
Graph invariants

The city of Königsberg in Prussia (now Kaliningrad, Russia)

is located on the banks of the Pregel River. The river

surrounds two large islands, Kneiphof and Lomse. The

islands are connected to each other, and to the mainland

on both sides, by several bridges. All together there are

seven bridges in the city. A famous mathematical problem

is to find a walk through the city that would cross each of

the seven bridges once and only once.

The problem was solved in the 1730 ́s as the great

mathematician Leonhard Euler proved that there can not

exist any such walk. But more important than the solution

itself, was the fact that Euler, by his way of attacking the

problem, gave birth to a new field of mathematics, today

known as graph theory.

Graph theory can be viewed as an abstract approach to

the study of relations between objects, with graphs as the

basic notion.

Definition. A graph G = (V, E) is an ordered pair

comprising

- a set of vertices or nodes, V,

- a collection of edges, E, between pairs of nodes.

Almost three centuries after Euler walked on the bridges of

Königsberg, graph theory has grown as a mathematical

discipline and found many important applications.

Nevertheless, there are still many unsolved questions and

new problems keep popping up.

A basic task in all areas of mathematics is classification.

Graph theory is no exception. However, if it is not carved

in stone what the classifying invariants of this theory

should be. Here are some suggestions.

The first invariant presented is the Chromatic number:

Definition. Let G = (V, E) be a graph. The chromatic

number γ(G) of G is the least number of colours needed

to colour the vertices of the graph so that no two adjacent

vertices share the same colour.

The chromatic number is a central concept of the four

colour theorem, successfully proven by Appel and Haken

in 1976. The four colour theorem says that the chromatic

number of a planar graph is four. An equivalent formulation

is the four colour map theorem, which states that no more

than four colours are needed to colour the regions of a

map so that no two adjacent regions have the same colour.



The illustration gives a colouring of the USA, using four

colours. Notice that the theorem is not true if we replace

the number four by three. You can convince yourself of

this fact if you try to colour Bolivia and its neighbouring

countries with only three colours.

An important characteristic of a graph is the sparsity, i.e.

the number of edges of the graph compared to the

maximal number of edges of a graph with the same

number of nodes. The extremes are the totally

disconnected graph with no edges at all, and the complete

graph which includes all possible edges; the number of

edges of a complete n-node graph is (n
2). Let G = (V, E)

be a graph, and let S ⊂ V be any subset of vertices of G.
Then the induced subgraph G[S] is the graph whose vertex

set is S and whose edge set consists of all the edges in E
that have both endpoints in S.

The next invariant we define is the maximal clique size:

Definition. Let G be a graph. A clique in G is a complete

induced subgraph. The size of the largest clique in G is

denoted ω(G).

In a complete graph, all nodes are adjacent to each other

and in a colouring they must all have different colours.

Thus the chromatic number of a complete graph equals the

number of vertices. In an arbitrary graph the chromatic

number may exceed the maximal clique size, i.e. the

equality reduces to an inequality ω(G) ≤ γ(G) .

Definition. A graph G = (V, E) is said to be perfect if for all

induced subgraphs S ⊂ G the chromatic number and the

clique size coincides, i.e. ω(G[S]) = γ(G[S]).

In a paper published in 1972 Abel Prize Laureate László

Lovász proved the Perfect graph theorem:

Theorem. A graph G = (V, E) is perfect if and only if the

complement graph G is perfect.

The complement graph G has the same nodes as G, but
the edge set is complementary, i.e. if e ∈ E(G) then
e /∈ E(G) and vice versa. The following example illustrates

the perfect graph theorem:

G :

γ(G) = ω(G) = 3

G :

γ(G) = ω(G) = 2

The next graph invariant we emphasize is the

independence number of the graph. An independent

subset of a graph is a set of pairwise non-adjacent nodes.

Definition. The independence number of a graph G(V, E),
denoted α(G), is the cardinality of the largest independent
subset of G.
In the above illustration the sets of red nodes in the two

graphs are independent of maximal size, thus we have

α(G) = 2, α(G) = 3. The invariants of the above illustration
reflects a general fact; that the maximal clique number of a

graph coincides with the independence number of the

complement graph, ω(G) = α(G).

During the late 1920 ́s, the electronic experts Harry Nyquist

and Ralph Hartley introduced some fundamental ideas

related to the transmission of information, particularly in

the context of the telegraph as a communications system.

Some years later, during the 1940 ́s, Claude Shannon

developed the concept of channel capacity, based in part

on the ideas of Nyquist and Hartley, and then formulated a

complete theory of transmission of information.

The Shannon capacity models the amount of information

that can be transmitted across a noisy communication

channel in which certain signal values can be confused

with each other. The confusion is encoded in the confusion

graph, where the different signals are represented as

nodes, and a possible confusion between two signals is

represented by an edge between the two signals.

P :

The figure shows a confusion graph, illustrated by a

pentagon graph.

