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16 Jean-Pierre Serre: Mon premier demi-siècle au Collège de France

Jean-Pierre Serre, Professeur au Collège de France, titulaire de la chaire d’Algèbre
et Géométrie de 1956 à 1994.

Vous avez enseigné au Collège de France de 1956 à 1994, dans la chaire d’Algèbre
et Géométrie. Quel souvenir en gardez-vous?

J’ai occupé cette chaire pendant 38 ans. C’est une longue période, mais il y a des
précédents: si l’on en croit l’Annuaire du Collège de France, au XIXe siècle, la
chaire de physique n’a été occupée que par deux professeurs: l’un est resté 60 ans,
l’autre 40. Il est vrai qu’il n’y avait pas de retraite à cette époque et que les pro-
fesseurs avaient des suppléants (auxquels ils versaient une partie de leur salaire).

Quant à mon enseignement, voici ce que j’en disais dans une interview de 19861:
“Enseigner au Collège est un privilège merveilleux et redoutable. Merveilleux
à cause de la liberté dans le choix des sujets et du haut niveau de l’auditoire:
chercheurs au CNRS, visiteurs étrangers, collègues de Paris et d’Orsay — beau-
coup sont des habitués qui viennent régulièrement depuis cinq, dix ou même vingt
ans. Redoutable aussi: il faut chaque année un sujet de cours nouveau, soit sur ses
propres recherches (ce que je préfère), soit sur celles des autres; comme un cours
annuel dure environ vingt heures, cela fait beaucoup!”

Comment s’est passée votre leçon inaugurale?

À mon arrivée au Collège, j’étais un jeune homme de trente ans. La leçon inaugu-
rale m’apparaissait presque comme un oral d’examen, devant professeurs, famille,
collègues mathématiciens, journalistes, etc. J’ai essayé de la préparer. Au bout d’un
mois, j’avais réussi à en écrire une demi-page.

Arrive le jour de la leçon, un moment assez solennel. J’ai commencé par lire
la demi-page en question, puis j’ai improvisé. Je ne sais plus très bien ce que j’ai
dit (je me souviens seulement avoir parlé de l’Algèbre, et du rôle ancillaire qu’elle
joue en Géométrie et en Théorie des Nombres). D’après le compte-rendu paru dans
le journal Combat, j’ai passé mon temps à essuyer machinalement la table qui me
séparait du public; je ne me suis senti à l’aise que lorsque j’ai pris en main un
bâton de craie et que j’ai commencé à écrire sur le tableau noir, ce vieil ami des
mathématiciens.

Quelques mois plus tard, le secrétariat m’a fait remarquer que toutes les leçons
inaugurales étaient rédigées et que la mienne ne l’était pas. Comme elle avait été im-
provisée, j’ai proposé de la recommencer dans le même style, en me remettant men-
talement dans la même situation. Un beau soir, on m’a ouvert un bureau du Collège
et l’on m’a prêté un magnétophone. Je me suis efforcé de recréer l’atmosphère ini-
tiale, et j’ai refait une leçon sans doute à peu près semblable à l’originale. Le lende-
main, j’ai apporté le magnétophone au secrétariat; on m’a dit que l’enregistrement
était inaudible. J’ai estimé que j’avais fait tout mon possible et je m’en suis tenu là.
Ma leçon inaugurale est restée la seule qui n’ait jamais été rédigée.

En règle générale, je n’écris pas mes exposés; je ne consulte pas mes notes
(et, souvent, je n’en ai pas). J’aime réfléchir devant mes auditeurs. J’ai le sentiment,
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Jean-Pierre Serre, Professor at the Collège de France, held the Chair in Algebra and
Geometry from 1956 to 1994.

You taught at the Collège de France from 1956 to 1994, holding the Chair in Alge-
bra and Geometry. What are you memories of your time there?

I held the Chair for 38 years. That is a long time, but there were precedents.
According to the Yearbook of the Collège de France, the Chair in Physics
was held by just two professors in the 19th century: one remained in his post
for 60 years, and the other for 40. It is true that there was no retirement in
that era and that professors had deputies (to whom they paid part of their
salaries).

As for my teaching career, this is what I said in an interview in 19861: “Teaching
at the Collège is both a marvelous and a challenging privilege. Marvelous because of
the freedom of choice of subjects and the high level of the audience: CNRS [Centre
national de la recherche scientifique] researchers, visiting foreign academics, col-
leagues from Paris and Orsay—many regulars who have been coming for 5, 10 or
even 20 years. It is challenging too: new lectures have to be given each year, either
on one’s own research (which I prefer), or on the research of others. Since a series
of lectures for a year’s course is about 20 hours, that’s quite a lot!”

Can you tell us about your inaugural lecture?

I was a young man, about 30, when I arrived at the Collège. The inaugural lecture
was almost like an oral examination in front of professors, family, mathematician
colleagues, journalists, etc. I tried to prepare it, but after a month I had only managed
to write half a page.

When the day of the lecture came, it was quite a tense moment. I started by read-
ing the half page I had prepared and then I improvised. I can no longer remember
what I said (I only recall that I spoke about algebra and the ancillary role it plays in
geometry and number theory). According to the report that appeared in the newspa-
per Combat, I spent most of the time mechanically wiping the table that separated
me from my audience. I did not feel at ease until I had a piece of chalk in my hand
and I started to write on the blackboard, the mathematician’s old friend.

A few months later, the Secretary’s Office told me that all inaugural lectures
were written up, but they had not received the transcript of mine. As it had been
improvised, I offered to repeat it in the same style, mentally putting myself back
in the same situation. One evening, I was given a tape recorder and I went into an
office at the Collège. I tried to recall the initial atmosphere, and to make up a lecture
as close as possible to the original one. The next day I returned the tape recorder to
the Secretary’s Office. They told me that the recording was inaudible. I decided that
I had done all I could and left it there. My inaugural lecture is still the only one that
has not been written up.

As a rule, I don’t write my lectures. I don’t consult notes (and often I don’t
have any). I like to do my thinking in front of the audience. When I am explaining
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lorsque j’explique des mathématiques, de parler à un ami. Devant un ami, on n’a pas
envie de lire un texte. Si l’on a oublié une formule, on en donne la structure; cela
suffit. Pendant l’exposé j’ai en tête une quantité de choses qui me permettraient de
parler bien plus longtemps que prévu. Je choisis suivant l’auditoire, et l’inspiration
du moment.

Seule exception: le séminaire Bourbaki, où l’on doit fournir un texte suffisam-
ment à l’avance pour qu’il puisse être distribué en séance. C’est d’ailleurs le seul
séminaire qui applique une telle règle, très contraignante pour les conférenciers.

Quel est la place de Bourbaki dans les mathématiques françaises d’aujourd’hui?

C’est le séminaire qui est le plus intéressant. Il se réunit trois fois par an, en mars,
mai et novembre. Il joue un rôle à la fois social (occasion de rencontres) et mathé-
matique (exposé de résultats récents — souvent sous une forme plus claire que celle
des auteurs); il couvre toutes les branches des mathématiques.

Les livres (Topologie, Algèbre, Groupes de Lie,. . . ) sont encore lus, non seule-
ment en France, mais aussi à l’étranger. Certains de ces livres sont devenus des clas-
siques: je pense en particulier à celui sur les systèmes de racines. J’ai vu récemment
(dans le Citations Index de l’AMS2) que Bourbaki venait au 6e rang (par nombre de
citations) parmi les mathématiciens français (de plus, au niveau mondial, les nos 1
et 3 sont des Français, et s’appellent tous deux Lions: un bon point pour le Collège).
J’ai gardé un très bon souvenir de ma collaboration à Bourbaki, entre 1949 et 1973.
Elle m’a appris beaucoup de choses, à la fois sur le fond (en me forçant à rédiger
des choses que je ne connaissais pas) et sur la forme (comment écrire de façon à être
compris). Elle m’a appris aussi à ne pas trop me fier aux “spécialistes.”

