
Riemannian geometry
Gromov’s work is in the field of differential ge-
ometry. Differential geometry is the branch of 
geometry that concerns itself with smooth curved 
objects like curves, surfaces or even higher-di-
mensional manifolds, with various additional 
structures, for example a Riemannian metric. 
A Riemannian metric on a surface allows us to 
measure distances and angles on the surface. 
A surface equipped with a Riemannian metric 
is called a Riemannian surface. Notice that the 
usual Euclidian distance is just one of many pos-
sible metrics. Think of the surface as a part of a 
landscape and introduce a metric that expresses 
the differences in walking speed in various direc-
tions in a given point. In a marsh the values are 

low compared to on dry ground. Different values 
in different directions from a given point reflect 
variations in the ground in different directions. 
The distance between two points in this metric is 
the time taken when walking between the points.
One of the fundamental concepts of a Rieman-
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nian surface is the Gaus-
sian curvature, first stud-
ied by Leonhard Euler 
(1707-1783) and in great-
er depth by Carl Friedrich 
Gauss (1777-1855). A 
plane with the Euclidian 
metric has zero Gaussian 
curvature, while the same 
plane equipped with the 

how-difficult-to-walk-metric given above might 
be rather curvy. Today mathematicians have sev-
eral different definitions for curvature, all invent-
ed to measure how far a surface is from being flat 
as a plane.
The principal curvatures at a point are the maxi-
mum and minimum curvatures of the plane curves 
obtained by intersecting the surface with planes 
normal to the tangent plane at the point. The 
Gaussian curvature at a point is defined to be the 
product of the principal curvatures at the point; 
the mean curvature is defined to be their sum.
Generally, the most important properties of a sur-
face are those that are defined intrinsically, i.e., 
determined solely by the distance within the sur-
face as measured along curves on the surface. 
Surfaces naturally arise as graphs of functions 
of a pair of variables and before Gauss curvature 
was defined by a formula involving the defining 
function. Properties of the surface defined in this 
way are called extrinsic, the opposite of intrinsic. 
Gauss showed in his Theorema Egregium (“Re-
markable theorem”) that in spite of the originally 
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extrinsic definition, Gaussian curvature is in fact 
an intrinsic property. This point of view was ex-
tended to higher-dimensional spaces by Bern-
hard Riemann (1826-1866) and led to what is 
known today as Riemannian geometry.

In 1760 Joseph-
Luis Lagrange 
(1736-1813) asked 
the following ques-
tion: Given a closed 
curve in ordinary 
space, find a surface 
having the curve 
as boundary with 
minimal area. Such 
a surface is called a 
minimal surface. In 1776 Jean Baptiste Meus-
nier (1754-1793) showed the following result: A 
surface is minimal if and only if its mean curva-
ture vanishes. Minimal surfaces have a simple 
interpretation in real life: they are the shape a 
soap film will assume if a wire frame shaped like 
the curve is dipped into a soap solution and then 
carefully lifted out.

Curves on a surface that minimize distance be-
tween the endpoints are called geodesics; they 
are the shape that an elastic band stretched be-

tween the two points would assume. Mathemati-
cally they are described using partial differential 
equations from the calculus of variations. Geodes-
ity of a curve is an intrinsic property.
One way of calculating Gaussian curvature is as 
the limit of the quotient of the angular excess α + 
β + γ - π and the area for successively smaller ge-
odesic triangles with angles α,β,γ near the point. 
Qualitatively, a surface is positively or negatively 
curved according to the sign of the angular excess 
for arbitrarily small geodesic triangles. A sphere 
has everywhere positive curvature since any geo-
desic triangle on the surface of the earth has angle 

sum greater 
than π. In 
the Euclidian 
case we know 
from school 
that the sum 
of the angels 
is precisely π. 
As a Rieman-
nian surface 
has a specific 
curvature at 
each point, 

we can add up all the curvatures to find the aver-
age curvature for the whole surface, called the to-
tal curvature of the surface. There is a marvellous 
theorem, known as the Gauss-Bonnet theorem, 
which relates this total curvature and a purely 
topological property of the surface, i.e., quantities 
that no longer depend on the metric. For a closed 
surface like a sphere or the surface of a doughnut 
the Gauss-Bonnet theorem says that the total cur-
vature equals 4π minus 4π times the number of 
holes in the surface. A sphere 
does not have any holes, thus 
the total curvature is 4π. The 
doughnut has one hole and the 
total curvature is therefore 0. 
This interaction between lo-
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cal concepts like curvature and global properties 
like the number of holes was the forerunner of 
many later results in geometry, culminating in the 
Atiyah-Singer index theorem, for which Michael 
Atiyah and Isadore Singer were awarded the Abel 
Prize in 2004.
Now consider manifolds with certain conditions 
on the curvature. Which possible surfaces do we 
have if the curvature is assumed to be everywhere 
zero? Or constant, but nonzero? To answer such 
questions we are looking for some sort of clas-
sification; that the surfaces fulfilling the condi-
tions have certain properties or that they belong 
to certain classes of surfaces. Mikhail Gromov 
has published several papers where answers are 
given to questions relating classification of mani-
folds with curvature constraints.
Riemannian Geometry also studies higher di-
mensional spaces. The universe can be described 
as a three dimensional space. Near the earth, the 
universe looks roughly like three dimensional 
Euclidean space. However, near very heavy stars 
and black holes, the space is curved and bent. 
The Hubble Telescope has discovered points that 
have more than one minimal geodesic between 
them and the point where the telescope is located. 
This is called gravitational lensing. The amount 
that space is curved can be estimated by using 
theorems from Riemannian Geometry and meas-

