom. Furthermore, the pair of bones in your 
forearms, the radius and ulna, gives your wrists 
the necessary rotational freedom for turning door-
knobs. Consider the movements where you are al-
lowed to rotate your shoulder, but not your wrists. 
Try this. Hold out your arm perfectly straight, in 
front of you, with your hand opened, fingers to-
gether, palm down. Keeping everything rigid, ro-

tate your shoul-
der so that 
your fingers 
are pointing 
straight up, as 
if you were to 
ask a question 
in class. Rotate 
rigidly again 

until your arm is once again in a horizontal posi-
tion, pointing right out at your side, as if you were 
half-crucified. Now bring your arm back in front 
of you. Your palm should now be pointing side-
ways instead of downwards as it originally was. 
Whar has happened? You have rotated your wrist 
by moving your arm along a spherical triangle, 
but at no point did you actually use the extra ro-
tational freedom afforded by the pair of bones in 
your forearm. Use it now. Keeping your arm rigid, 
rotate your wrist until your palm faces down. Feel 
the motion of muscles that you didn’t use before. 
Because you moved your hand along a triangle ly-
ing on the sphere described by the radius of your 
arm, the curvature of the sphere turned your hand 
when you brought it back to its original position, 
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even though you didn’t rotate your wrist during 
these motions but kept it rigid relative to the 
path of motion. If you had tried the same trick 
this time moving along a zero curvature plane, 
your hand would have had the same orientation 
when you moved it back to its original position 
in the plane. This is an example of what it is 
like to parallel transport your hand along a 
spherical triangle. 
Perhaps all this hard work  
has made you hungry.   Let 
us consider a doughnut. 
Smooth and nice with a 
hole in the middle. Before 
you eat it, let us examine 
the curved structure of the 
surface of the doughnut. Inside, near the hole, 
we say that the curvature is negative, i.e. the 
doughnut curves in two different directions, 
like a saddle. On the outer part, the curvature 
is said to be positiv, curving the same way in 
all directions. Adding up we find that the to-
tal curvature of our doughnut equals zero, and 
that this happens with any other sort of pastry 
that has a hole through it. A similar result holds 
for the total curvature of any bun or a sphere. 
It adds up to 4π. The general result, called the 
Gauss-Bonnet theorem, says that the total 
curvature of any smooth curved surface only 
depends on the number of holes, subtracting 4π 
for each hole. 

Differential geometry is the branch of geom-
etry that concerns itself with smooth curved 
objects. Differential geometry studies local 
properties such as measuring distance and cur-
vature, or global properties such as orientabili-
ty. A first approximation to understanding what 
differential geometry is about is to understand 
what it is not about. Differential geometry is 
not the same as Euclidian geometry. The latter 
most often deals with objects that are straight 

and uncurved, such as lines, planes, and triangles, 
or at most curved in a very simple fashion, such as 
circles. Differential geometry prefers to consider 
Euclidean geometry as a very special kind of ge-
ometry; that of zero curvature. Nonzero curvature 
is where interesting things seem to be happening.
Historically, it might be possible to divide differ-
ential geometry into classical and modern, with 
the line of demarcation drawn somewhere through 
Bernhard Riemann’s inaugural lecture given in 
1854 in Göttingen. This lecture laid the founda-
tion for modern differential geometry, inspiring 
geometers for many decades. Classical differ-
ential geometry began with the study of curved 
surfaces in space, such as spheres, cones, cylin-
ders, hyperbolic paraboloids, or ellipsoids. A key 
notion always present in differential geometry is 
that of curvature. The first person to illuminate 

this problem was Leonhard 
Euler (1707-1783), who 
is in fact associated with 
every branch of mathemat-
ics that existed in the eight-
eenth century.
Euler can probably be 
creditted for much of the 
early explorations in dif-
ferential geometry, but his 