La méthode de travail de Bourbaki est bien connue: distribution des rédactions
aux différents membres et critique des textes par lecture à haute voix (ligne à ligne:
c’est lent mais efficace). Les réunions (les “congrès”) avaient lieu 3 fois par an.
Les discussions étaient très vives, parfois même passionnées. En fin de congrès,
on distribuait les rédactions à de nouveaux rédacteurs. Et l’on recommençait. Le
même chapitre était souvent rédigé quatre ou cinq fois. La lenteur du processus
explique que Bourbaki n’ait publié finalement qu’assez peu d’ouvrages en quarante
années d’existence, depuis les années 1930–1935 jusqu’à la fin des années 1970, où
la production a décliné.

En ce qui concerne les livres eux-mêmes, on peut dire qu’ils ont rempli leur
mission. Les gens ont souvent cru que ces livres traitaient des sujets que Bourbaki
trouvait intéressants. La réalité est différente: ses livres traitent de ce qui est utile
pour faire des choses intéressantes. Prenez l’exemple de la théorie des nombres. Les
publications de Bourbaki en parlent très peu. Pourtant, ses membres l’appréciaient
beaucoup, mais ils jugeaient que cela ne faisait pas partie des Éléments: il fallait
d’abord avoir compris beaucoup d’algèbre, de géométrie et d’analyse.

Par ailleurs, on a souvent imputé à Bourbaki tout ce que l’on n’aimait pas en
mathématiques. On lui a reproché notamment les excès des “maths modernes” dans
les programmes scolaires. Il est vrai que certains responsables de ces programmes se
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mathematics, I feel I am speaking to a friend. You don’t want to read a text out to a
friend; if you have forgotten a formula, you give its structure; that’s enough. During
the lecture I have a lot of possible material in my mind—much more than possible
in the allotted time. What I actually say depends on the audience and my inspiration.

Only exception: the Bourbaki seminar for which one has to provide a text suffi-
ciently in advance so that it can be distributed during the meeting. This is the only
seminar that applies this rule; it is very restrictive for lecturers.

What is Bourbaki’s place in French mathematics now?

Its most interesting feature is the Bourbaki seminar. It is held three times a year, in
March, May and November. It plays both a social role (an occasion for meeting other
people) and a mathematical one (the presentation of recent results—often in a form
that is clearer than that given by the authors). It covers all branches of mathematics.

Bourbaki’s books (Topology, Algebra, Lie Groups, etc.) are still widely read, not
just in France but also abroad. Some have become classics: I’m thinking in partic-
ular about the book on root systems. I recently saw (in the AMS Citations Index2)
that Bourbaki ranked sixth (by number of citations) among French mathematicians.
(What’s more, at the world level, numbers 1 and 3 are French and both are called
Lions: a good point for the Collège.) I have very good memories of my collabora-
tion with Bourbaki from 1949 to 1973. Bourbaki taught me many things, both on
background (making me write about things which I did not know very well) and on
style (how to write in order to be understood). Bourbaki also taught me not to rely
on “specialists”.

Bourbaki’s working method is well-known: the distribution of drafts to the var-
ious members and their criticism by reading them aloud (line by line: slow but ef-
fective). The meetings (“congrès”) were held three times a year. The discussions
were very lively, sometimes passionate. At the end of each congrès, the drafts were
distributed to new writers. And so on. A chapter could often be written four or
five times. The slow pace of the process explains why Bourbaki ended up publish-
ing with relatively few books over the 40 years from 1930–1935 till the end of the
1970s when production faded away.

As for the books themselves, one may say that they have fulfilled their mission.
People often believe that these books deal with subjects that Bourbaki found inter-
esting. The reality is different: the books deal with what is useful in order to do
interesting things. Take number theory for example. Bourbaki’s publications hardly
mention it. However, the Bourbaki members liked it very much it, but they consid-
ered that it was not part of the Elements: it needed too much algebra, geometry and
analysis.

Besides, Bourbaki is often blamed for everything that people do not like about
mathematics, especially the excesses of “modern math” in school curricula. It is true
that some of those responsible for these curricula claimed to follow Bourbaki. But
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sont réclamés de Bourbaki. Mais Bourbaki n’y était pour rien: ses écrits étaient des-
tinés aux mathématiciens, pas aux étudiants, encore moins aux adolescents. Notez
que Bourbaki a évité de se prononcer sur ce sujet. Sa doctrine était simple: on fait
ce que l’on choisit de faire, on le fait du mieux que l’on peut, mais on n’explique
pas pourquoi on le fait. J’aime beaucoup ce point de vue qui privilégie le travail par
rapport au discours — tant pis s’il prête parfois à des malentendus.

Comment analysez-vous l’évolution de votre discipline depuis l’époque de vos
débuts? Est-ce que l’on fait des mathématiques aujourd’hui comme on les faisait
il y a cinquante ans?

Bien sûr, on fait des mathématiques aujourd’hui comme il y a cinquante ans!
Évidemment, on comprend davantage de choses; l’arsenal de nos méthodes a aug-
menté. Il y a un progrès continu. (Ou parfois un progrès par à-coups: certaines
branches restent stagnantes pendant une décade ou deux, puis brusquement se
réveillent quand quelqu’un introduit une idée nouvelle.)

Si l’on voulait dater les mathématiques “modernes” (un terme bien dangereux),
il faudrait sans doute remonter aux environs de 1800 avec Gauss.

Et en remontant plus loin, si vous rencontriez Euclide, qu’auriez-vous à vous dire?

Euclide me semble être plutôt quelqu’un qui a mis en ordre les mathématiques de
son époque. Il a joué un rôle analogue à celui de Bourbaki il y a cinquante ans.
Ce n’est pas par hasard que Bourbaki a choisi d’intituler ses ouvrages des Élé-
ments de Mathématique: c’est par référence aux Éléments d’Euclide. (Notez aussi
que “Mathématique” est écrit au singulier. Bourbaki nous enseigne qu’il n’y a
pas plusieurs mathématiques distinctes, mais une seule mathématique. Et il nous
l’enseigne à sa façon habituelle: pas par de grands discours, mais par l’omission
d’une lettre à la fin d’un mot.)

Pour en revenir à Euclide, je ne pense pas qu’il ait produit des contributions
réellement originales. Archimède serait un interlocuteur plus indiqué. C’est lui le
grand mathématicien de l’Antiquité. Il a fait des choses extraordinaires, aussi bien
en mathématique qu’en physique.

En philosophie des sciences, il y a un courant très fort en faveur d’une pensée de
la rupture. N’y a-t-il pas de ruptures en mathématiques? On a décrit par exemple
l’émergence de la probabilité comme une manière nouvelle de se représenter le
monde. Quelle est sa signification en mathématiques?

Les philosophes aiment bien parler de “rupture.” Je suppose que cela ajoute un peu
de piment à leurs discours. Je ne vois rien de tel en mathématique: ni catastrophe,
ni révolution. Des progrès, oui, je l’ai déjà dit; ce n’est pas la même chose. Nous
travaillons tantôt à de vieilles questions, tantôt à des questions nouvelles. Il n’y a
pas de frontière entre les deux. Il y a une grande continuité entre les mathématiques
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Bourbaki had nothing to do with it: its books are meant for mathematicians, not for
students, and even less for teen-agers. Note that Bourbaki was careful not to write
anything on this topic. Its doctrine was simple: one does what one chooses to do,
one does it the best one can, but one does not explain why. I very much like this
attitude which favors work over discourse—too bad if it sometimes lead to misun-
derstandings.

How would you describe the development of your discipline since the time when you
were starting out? Is mathematics conducted nowadays as it was 50 years ago?