urements taken by astronomers. Physicists be-
lieve that the curvature of space is related to the 
gravitational field of a star according to a partial 

differential equa-
tion introduced by 
Albert Einstein 
(1870-1955). Us-
ing results from 
Riemannian Ge-
ometry they can 
estimate the mass 
of the star or black 
hole that causes 
the gravitational 
lensing.
As mentioned previously there are many differ-
ent Riemannian manifolds with the same under-
lying space, i.e., a manifold can allow different 
metric structures. A natural problem to address 
is if it possible, in some natural fashion, to clas-
sify all metric spaces? Gromov´s answer to this 
question is to equip the space of all metric spaces 
with a metric, now called the Gromov-Hausdorff 
metric. To measure the distance between two 
metric spaces they are embedded isometrically 
into some bigger metric space. As subsets of a 
common universe we can measure the distance 
between them; the distance between two compact 

subsets of a metric space is 
the minimal value such that 
for every point in each sub-
set, it is possible to reach 
some point in the other sub-
set within the range of this 
minimal distance. The Gro-
mov-Hausdorff distance 
is the minimal value of all 
possible embeddings of the 
two spaces into a third one. 

As an example we consider two circles of radius 1 
and 2. The Gromov-Hausdorff distance between 
the two circles is 1, obtained by letting the two 
circles be concentric. Then the outer circle can be 
reached within distance 1 from any point of the 
inner circle, and vice versa. 
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Around 1980 Gromov published several results 
concerning this metric space of metric spaces. 
Two of the most famous theorems bear his name, 
Gromov´s compactness theorem and Gromov´s 
convergence theorem.

Symplectic geometry
I 1833 the Irish mathematician William Rowan 
Hamilton (1805-1865) introduced what is now 
called Hamiltonian mechanics. It is a reformu-
lation of classical mechanics, motivated from a 
previous reformulation by Lagrange from 1788. 
Lagrange formulated classical mechanics through 
solutions of certain second-order differential 
equations. Hamilton changed the formalism by 
considering two sets of coordinates: position co-
ordinates and momentum coordinates. Lagrange´s 
second-order constraints on an n-dimensional co-
ordinate space now became first-order constraints 
on a 2n-dimensional phase space. Properties of 
this particular phase space were extracted and 
used as a motivation for the definition of symplec-
tic manifolds, technically formulated as manifolds 
equipped with a certain non-degenerate differen-
tial two-form. 
There are close relations between symplectic 
structures and so-called almost complex struc-
tures, i.e., answers to the question; is it possible to 
understand a real 2n-dimensional manifold as an 
n-dimensional complex manifold? This is a gener-

alisation of what we 
do when we consider 
the complex numbers 
as a real plane, with 
square root of -1 as 
the second axis. 
For a moment let us 
consider the famous 
poohsticks game of 
Winnie- the-Pooh. 
The flow of the river 
can be described by a 

certain vector field; to each point on the surface 
the water flow has a direction and a speed. The 
sticks, which are dropped from the upper side of 
the bridge, will follow the vector field tracking 
what is called an integral curve. In the Poohsticks 
game the aim of Winnie-the-Pooh is to find the 
fastest track, at least faster than Christopher Rob-
in, Tigger and Eeyore. It is obvious that the stick 
Winnie-the-Pooh drops in the river will find its 
way under the bridge. The reason is that the vector 
field describing the flow has certain nice proper-
ties. If we mimic these nice properties, normally 
described as the Cauchy-Riemann equations, for 
the symplectic phase space of the Hamiltonian 
formalism for classical mechanics as given above, 
we end up by considering maps from the complex 
numbers into a symplectic manifold satisfying 
certain properties. Such maps, tracing out a com-
plex curve in the manifold, are called pseudoholo-
morphic curves or J-curves. They were introduced 
by Gromov in 1985 and revolutionized the study 
of symplectic manifolds. In particular they lead to 
the Gromov-Witten invariants and Floer homol-
ogy, and play a prominent role in string theory.

Geometric groups
In the citation for this year’s Abel Prize, the sci-
entific committee emphasises three different fields 
where Gromov has played a significant role. Rie-
mannian and symplectic geometry sounds like 
suitable playgrounds for a world-leading geome-
ter, but what about groups of polynomial growth? 
What is the connection with geometry and metric 
spaces? 
Have you ever considered how many words our 
language contains? It is of course not a good idea 
to start counting words, but nevertheless, let us 
try. We start by considering words in one single 
letter, such as “I” and “a” and being rather strict 
about what we mean by a word, these two seem 
to be the only ones. The list of words of two let-
ters is much longer, for example “we”, “on”, “at”, 
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“to”, “be”, “go” and “us”, just to mention a few. 
We are not going to continue this list, but rather 
change the rules, and focus on a very important 
mathematical structure. Here are the rules for 
this mathematical game:

1. Our alphabet contains only two let-
ters, x and y.
2. All combinations of x´s and y´s are 
words in our language, with two ex-
ceptions, the combinations xx and yyy 
cannot occur as part of a word.