influence is not quite as profound as the reverber-
ations that Carl Friedrich Gauss’s (1777 - 1855) 
seminal paper Disquisitiones 
generales circa superficies 
curvas (General investiga-
tions of curved surfaces) from 
1827 propagated through the 
subject. Gauss’s paper gives 
us an almost modern defini-
tion of a curved surface, as 
well as a definition and pre-
cise procedures for comput-
ing the curvature of a surface, that now bears his 
name. He also defines the first and second funda-
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mental forms of a surface, and the importance 
of the first has survived to modern-day differ-
ential geometry in the form of a Riemannian 
metric in Riemannian geometry. Using these 
concepts, and the intrinsic property of the first 
fundamental form, only depending on the sur-
face itself, and not on how this surface is placed 
in the surrounding Euclidean space, he proves 
the theorema egregium (remarkable theorem). 
Gauss presented the theorem in this way:
Theorem (Gauss, 1828) If a curved surface is 
developed upon any other surface whatever, 
the measure of curvature in each point remains 
unchanged.
The theorem is ”remarkable” because the defi-
nition of Gaussian curvature makes direct use 
of the position of the surface in space. So it is 
quite surprising that the final result does not de-
pend on the embedding.

From another angle, Albert Einstein (1870-1955) 
noticed that he needed a new theory of geometry 
if he was to generalise his theory of relativity 
to the case of noninertial frames of reference. 
Once physicists 
found applications 
for the differential 
geometry that math-
ematicians had been 
developing for so 
long, they started 
to contribute to the 
subject and develop 
their own tradition 
and schools.
The intervention of 
the physicists enriched and complicated the 
subject immensely, with mathematicians some-
times working in parallel with the physicists’ 
traditions, sometimes intersecting, sometimes 
not, as if trying themselves to imitate the same 
variations of the parallel postulate that their 

study of manifolds now afforded them. Non-defi-
nite metrics such as the Minkowski metric de-
scribing the geometry of spacetime, gained prom-
inence. From a different direction, classical and 
analytical mechanics and its study of mechanical 
system lead to the birth of symplectic geometry. 

Yet another tributary to this river of dreams came 
a little earlier in the late 19th century with the 
Norwegian Sophus Lie (1842-1899) who decided 
to carry out the ideas of Felix Klein (1849-1925) 
and his Erlanger Programm and consider con-
tinuous, differentiable even, groups that could 
tell us something about the symmetries of the 

manifolds under scru-
tiny, these groups also 
manifolds in their own 
right. His Lie groups 
are an important area 
of modern research in 
themselves.

But what is Rieman-
nian Geometry? Eucli-
dean Geometry is the 

study of flat space. Between every pair of points 
there is a unique line segment which is the short-
est curve between those two points. These line 
segments can be extended to lines. Lines are infi-
nitely long in both directions and for every pair of 
points on the line, the segment of the line between 
them is the shortest curve that can be drawn be-
tween them. Furthermore, if you have a line and a 
point which isn’t on the line, there is a second line 
running through the point, which is parallel to the 
first line (never hits it). All of these ideas can be 
described by drawing on a flat piece of paper. 
From the laws of Euclidean Geometry, we get the 
famous theorems like Pythagorus’ Theorem and 
all the formulas we learn in trigonometry, like the 
law of cosines. 
Now, suppose instead of having a flat piece of pa-



Abel Prize 2009

per, you have a curved piece of paper, like a 
sphere. A shortest curve between any pair of 
points on such a curved surface is called a mini-
mal geodesic. You can find a minimal geodesic 
between two points by stretching a rubber band 
between them. The first thing that you will no-
tice is that sometimes there is more than one 
minimal geodesic between two points. There 
are many minimal geodesics between the north 
and south poles of a globe. Surfaces like these 
are harder to study than flat surfaces but there 
are still theorems which can be used to esti-
mate the length of the hypotenuse of a triangle, 
the circumference of a circle and the area in-
side the circle. These estimates depend on the 
amount that the surface is curved or bent. 
Riemannian Geometers also study higher di-
mensional spaces. The universe can be de-
scribed as a three dimensional space. Near the 
earth, the universe looks roughly like three 
dimensional Euclidean space. However, near 
very heavy stars and black holes, the space is 
curved and bent. There are pairs of points in 
the universe which have more than one mini-
mal geodesic between them. The Hubble Tel-
escope has discovered points which have more 
than one minimal geodesic between them and 
the point where the telescope is located. This 
is called gravitational lensing. The amount that 
space is curved can be estimated by using the-
orems from Riemannian Geometry and meas-
urements taken by astronomers. Physicists be-

lieve that the curvature of space is related to the 
gravitational field of a star according to a partial 
differential equation called Einstein’s Equation. 
So using the results from the theorems in Rieman-
nian Geometry they can estimate the mass of the 
star or black hole which causes the gravitational 
lensing.