Of course you do mathematics today like 50 years ago! Clearly more things are
understood; the range of our methods has increased. There is continuous progress.
(Or sometimes leaps forward: some branches remain stagnant for a decade or two
and then suddenly there’s a reawakening as someone introduces a new idea.)

If you want to put a date on “modern” mathematics (a very dangerous term), you
would have to go back to about 1800 and Gauss.

Going back further, if you were to meet Euclid, what would you say to him?

Euclid seems to me like someone who just put the mathematics of his era into or-
der. He played a role similar to Bourbaki’s 50 years ago. It is no coincidence that
Bourbaki decided to give its treatise the title Éléments de Mathématique. This is a
reference to Euclid’s Éléments. (Note that “Mathématique” is written in the singular.
Bourbaki tells us that rather than several different mathematics there is one single
mathematics. And he tells us in his usual way: not by a long discourse, but by the
omission of one letter from the end of one word.)

Coming back to Euclid, I don’t think that he came up with genuinely original
contributions. Archimedes would be much more interesting to talk to. He was the
great mathematician of antiquity. He did extraordinary things, both in mathematics
and physics.

In the philosophy of science there is a very strong current in favor of the concept
of rupture. Are there ruptures in mathematics? For example the emergence of prob-
ability as a new way in which to represent the world. What is its significance in
mathematics?

Philosophers like to talk of “rupture”. I suppose it adds a bit of spice to what they
say. I do not see anything like that in mathematics: no catastrophe and no revolution.
Progress, yes, as I’ve already said; but that is not the same. We work sometimes on
old questions and sometimes on new ones. There is no boundary between the two.
There is a deep continuity between the mathematics of two centuries ago and that
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d’il y a deux siècles et celles de maintenant. Le temps des mathématiciens est la
“longue durée” de feu mon collègue Braudel.

Quant aux probabilités, elles sont utiles pour leurs applications à la fois mathé-
matiques et pratiques; d’un point de vue purement mathématique, elles constituent
une branche de la théorie de la mesure. Peut-on vraiment parler à leur sujet de
“manière nouvelle de se représenter le monde”? Sûrement pas en mathématique.

Est-ce que les ordinateurs changent quelque chose à la façon de faire des mathé-
matiques?

On avait coutume de dire que les recherches en mathématiques étaient peu coû-
teuses: des crayons et du papier, et voilà nos besoins satisfaits. Aujourd’hui, il faut
ajouter les ordinateurs. Cela reste peu onéreux, dans la mesure où les mathémati-
ciens ont rarement besoin de ressources de calcul très importantes. À la différence,
par exemple, de la physique des particules, dont les besoins en calcul sont à la
mesure des très grands équipements nécessaires au recueil des données, les mathé-
maticiens ne mobilisent pas de grands centres de calcul.

En pratique, l’informatique change les conditions matérielles du travail des math-
ématiciens: on passe beaucoup de temps devant son ordinateur. Il a différents us-
ages. Tout d’abord, le nombre des mathématiciens a considérablement augmenté.
À mes débuts, il y a 55 ou 60 ans, le nombre des mathématiciens productifs était de
quelques milliers (dans le monde entier), l’équivalent de la population d’un village.
À l’heure actuelle, ce nombre est d’au moins 100 000: une ville. Cet accroissement
a des conséquences pour la manière de se contacter et de s’informer. L’ordinateur
et Internet accélèrent les échanges. C’est d’autant plus précieux que les mathémati-
ciens ne sont pas ralentis, comme d’autres, par le travail expérimental: nous pouvons
communiquer et travailler très rapidement. Je prends un exemple. Un mathématicien
a trouvé une démonstration mais il lui manque un lemme de nature technique. Au
moyen d’un moteur de recherche — comme Google — il repère des collègues qui
ont travaillé sur la question et leur envoie un e-mail. De cette manière, il a toutes les
chances de trouver en quelques jours ou même en quelques heures la personne qui a
effectivement démontré le lemme dont il a besoin. (Bien entendu, ceci ne concerne
que des problèmes auxiliaires: des points de détail pour lesquels on désire renvoyer à
des références existantes plutôt que de refaire soi-même les démonstrations. Sur des
questions vraiment difficiles, mon mathématicien aurait peu de chances de trouver
quelqu’un qui puisse lui venir en aide.)

L’ordinateur et Internet sont donc des outils d’accélération de notre travail. Ils
permettent aussi de rendre les manuscrits accessibles dans le monde entier, sans
attendre leur parution dans un journal. C’est très pratique. Notez que cette accéléra-
tion a aussi des inconvénients. Le courrier électronique produit des correspondances
informelles que l’on conserve moins volontiers que le papier. On jette rarement des
lettres alors que l’on efface ou l’on perd facilement les emails (quand on change
d’ordinateur, par exemple). On a publié récemment (en version bilingue: français sur
une page, et anglais sur la page d’en face) ma correspondance avec A. Grothendieck
entre 1955 et 1987; cela n’aurait pas été possible si elle avait été électronique.
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of today. The time of mathematicians is the “longue durée” of my late colleague the
historian Fernand Braudel.

As for probability theory, it is useful for its applications both to mathematics and
to practical questions From a purely mathematical point of view, it is a branch of
measure theory. Can one really describe it as “a new way in which to represent the
world”? Surely not in mathematics.

Have computers changed the manner in which mathematics is conducted?

It used to be said that mathematical research was cheap: paper and pencils, that
was all we needed. Nowadays, you have to add computers. It is not very expensive,
since mathematicians rarely need a lot of processing power. This is different from,
say, particle physics, where a lot of equipment is required.

In practice, computers have changed the material conditions of mathematicians’
work: we spend a lot of time in front of our computer. It has several different uses.
First of all, there are now considerably more mathematicians. When I started out,
some 55 or 60 years ago, there were only a few thousand productive mathematicians
(in the whole world), the equivalent of a village. Now, this number has grown to at
least 100 000: a city. This growth has consequences for the way mathematicians
contact each other and gain information. The computer and Internet have acceler-
ated exchanges. This is especially important for us, since we are not slowed down,
as others, by experimental work: we can communicate and work very rapidly. Let
me give you an example. If a mathematician is working on a proof but needs a tech-
nical lemma, then through a search engine—such as Google—he will track down
colleagues who have worked on the question and send them an e-mail. In this way,
in just a few days or even hours, he may be able to find somebody who has proved
the required lemma. (Of course, this only applies to easy problems: those for which
you want to use a reference rather than to reconstruct a proof. For really difficult
questions, a mathematician would have little chance of finding someone to help
him.)

Computer and Internet are thus the tools which speed up our work. They allow us
to make our manuscripts accessible to everybody without waiting for publication in
a journal. That is very convenient. But this acceleration also has its disadvantages.
E-mail produces informal correspondence which is less likely to be kept than the
paper one. It is unusual to throw letters away but one can easily delete or lose e-mails
(when one changes computers for example). Recently a bilingual version (French
on one page and English on the other) of my correspondence with A. Grothendieck
between 1955 and 1987 has been published. That would not have been possible if
the correspondence had been by e-mail.
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Par ailleurs, certaines démonstrations font appel à l’ordinateur pour vérifier une
série de cas qu’il serait impraticable de traiter à la main. Deux cas classiques:
le problème des 4 couleurs (coloriage des cartes avec seulement quatre couleurs)
et le problème de Képler (empilement des sphères dans l’espace à 3 dimensions).
Cela conduit à des démonstrations qui ne sont pas réellement vérifiables; autrement
dit, ce ne sont pas de vraies “démonstrations” mais seulement des faits expérimen-
taux, très vraisemblables, mais que personne ne peut garantir.

Vous avez évoqué l’augmentation du nombre des mathématiciens. Quelle est au-
jourd’hui la situation. Où vont les mathématiques?