Now let us count the words of this language. We 
count the legal words by their length, i.e., the 
number of letters.Denote by W(n) the number 
of words of length n. An elementary combinato-
rial argument (which we suppress) tells us that 
W(n) equals the sum W(n-1)+W(n-5). Thus we 
can continue the sequence in the rightmost col-
umn of the table; 2,3,4,5,7,9,12,16,21,28,37,49
,65,... This is a sequence of so-called exponen-
tial growth, the same phenomena that happens 
for the world’s total population. It grows fast, 
but as the population increases, it grows even 
faster. In this setting the opposite of exponen-
tial growth is what we call polynomial growth. 
Polynomial growth is much slower than expo-
nential growth, e.g., the sequence of all natu-
ral numbers 1,2,3,4,5,6,7,... has polynomial 
growth. 

The language in x and y obeying the rules giv-
en above is what mathematicians would call 
the elements of the Projective modular group, 
PSL(2,Z). What we have shown, or at least 
indicated, is that this group has exponential 
growth. Gromov´s theorem from 1981 tells us 
the following: 

Theorem (Gromov, 1981) 
A finitely generated group G has polynomial 
growth if and only if is is virtually nilpotent.

Using this theorem we can now deduce that the 
projective modular group is not virtually nilpo-
tent. So what? It is not easy to explain what it 
means for a group to be virtually nilpotent. We 
have not even explained what is a group. But 
for the people working in group theory it is very 
important to know whether a group is virtually 
nilpotent or not. What we try to communicate 
is that combining some simple counting and 
Gromovs theorem; we can say something about 
PSL(2,Z), one of the most important groups in 
the modern history of mathematics. 
Now, back to our initial question, what does 
this have to do with geometry? There is in fact 
a metric, or rather a distance, hidden in this ex-
ample. There are two very important properties 
of distance; the triangle inequality and non-de-

Length Word W(n)
1 x,y 2
2 xy, yx, yy 3
3 xyx, yyx, yxy, xyy 4
4 xyxy, xyyx, yxyx, yxyy, yyxy 5
5 xyxyx, xyxyy, xyyxy, yx¬yxy, yxyyx, yyxyx, yyxyy 7
6 xyxyxy, xyxyyx, xyyxyx, xyyxyy, yxyxyx, yxyxyy, yxyyxy, yyxyxy, yyxyyx 9
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generacy. The triangle inequality is the generali-
sation of the truth that the shortest way between 
two points is the straight line. Non-degeneracy 
tells us that if the distance between A an B is 
zero, the A=B. Go back to our language generat-
ed by x and y. Given two words we can compose 
a new word, just by putting the letters together, 
one word after the other. Remember that xx and 
yyy is not allowed, if one of those combination 
appears, we remove it. So sticking together xyx 
and xyyx gives 

xyxxyyx = xyyyx = xx = Ø 
(the empty word is always denoted Ø). We define 
the operation of inverting a word; turn the word 
around and replace yy by y and vice versa, so 
that xyyxy is transformed to yyxyx. A small ex-
ercise for the reader is now to show that putting 
together a word and its inverted word gives the 
empty word. The remarkable fact is that the set 
of words in this particular alphabet is a metric 
space, where the distance between two words is 
the number of letters in the composition of the 
first word with the inverted second word. This 
definition satisfies both the triangle inequality 
and non-degeneracy. Counting points up to a 
given length is now a perfect analogue of count-
ing points within a ball of given radius around 
a specific point in the space, namely the empty 
word. The analogue for a Riemannian surface of 
counting words of given length is measuring area; 
words of length less than 1 corresponds to area of 
a circle of radius 1. Area is a quadratic function 
of the radius, i.e., “polynomial growth” of degree 
2. Similar argument can be used for Riemannian 
manifolds of any dimension d, counting points is 
a function of the radius of degree d, i.e., polyno-
mial growth. Gromov´s result can in this context 
be interpreted as stating that discrete groups, like 
our alphabet, that are analogues of finite-dimen-
sional manifolds, have a specific group-theoreti-
cal characterisation (virtually nilpotent).

Epilogue
Gromovs name is forever attached to deep results 
and important concepts within Riemannian geom-
etry, symplectic geometry, string theory and group 
theory. The Abel committee says: “Mikhail Gro-
mov is always in pursuit of new questions and is 
constantly thinking of new ideas for solutions of 
old problems. He has produced deep and original 
work throughout his career and remains remark-
ably creative. The work of Gromov will continue 
to be a source of 
inspiration for 
many future math-
ematical discover-
ies“. And as a final 
remark, let us also 
quote Dennis Sul-
livan; “It is incred-
ible what Mikhail 
Gromov can do, 
just with the trian-
gle inequality.”