The red signal may be confused with the black and the

yellow, but will be distinguished from the blue and the



green, and so on. The Shannon capacity of the graph is at

least 2, e.g. represented by the independent set {•, •}. If
we instead of single signals decide to transmit pairs of

signals, then in fact we can find five pairs which cannot be

confused, e.g.

(••) (••) (••) (••) (••)

The Shannon capacity is measured per signal, thus using

pairs we increase the capacity to
√

5. For a long time it

was unknown whether it was possible to increase the

capacity even more by using more complex signal

combinations. The mathematical way of addressing this

problem goes as follows:

Definition. Let G = (V, E) and H = (W, F) be two graphs.

The strong graph product of G and H, denoted G ∗ H is

the following graph:

i) The vertices of G ∗ H is the set of all pairs (g, h) with
g ∈ V and h ∈ W.

ii) There is an edge between (g, h) and (g′, h′) if either of

(a) g = g′ and [h, h′] ∈ F
(b) h = h′ and [g, g′] ∈ E
(c) [g, g′] ∈ E and [h, h′] ∈ F

is satisfied.

Iterating the product construction gives a multi-product

graph G1 ∗ G2 ∗ · · · ∗ Gk.

With this definition in hand we can formally introduce the

Shannon capacity, as was done by Claude Shannon in the

1940 ́s.

Definition. Let G = (V, E) be a graph and k a natural
number. The Shannon capacity of G, denoted Θ(G) is
defined as

Θ(G) = lim
k→∞

(α(G ∗ G ∗ · · · ∗ G))
1
k

where the product is the k-fold product of copies of G.
The Shannon capacity of an arbitrary graph is not easily

computed and the computational complexity is not

determined. As pointed out above, the Shannon capacity

of the pentagon graph remained unknown for many years.

It was finally found by Lovász in 1979. As a main tool

Lovász introduced another graph invariant, known as the

Lovász number.

Definition. Let G = (V, E) be a graph on n vertices. An

ordered set of n unit vectors U = {ui | i ∈ V} ⊂ RN is

called an orthonormal representation of G in RN, if ui and

uj are orthogonal whenever vertices i and j are not
adjacent in G, i.e.

uT
i uj =

{
1 if i = j
0 if [i, j] 6∈ E

Definition. The Lovász number of the graph G(V, E) is
defined as follows:

θ(G) = min
c,U

max
i∈V

1
(cTui)2

where c is a unit vector in RN and U is an orthonormal

representation of G in RN.

The Lovász number θ(G) can be computed numerically to

high accuracy in polynomial time. Lovász proved the

so-called Lovász sandwich theorem which relates the

maximal clique number, the Lovász number and the

chromatic number.

Theorem. For a graph G = (V, E) we have the inequalities

ω(G) ≤ θ(G) ≤ γ(G)

Lovász also proved that the Lovász number is an upper

bound for the Shannon capacity, i.e.

α(G) ≤ Θ(G) ≤ θ(G)

where the leftmost inequality is more or less obvious.

Combining the two inequalities and using the fact that

α(G) = ω(G) we get

ω(G) ≤ Θ(G) ≤ θ(G) ≤ γ(G)

It follows that for a perfect graph G, where ω(G) = γ(G)
the above inequalities are equalities and the Shannon

capacity equals the Lovász number.

So what about the pentagon graph P? The complement

graph P:

This graph has chromatic number γ(P) = 3 and maximal

clique number ω(P) = 2. Thus we have

2 ≤ Θ(G) ≤ θ(G) ≤ 3

We have already seen that
√

α(P ∗ P) ≥
√

5, narrowing
down the interval to

√
5 ≤ Θ(G) ≤ θ(G) ≤ 3

Finally, we show that the Lovász number for the pentagon

graph, θ(P) ≤
√

5, and it follows that

Θ(G) = θ(G) =
√

5



In fact, let U = {u1, u2, u3, u4, u5} be the set of unit vectors
in R3 given by

uk =

 cos α
sin α cos βk
sin α sin βk


where cos α = 1

4√5
and βk =

2πk
5 . Then we have

uk · u` = cos2 α + sin2 α(cos βk cos β` + sin βk sin β`)

= cos2 α + sin2 α cos (βk − β`)

=
1√
5
+ (1 − 1√

5
) cos (βk − β`)

If |k − `| = 2 we have 2kπ
5 − 2`π

5 = 4π
5 and

cos 4π
5 = − 1√

5−1
. Thus

uk · u` =
1√
5
+ (1 − 1√

5
)

−1√
5 − 1

= 0

and the ordered set of 5 unit vectors U = {ui | i ∈ V} ⊂ R3

constitutes an orthonormal representation of P in R3. Let

c = (1, 0, 0). The Lovász number of P is then

θ(P) = min
c,U

max
i∈V

1
(cTui)2 ≤ max

i∈V

1
(cTui)2 =

1

( 1
4√5

)2
=

√
5