L’augmentation du nombre des mathématiciens est un fait important. On pouvait
craindre que cela se fasse au détriment de la qualité. En fait, il n’y a rien eu de tel. Il
y a beaucoup de très bons mathématiciens (en particulier parmi les jeunes français
— un très bon augure).

Ce que je peux dire, concernant l’avenir, c’est qu’en dépit de ce grand nombre de
mathématiciens, nous ne sommes pas à court de matière. Nous ne manquons pas de
problèmes, alors qu’il y a un peu plus de deux siècles, à la fin du XVIIIe, Lagrange
était pessimiste: il pensait que “la mine était tarie,” qu’il n’y avait plus grand-chose
à trouver. Lagrange a écrit cela juste avant que Gauss ne relance les mathématiques
de manière extraordinaire, à lui tout seul. Aujourd’hui, il y a beaucoup de terrains à
prospecter pour les jeunes mathématiciens (et aussi pour les moins jeunes, j’espère).

Selon un lieu commun de la philosophie des sciences, les grandes découvertes math-
ématiques sont le fait de mathématiciens jeunes. Est-ce votre cas?

Je ne crois pas que le terme de “grande découverte” s’applique à moi. J’ai surtout
fait des choses “utiles” (pour les autres mathématiciens). En tout cas, lorsque j’ai
eu le prix Abel en 2003, la plupart des travaux qui ont été cités par le jury avaient
été faits avant que je n’aie 30 ans. Mais si je m’étais arrêté à ce moment-là, on ne
m’aurait sans doute pas donné ce prix: j’ai fait aussi d’autres choses par la suite
(ne serait-ce que des “conjectures” sur lesquelles beaucoup de gens ont travaillé et
travaillent encore).

Dans ma génération, plusieurs de mes collègues ont continué au-delà de 80 ans,
par exemple mes vieux amis Armand Borel et Raoul Bott, morts tous deux récem-
ment à 82 ans. Il n’y a pas de raison de s’arrêter, tant que la santé le permet. Encore
faut-il que le sujet s’y prête. Quand on a des sujets très larges, il y a toujours quelque
chose à faire, mais si l’on est trop spécialisé on peut se retrouver bloqué pendant de
longues périodes, soit parce que l’on a démontré tout ce qu’il y avait à démontrer,
soit au contraire parce que les problèmes sont trop difficiles. C’est très frustrant.

Les découvertes mathématiques donnent de grandes joies. Poincaré, Hadamard,
Littlewood3 l’ont très bien expliqué. En ce qui me concerne, je garde surtout le
souvenir d’une idée qui a contribué à débloquer la théorie de l’homotopie. Cela
s’est passé une nuit de retour de vacances, en 1950, dans une couchette de train.
Je cherchais un espace fibré ayant telles et telles propriétés. La réponse est venue:
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On the other hand, some proofs do need a computer in order to check a series
of cases that would be impossible to do by hand. Two classic examples are the
four-color problem (shading maps using only four colors) and the Kepler conjecture
(packing spheres into three-dimensional space). This leads to proofs which are not
really verifiable; in other words, they are not genuine “proofs” but just experimental
facts, very plausible, but nobody can guarantee them.

You mentioned the increasing number of mathematicians today. But where is math-
ematics going?

The increase in the number of mathematicians is an important fact. One could have
feared that this increase in size was to the detriment of quality. But in fact, this is
not the case. There are many very good mathematicians (in particular young French
mathematicians—a good omen for us).

What I can say about the future is that, despite this huge number of mathemati-
cians, we are not short of subject matter. There is no lack of problems, even though
just two centuries ago, at the end of the 18th century, Lagrange was pessimistic:
he thought that “the mine was exhausted”, and that there was nothing much more
to discover. Lagrange wrote this just before Gauss relaunched mathematics in an
extraordinary way, all by himself. Today, there are many fields to explore for young
mathematicians (and even for those who are not so young, I hope).

It is often said in the philosophy of science that major mathematical discoveries are
made by young mathematicians. Was this the case for you?

I don’t believe that the term “major discovery” applies to me. I have rather done
things that are “useful” (for other mathematicians). When I was awarded the Abel
prize in 2003, most of the work cited by the jury had been done before I was 30. But
if I had stopped then, it would probably not have awarded me the prize. I have done
other things after that (if only some conjectures that have kept many people busy).

Of my generation, several of my colleagues have continued working beyond the
age of 80. For example, my old friends Armand Borel and Raoul Bott, who both
recently died aged 82. There is no reason to stop, as long as health allows it. But
the subject matter has to be there. When you are dealing with very broad subjects,
there is always something to do, but if you are too specialized you can find yourself
blocked for long periods of time, either because you have proved everything that
can be proved, or, to the contrary, because the problems are too difficult. It is very
frustrating.

Discoveries in mathematics can bring great joy. Poincaré, Hadamard and Little-
wood3 have explained it very well. As for myself, I still have the memory of an
idea that contributed to unlocking homotopy theory. It happened one night while
traveling home from vacation in 1950 in the sleeping car of a train. I had been
looking for a fiber space with such and such properties. Then the answer came:
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l’espace des lacets! Je n’ai pas pu m’empêcher de réveiller ma femme qui dormait
dans la couchette du dessous pour lui dire: ça y est! Ma thèse est sortie de là, et bien
d’autres choses encore. Bien sûr, ces découvertes soudaines sont rares: cela m’est
arrivé peut-être deux fois en soixante ans. Mais ce sont des moments lumineux,
vraiment exceptionnels.

Le Collège de France est-il un endroit où l’on échange avec d’autres disciplines?

Non, pas pour moi. Même entre les mathématiciens du Collège, il n’y a pas de tra-
vail collectif. Il faut préciser que nous travaillons dans des branches souvent très sé-
parées. Ce n’est pas un mal: le Collège n’est pas censé être un club. Un certain nom-
bre de lieux communs modernes — comme le travail collectif, l’interdisciplinarité
et le travail en équipe — ne s’appliquent pas à nous.

Qu’avez-vous pensé du dialogue entre un spécialiste de neurosciences, Jean-Pierre
Changeux, et le mathématicien Alain Connes, qui est restitué dans le livre Matière
à pensée?

Ce livre est un bel exemple de dialogue de sourds. Changeux ne comprend pas
ce que dit Connes, et inversement. C’est assez étonnant. Personnellement, je suis
du côté de Connes. Les vérités mathématiques sont indépendantes de nous4. Notre
seul choix porte sur la façon de les exprimer. Si on le désire, on peut le faire sans
introduire aucune terminologie. Considérons par exemple une troupe de soldats.
Leur général aime les arranger de deux façons, soit en rectangle, soit en 2 carrés.
C’est au sergent de les placer. Il s’aperçoit qu’il n’a qu’à les mettre en rang par 4: s’il
en reste 1 qu’il n’a pas pu placer, ou bien il arrivera à les mettre tous en rectangle,
ou bien il arrivera à les répartir en deux carrés.

[Traduction technique: le nombre n des soldats est de la forme 4k + 1. Si n n’est
pas premier, on peut arranger les soldats en rectangle. Si n est premier, un théorème
dû à Fermat dit que n est somme de deux carrés.]

Quelle est la place des mathématiques par rapport aux autres sciences? Y a-t-il une
demande nouvelle de mathématiques, venant de ces sciences?

Sans doute, mais il faut séparer les choses. Il y a d’une part la physique théorique,
qui est tellement théorique qu’elle est à cheval entre mathématique et physique, les
physiciens considérant que ce sont des mathématiques, tandis que les mathémati-
ciens sont d’un avis contraire. Elle est symbolisée par la théorie des cordes. Son
aspect le plus positif est de fournir aux mathématiciens un grand nombre d’énoncés,
qu’il leur faut démontrer (ou éventuellement démolir).

Par ailleurs, notamment en biologie, il y a tout ce qui relève de systèmes com-
portant un grand nombre d’éléments qu’il faut traiter collectivement. Il existe des
branches des mathématiques qui s’occupent de ces questions. Cela répond à une
demande. Il y a aussi des demandes qui concernent la logique: c’est le cas de
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the loop space! I couldn’t help from waking up my wife who was sleeping in the
bunk below: “I’ve got it!” I said. My thesis, and many other things, originated from
that idea. Of course, these sudden discoveries are rare: they have only happened to
me twice in sixty years. But they are illuminating moments: truly exceptional.

Are there exchanges between the disciplines at the Collège de France?

No, not for me. There is no collective work even between the mathematicians at the
Collège. We work on quite different things. This is not a bad thing. The Collège
is not supposed to be a club. Many commonplace sayings, such as collective work,
interdisciplinarity and team work, do not apply to us.

What do you think about the dialogue between the neuroscientist Jean-Pierre
Changeux and the mathematician Alain Connes, recorded in the book “Matière
à pensée”?

This book is a good example of dialogue of the deaf. Changeux does not under-
stand what Connes says and vice versa. It is quite astonishing. Personally, I am on
Connes’ side. Mathematical truths are independent of us.4 Our only choice is in the
way in which we express them. If you want, you can do this without introducing
any terminology. Consider, for example, a company of soldiers. The general likes
to arrange them in two ways, either in a rectangle or in two squares. It is up to the
sergeant to put them in the correct positions. He realizes that he only has to put them
in rows of four: if there is one left over that he cannot place, either he will manage
to put them all in a rectangle, or manage to arrange them in two squares.

[Technical translation: the number n of soldiers is congruent to 1 (mod 4). If n is
not a prime, the soldiers can be arranged in a rectangle. If n is a prime, a theorem of
Fermat shows that n is the sum of two squares.]

What is the place of mathematics in relation to other sciences? Is there a renewed
demand for mathematics from these sciences?

Probably, but there are different cases. Some theoretical physics is so theoretical that
it is half way between mathematics and physics. Physicists consider it mathematics,
while mathematicians have the opposite view. String theory is a good example. The
most positive aspect is to provide mathematicians with a large number of statements
which they have to prove (or maybe disprove).

On the other hand, in particular in biology, there are situations involving very
many elements that have to be processed collectively. There are branches of math-
ematics that deal with such questions. They meet a need. Another branch, logic, is
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l’informatique, pour la fabrication des ordinateurs. Il faut mentionner aussi la cryp-
tographie, qui est une source de problèmes intéressants relatifs à la théorie des nom-
bres.

En ce qui concerne la place des mathématiques par rapport aux autres sciences,
on peut voir les mathématiques comme un grand entrepôt empli de rayonnages. Les
mathématiciens déposent sur les rayons des choses dont ils garantissent qu’elles sont
vraies; ils en donnent aussi le mode d’emploi et la manière de les reconstituer. Les
autres sciences viennent se servir en fonction de leurs besoins. Le mathématicien ne
s’occupe pas de ce qu’on fait de ses produits. Cette métaphore est un peu triviale,
mais elle reflète assez bien la situation. (Bien entendu, on ne choisit pas de faire des
mathématiques pour mettre des choses sur les rayons: on fait des mathématiques
pour le plaisir d’en faire.)

Voici un exemple personnel. Ma femme, Josiane, était spécialiste de chimie quan-
tique. Elle avait besoin d’utiliser les représentations linéaires de certains groupes de
symétries. Les ouvrages disponibles n’étaient pas satisfaisants: ils étaient corrects,
mais employaient des notations très lourdes. J’ai rédigé pour elle un exposé adapté à
ses besoins, et je l’ai ensuite publié dans un livre intitulé Représentations Linéaires
des Groupes Finis. J’ai fait mon travail de mathématicien (et de mari): mis des
choses sur les rayons.

Le vrai en mathématiques a-t-il le même sens qu’ailleurs?

Non. C’est un vrai absolu. C’est sans doute ce qui fait l’impopularité des mathéma-
tiques dans le public. L’homme de la rue veut bien tolérer l’absolu quand il s’agit
de religion, mais pas quand il s’agit de mathématique. Conclusion: croire est plus
facile que démontrer.
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useful for the building of computers. Cryptography should also be mentioned; it is
a source of interesting problems in number theory.

As for the place of mathematics in relation to other sciences, mathematics can be
seen as a big warehouse full of shelves. Mathematicians put things on the shelves
and guarantee that they are true. They also explain how to use them and how to
reconstruct them. Other sciences come and help themselves from the shelves; math-
ematicians are not concerned with what they do with what they have taken. This
metaphor is rather coarse, but it reflects the situation well enough. (Of course one
does not choose to do mathematics just for putting things on shelves; one does math-
ematics for the fun of it.)

Here is a personal example. My wife, Josiane, was a specialist in quantum chem-
istry. She needed linear representations of certain symmetry groups. The books
she was working with were not satisfactory; they were correct, but they used very
clumsy notation. I wrote a text that suited her needs, and then published it in book
form, as Linear Representations of Finite Groups. I thus did my duty as a mathe-
matician (and as a husband): putting things on the shelves.

Does truth in mathematics have the same meaning as elsewhere?

No. It’s an absolute truth. This is probably what makes mathematics unpopular with
the public. The man in the street accepts the absolute in religion, but not in mathe-
matics. Conclusion: to believe is easier than to prove.
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1 M. Schmidt, Hommes de Science, 218–227, Hermann, Paris, 1990.
2 AMS: American Mathematical Society.
3 J. E. Littlewood, A Mathematician’s Miscellany, Methuen and Co, 1953. Ce livre ex-

plique bien la part inconsciente du travail créatif.
4 Il y a quelques années, mon ami R. Bott et moi-même allions recevoir un prix israélien

(le prix Wolf) remis dans la Knesset, à Jerusalem. Bott devait dire quelques mots sur les
mathématiques. Il m’a demandé: que dire? Je lui ai dit “C’est bien simple; tu n’as qu’à
expliquer ceci: les autres sciences cherchent à trouver les lois que Dieu a choisies; les
mathématiques cherchent à trouver les lois auxquelles Dieu a dû obéir.” C’est ce qu’il a
dit. La Knesset a apprécié.

1· M. Schmidt, Hommes de Science, 218–227, Hermann, Paris, 1990.
2· AMS: American Mathematical Society
3· J.E. Littlewood, A Mathematician’s Miscellany, Methuen and Co., 1953. This book of-

fers a very good description of the unconscious aspect of creative work.
4· A few years ago, my friend R. Bott and myself went to receive a prize in Israel (the Wolf

prize) awarded by the Knesset in Jerusalem. Bott had to say a few words on mathematics.
He asked me what he should say. I replied: “It’s very simple, all you have to explain is
this: other sciences seek to discover the laws that God has chosen; mathematics seeks
to discover the laws which God has to obey”. And that is what he said. The Knesset
appreciated it.

Serre and Henri Cartan, Prix Julia 1970
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Anatole Abragam, Serre, and Jaques Tits

Serre and Yuichiro Taguchi
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Serre

Serre, May 9, 2003 (photo by Chino Hasebe)
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Serre, 2003

The Abel Lecture, Oslo 2003



Jean-Pierre Serre: An Overview of His Work

Pilar Bayer

Introduction

The work of Jean-Pierre Serre represents an important breakthrough in at least four
mathematical areas: algebraic topology, algebraic geometry, algebra, and number
theory. His outstanding mathematical achievements have been a source of inspi-
ration for many mathematicians. His contributions to the field were recognized in
2003 when he was awarded the Abel Prize by the Norwegian Academy of Sciences
and Letters, presented on that occasion for the first time.

To date, four volumes of Serre’s work [Œuvres, Collected Papers I–II–III(1986);
IV(2000)] ([S210], [S211], [S212]; [S261]) have been published by Springer-
Verlag. These volumes include 173 papers, from 1949 to 1998, together with com-
ments on later developments added by the author himself. Some of the papers that
he coauthored with A. Borel are to be found in [A. Borel. Œuvres, Collected Pa-
pers. Springer, 1983]. Serre has written some twenty books, which have been fre-
quently reprinted and translated into several languages (mostly English and Russian,
but sometimes also Chinese, German, Japanese, Polish or Spanish). He has also
delivered lectures in many seminars: Bourbaki, Cartan, Chevalley, Delange–Pisot–
Poitou, Grothendieck, Sophus Lie, etc.; some of them have been gathered in the
books [S262, SEM(2001; 2008)].

Summarizing his work is a difficult task—especially because his papers present
a rich web of interrelationships and hence can hardly be put in linear order. Here,
we have limited ourselves to a presentation of their contents, with only a brief dis-
cussion of their innovative character.
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Broadly speaking, the references to his publications are presented thematically
and chronologically. In order to facilitate their location, the number of a paper corre-
sponding to the present List of Publications is followed by its number in the Œuvres
(if applicable) and by the year of its publication. Thus, a quotation of the form
[S216, Œ 143(1987)] will refer to paper 216 of the List included in the Œuvres as
number 143. Serre’s books will be referred to in accordance with the List and the
References at the end of this manuscript. The names of other authors, followed by
a date, will denote the existence of a publication but, for the sake of simplicity, no
explicit mention of it will be made.

A significant part of Serre’s work was given in his annual courses at the Collège
de France. When we mention one of these, it will be understood to be a course held
at this institution, unless otherwise stated.

1 The Beginnings

The mathematical training of J.-P. Serre can be seen as coming from two (closely
related) sources. On one hand, in 1948 and just after having finished his studies
at the École Normale Supérieure, he starts working at the Séminaire Cartan; this
was a very active collaboration that was continued for about 6 years (giving and
writing lectures in homological algebra, topology, and functions of several complex
variables). On the other hand, since 1949 and for about 25 years, he works with
Bourbaki.

In the fifties, Serre publishes his first papers, some of them coauthored with
H. Cartan, A. Borel and G.P. Hochschild, and submits a doctoral dissertation un-
der the supervision of Cartan. In an early publication, Borel and Serre [S17, Œ 2
(1950)] prove the impossibility of fibering an Euclidean space with compact fibers
(not reduced to one point).

1.0.1. Serre’s thesis was entitled Homologie singulière des espaces fibrés. Applica-
tions [S25, Œ 9(1951)] and was followed by several publications: [S19, Œ 4(1950)],
[S20, Œ 5(1951)], [S21, Œ 6(1951)]. Its initial purpose was to compute the coho-
mology groups of the Eilenberg–MacLane complexes K(�,n) by induction on n,
using the fact that the loop space of K(�,n) is K(�,n − 1), combined with the
loop fibration (see below). The homotopy lifting property, imposed by Serre on fiber
spaces, allows him to construct a spectral sequence in singular homology, analogous
to the one obtained by J. Leray (1950) in the setting of Čech theory. A dual spectral
sequence also exists for cohomology. The concept of fiber space that he introduces
is more general than the one that was usual at the time, allowing him to deal with
loop spaces, as follows: given a pathwise-connected topological space X and a point
x ∈ X, the loop space � at x is viewed as the fiber of a fiber space E over the base X.
The elements of E are the paths of X starting at x. The crucial fact is that the map
which assigns to each path its endpoint is a fibering f : E → X in the above sense.
The space E is contractible and, once Leray’s theory is suitably adapted, it turns to
be very useful for relating the homology of � to that of X.
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Serre’s thesis contains several applications. For example, by combining Morse’s
theory (1938) with his own results, Serre proves that, on every compact connected
Riemannian manifold, there exist infinitely many geodesics connecting any two dis-
tinct points. But, undoubtedly, the most remarkable application is the one concern-
ing the computation of the homotopy groups of spheres, πi(Sn).

1.1. Homotopy Groups of Spheres. Earlier studies by H. Hopf, H. Freudenthal
(1938) and others had determined the groups πi(Sn) for i < n + 2. L. Pontrjagin
and G.W. Whitehead (1950) had computed the groups πn+2(Sn) and H. Hopf had
proved that the group π2n−1(Sn), for n even, has Z as a quotient (and hence is
infinite). Thanks also to Freudenthal’s suspension theorem, it was known that the
group πn+k(Sn) depends only on k if n > k + 1. However, it was not even known
that the πi(Sn) are finitely generated groups. Serre shows that they are; what is more,
he shows that the groups πi(Sn), for i > n, are finite, except for π2n−1(Sn) when n

is even, which is the direct sum of Z and a finite group. Given a prime p, he also
shows that the p-primary component of πi(Sn) is zero if i < n + 2p − 3 and n � 3;
and that the p-primary component of πn+2p−3(Sn) is cyclic (he proved later that it
has order p).

1.1.1. The study of the homotopy groups was pursued by Serre for about two years;
the results were published in several papers: [S31, Œ 12(1952)], [S32, Œ 13(1952)],
[S48, Œ 18(1953)], [S43, Œ 19(1953)], [S40, Œ 22(1953)]. He also wrote two
Comptes rendus notes, with Cartan, on the technique of “killing homotopy groups”:
[S29, Œ 10(1952)], [S30, Œ 11(1952)]; and two papers with Borel on the use of
Steenrod operations [S26, Œ 8(1951)], [S44 (1951)], a consequence being that the
only spheres which have an almost complex structure are S0, S2 and S6 (whether
S6 has a complex structure or not is still a very interesting open question, despite
several attempts to prove the opposite).

1.1.2. Soon after his thesis, Serre was invited to Princeton. During his stay
(January–February 1952), he realized that some kind of “localization process” is
possible in the computation of homotopy groups. More precisely, the paper [S48, Œ
18(1953)] introduces a “mod C ” terminology in which a class of objects C is treated
as “zero”, as is done in arithmetic mod p. For instance, he proves that the groups
πi(Sn), n even, are C -isomorphic to the direct sum of πi−1(Sn−1) and πi(S2n−1),
where C denotes the class of the finite 2-groups.

The paper [S48, Œ 18(1953)] also shows that every connected compact Lie group
is homotopically equivalent to a product of spheres, modulo certain exceptional
prime numbers; for classical Lie groups they are those which are � h where h is
the Coxeter number. In the paper [S43, Œ 19(1953)], Serre determines the mod 2
cohomology algebra of an Eilenberg–MacLane complex K(�;q), in the case where
the abelian group � is finitely generated. For this he combines results from both
Borel’s thesis and his own. He also determines the asymptotic behaviour of the
Poincaré series of that algebra (by analytic arguments, similar to those used in the
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theory of partitions), and deduces that, for any given n > 1, there are infinitely many
i’s such that πi(Sn) has even order.

1.1.3. In the same paper, he computes the groups πn+i (Sn) for i � 4; and in [S32,
Œ 13(1952)] and [S40, Œ 22(1953)], he goes up to i � 8. (These groups are now
known for larger values of i, but there is very little information on their asymptotic
behaviour for i → ∞.)

1.2. Hochschild–Serre Spectral Sequence. The first study of the cohomology
of group extensions was R. Lyndon’s thesis (1948). Serre [S18, Œ 3(1950)] and
Hochschild–Serre [S46, Œ 15(1953)] go further. Given a discrete group G, a nor-
mal subgroup K of G, and a G-module A, they construct a spectral sequence

H(G/K,H(K,A)) ⇒ H(G,A).

If Hr(K,A) = 0, for 0 < r < q , the spectral sequence gives rise to the exact se-
quence

0 → Hq(G/K,AK) → Hq(G,A) → Hq(K,A)G/K → Hq+1(G/K,AK)

→ Hq+1(G,A).

This sequence became a key ingredient in many proofs. Similar results hold for Lie
algebras, as shown in [S47, Œ 16(1953)].

1.3. Sheaf Cohomology of Complex Manifolds. In his seminar at the École Nor-
male Supérieure, Cartan showed in 1952–1953 that earlier results of K. Oka and
himself can be reinterpreted and generalized in the setting of Stein manifolds by
using analytic coherent sheaves and their cohomology; he thus obtained his well-
known “Theorems A and B”. In [S42, Œ 23(1953)] (see also the letters to Cartan
reproduced in [S231 (1991)]), Serre gives several applications of Cartan’s theorems;
he shows for instance that the Betti numbers of a Stein manifold of complex dimen-
sion n can be computed à la de Rham, using holomorphic differential forms; in
particular, they vanish in dimension > n. But Serre soon became more interested
in compact complex manifolds, and especially in algebraic ones. A first step was
the theorem (obtained in collaboration with Cartan, see [S41, Œ 24(1953)]) that the
cohomology groups Hq(X, F ), associated to a compact complex manifold X and
with values in an analytic coherent sheaf F , are finite dimensional vector spaces;
the proof is based on a result due to L. Schwartz on completely continuous maps
between Fréchet spaces. This finiteness result played an essential role in “GAGA”,
see Sect. 2.2.

1.3.1. In a paper dedicated to H. Hopf, Serre [S58, Œ 28(1955)] proves a “duality
theorem” in the setting of complex manifolds. The proof is based on Schwartz’s
theory of distributions (a distribution can be viewed either as a generalized function,
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or as a linear form on smooth functions; hence, distribution theory has a built-in
self-duality).

1.3.2. Previously, in a letter [Œ 20(1953)] addressed to Borel, Serre had conjectured
a generalization of the Riemann–Roch theorem to varieties of higher dimension.
This generalization was soon proved by F. Hirzebruch in his well-known Habilita-
tionsschrift and presented by Serre at the Séminaire Bourbaki. The more general ver-
sion of the Riemann–Roch theorem, due to Grothendieck (1957), was the topic of a
Princeton seminar by Borel and Serre. A detailed account appeared in [S74 (1958)],
a paper included in [A. Borel. Œuvres, Collected Papers, no. 44]), and which was
for many years the only reference on this topic.

1.4. The Amsterdam Congress. At the International Congress of Mathematicians,
held in Amsterdam in 1954, K. Kodaira and J.-P. Serre were awarded the Fields
Medals. With respect to Serre, the committee acknowledged the new insights he
had provided in topology and algebraic geometry. At not quite 28, Serre became the
youngest mathematician to receive the distinction, a record that still stands today. In
his presentation of the Fields medalists, H. Weyl (perhaps a little worried by Serre’s
youth) recommended the two laureates to “carry on as you began!”. In the following
sections we shall see just how far Serre followed Weil’s advice.

In his address at the International Congress [S63, Œ 27(1956)], Serre describes
the extension of sheaf theory to algebraic varieties defined over a field of any char-
acteristic (see “FAC”, Sect. 2.1). One of the highlights is the algebraic analogue
of the analytic “duality theorem” mentioned above (it was soon vastly generalized
by Grothendieck). He also mentions the following problem: If X is a non-singular
projective variety, is it true that the formula

Bn =
∑

p+q=n

dimHq(X,�p)

yields the n-th Betti numbers of X occurring in Weil conjectures? This is so for
most varieties, but there are counterexamples due to J. Igusa (1955).

2 Sheaf Cohomology

The paper FAC (1955) by Serre, the paper Tôhoku (1957) by Grothendieck, and
the book by R. Godement on sheaf theory (1964) were publications that did the
most to stimulate the emergence of a new methodology in topology and abstract
algebraic geometry. This new approach emerged in the next twenty years through
the momentous work [EGA (1960–1964)], [SGA (1968; 1971–1977)] accomplished
by Grothendieck and his collaborators.

2.1. FAC. In his foundational paper entitled Faisceaux algébriques cohérents [S56,
Œ 29(1955)], known as FAC, Serre introduces coherent sheaves in the setting of
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algebraic varieties over an algebraically closed field k of arbitrary characteristic.
There are three chapters in FAC.

Chapter I is devoted to coherent sheaves and general sheaf theory. Chapter II
starts with a sheaf-style definition of what an “algebraic variety” is (with the re-
striction that its local rings are reduced), and then shows that the theory of affine
algebraic varieties is similar to Cartan’s theory of Stein manifolds: the higher coho-
mology groups of a coherent sheaf are zero.

Chapter III is devoted to projective varieties. The cohomology groups of coherent
sheaves are usually non-zero (but they are finite-dimensional); it is shown that they
can be computed algebraically, using the “Ext” functors which had just been defined
by Cartan–Eilenberg (this was their first application to algebraic geometry—there
would be many others . . . ).

2.2. GAGA. In 1956, Serre was appointed Professeur at the Collège de France, in
the chair Algèbre et Géométrie. The same year, he published the paper Géométrie
algébrique et géométrie analytique [S57, Œ 32(1955–1956)], usually known as
GAGA, in which he compares the algebraic and the analytic aspects of the com-
plex projective varieties. The main result is the following:

Assume that X is a projective variety over C, and let Xh be the complex analytic space
associated to X. Then the natural functor “algebraic coherent sheaves on X” → “analytic
coherent sheaves on Xh” is an equivalence of categories, which preserves cohomology.

As applications, we mention the invariance of the Betti numbers under automor-
phisms of the complex field C, when X is non-singular, as well as the comparison
of principal algebraic fiber bundles of base X and principal analytic fiber bundles of
base Xh with the same structural group G.

GAGA contains an appendix introducing the notion of flatness, and applying it
to compare the algebraic and the analytic local rings of X and Xh at a given point.
Flatness was to play an important role in Grothendieck’s later work.

2.2.1. Let X be a normal analytic space and S a closed analytic subset of X with
codim(S) � 2 at every point. In [S120, Œ 68(1966)], Serre studies the extendibility
of coherent analytic sheaves F on X − S. He shows that it is equivalent to the
coherence of the direct image i∗(F ), where i : X − S → X denotes the inclusion.
When X is projective, this implies that the extendible sheaves are the same as the
algebraic ones.

2.3. Cohomology of Algebraic Varieties. The paper [S68, Œ 35(1957)] gives a
cohomological characterization of affine varieties, similar to that of Stein manifolds
(cf. [S42, Œ 23(1953)]).

2.3.1. In his lecture [S76, Œ 38(1958)] at the International Symposium on Alge-
braic Topology held in Mexico City, Serre associates to an algebraic variety X,
defined over an algebraically closed field k of characteristic p > 0, its cohomology
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groups Hi(X, W ) with values in a sheaf of Witt vectors W . Although this did not
provide suitable Betti numbers, the paper contains many ideas that paved the way
for the birth of crystalline and p-adic cohomology. We stress the treatment given
in this work to the Frobenius endomorphism F , as a semilinear endomorphism of
H 1(X, O), when X is a non-singular projective curve. The space H 1(X, O) may be
identified with a space of classes of repartitions (or “adèles”) over the function field
of X and its Frobenius endomorphism gives the Hasse–Witt matrix of X. By using
Cartier’s operator on differential forms, Serre proves that H 1(X, W ) is a free mod-
ule of rank 2g − s over the Witt ring W(k), where g denotes the genus of the curve
and ps is the number of divisor classes of X killed by p.

2.3.2. The above results were completed in the paper [S75, Œ 40(1958)], dedicated
to E. Artin. Given an abelian variety A, Serre shows that the cohomology algebra
H ∗(A, O) is the exterior algebra of the vector space H 1(A, O), as in the classical
case. He also shows that the Bockstein’s operations are zero; that is, A has no coho-
mological “torsion”. Moreover, he gives an example of an abelian variety for which
H 2(A, W ) is not a finitely generated module over the Witt vectors, thus contradict-
ing an “imprudent conjecture” (sic) he had made in [S76, Œ 38(1958)].

2.3.3. In [S76, Œ 38(1958)], the influence of André Weil is clear (as it is in many of
Serre’s other papers). The search for a good cohomology for varieties defined over
finite fields was motivated by the Weil conjectures (1948) on the zeta function of
these varieties. As is well known, such a cohomology was developed a few years
later by Grothendieck, using étale topology.

2.3.4. In [S89, Œ 45(1960)], Serre shows that Weil’s conjectures could be proved
easily if (a big “if”) some basic properties of the cohomology of complex Kähler
varieties could be extended to projective varieties over a finite field. This was the
starting point for Grothendieck’s formulation of the so-called “standard conjectures”
on motives, which are still unproved today.

2.3.5. In [S94, Œ 50(1961)], Serre constructs a non-singular projective variety in
characteristic p > 0 which cannot be lifted to characteristic zero. He recently (2005)
improved this result by showing that, if the variety can be lifted (as a flat scheme)
to a local ring A, then p · A = 0. The basic idea consists in transposing the problem
to the context of finite groups.

2.3.6. In his lecture [S103, Œ 56(1963)] at the International Congress of Math-
ematicians held in Stockholm in 1962, Serre offered a summary of scheme the-
ory. After revising Grothendieck’s notion of Grassmannian, Hilbert scheme, Picard
scheme, and moduli scheme (for curves of a given genus), he goes on to schemes
over complete noetherian local rings, where he mentions the very interesting and,
in those days, recent results of Néron. (Although the language of schemes would
become usual in Serre’s texts, it is worth saying that he has never overused it.)
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3 Lie Groups and Lie Algebras

Serre’s interest in Lie theory was already apparent in his complementary thesis [S28,
Œ 14(1952)], which contains a presentation of the results on Hilbert’s fifth problem
up to 1951 (i.e. just before it was solved by A.M. Gleason, D. Montgomery and
L. Zippin).

3.0.1. In 1953, Borel and Serre began to be interested in the finite subgroups of
compact Lie groups—a topic to which they would return several times in later years,
see e.g. [S250, Œ 167(1996)] and [S260, Œ 174(1999)]. In [S45 (1953)], reproduced
in [A. Borel. Œuvres, Collected Papers, no. 24], they prove that every supersolvable
finite subgroup of a compact Lie group G is contained in the normalizer N of a
maximal torus T of G; this is a generalization of a theorem of Blichfeldt relative to
G = Un. In particular, the determination of the abelian subgroups of G is reduced to
that of the abelian subgroups of N . Borel and Serre were especially interested in the
p-elementary abelian subgroups of G, for p a prime. They defined the p-rank �p

of G as the largest integer n such that G contains such a subgroup with order pn;
the theorem above shows that � � �p(G) � � + �p(W), where � is the rank of G

and �p(W) the p-rank of its Weyl group W = N/T . They show that, if G is con-
nected and its p-rank is greater than its rank, then G has homological p-torsion.
As a corollary, the compact Lie groups of type G2, F4, E7 and E8 have homolog-
ical 2-torsion. The proof uses results on the cohomology algebra modulo p of the
classifying space BG of G, which had been studied in Borel’s thesis.

3.0.2. Serre’s book Lie Algebras and Lie Groups [S110, LALG(1965)] was based
on a course at Harvard. As indicated by its title, it consists of two parts; the first one
gives the general theory of Lie algebras in characteristic zero, including the standard
theorems of Lie, Engel, Cartan and Whitehead (but not including root systems). The
second one is about analytic manifolds over a complete field k, either real, complex
or ultrametric. It is in this context that Serre gives the standard Lie dictionary

Lie groups → Lie algebras,

assuming that k has characteristic zero. His interest in the p-adic case arose when he
realized around 1962 that the rather mysterious Galois groups associated to the Tate
modules of abelian varieties (see Sect. 13) are p-adic Lie groups, so that their Lie
algebras are accessible to the general Lie theory. This elementary remark opened
up many possibilities, since it is much easier to classify Lie algebras than profinite
groups.

3.0.3. The booklet Algèbres de Lie semi-simples complexes [S119, ALSC(1966)]
reproduces a series of lectures given in Algiers in 1965. It gives a concise introduc-
tion (mostly with proofs) to complex semisimple Lie algebras, and thus supplements
Lie Algebras and Lie Groups. The main chapters are those on Cartan subalgebras,



Jean-Pierre Serre: An Overview of His Work 43

representation theory for sl2, root systems and their Weyl groups, structure theo-
rems for semisimple Lie algebras, linear representations of semisimple Lie algebras,
Weil’s character formula (without proof), and the dictionary between compact Lie
groups and reductive algebraic groups over C (without proof, but see Gèbres [S239,
Œ 160(1993)]). The book also gives a presentation of semisimple Lie algebras by
generators and relations (including the so-called “Serre relations” which, as he says,
should be called “Chevalley relations” because of their earlier use by Chevalley).

4 Local Algebra

Serre’s work in FAC and GAGA made him introduce homological methods in local
algebra, such as flatness and the characterization of regular local rings as the only
noetherian local rings of finite homological dimension (completing an earlier result
of A. Auslander and D. Buchsbaum (1956), cf. [S64, Œ 33(1956)]).

4.0.1. The general theory of local rings was the subject of the lecture course [S79,
Œ 42(1958)], which was later published in book form Algèbre Locale. Multiplici-
tés [S111, ALM(1965)]. Its topics include the general theory of noetherian modules
and their primary decomposition, Hilbert polynomials, integral extensions, Krull–
Samuel dimension theory, the Koszul complex, Cohen–Macaulay modules, and the
homological characterization of regular local rings mentioned above. The book cul-
minates with the celebrated “Tor formula” which gives a homological definition for
intersection multiplicities in algebraic geometry in terms of Euler–Poincaré char-
acteristics. This led Serre to several conjectures on regular local rings of mixed
characteristic; most of them (but not all) were later proved by P. Roberts (1985),
H. Gillet–C. Soulé (1985) and O. Gabber. The book had a profound influence on a
whole generation of algebraists.

5 Projective Modules

Given an algebraic vector bundle E over an algebraic variety V , let S(E) denote its
sheaf of sections. As pointed out in FAC, one gets in this way an equivalence be-
tween vector bundles and locally free coherent O-sheaves. When V is affine, with
coordinate ring A = �(V, O), this may be viewed as a correspondence between vec-
tor bundles and finitely generated projective A-modules; under this correspondence
trivial bundles correspond to free modules.

5.0.1. The above considerations apply when V is the affine n-space over a field k,
in which case A is the polynomial ring k[X1, . . . ,Xn]; Serre mentions in FAC that
he “does not know of any finitely generated projective k[X1, . . . ,Xn]-module which
is not free”. This gave rise to the so-called Serre conjecture, although it had been
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stated as a “problem” and not as a “conjecture”. Much work was done on it (see e.g.
the book by T.Y. Lam called Serre’s Conjecture in its 1977 edition and Serre’s Prob-
lem in its 2006 one). The case n = 2 was solved by C.S. Seshadri (1979); see Serre’s
report on it in Séminaire Dubreil–Pisot [Œ 48(1960/61)]; this report also gives an in-
teresting relation between the problem for n = 3 and curves in affine 3-space which
are complete intersections.

Twenty years after the publication of FAC, and after partial results had been
obtained by several authors (especially in dimension 3), D. Quillen (1976) and
A. Suslin (1976), independently and simultaneously, solved Serre’s problem in any
dimension.

5.0.2. In his contribution [S73, Œ 39(1958)] at the Séminaire Dubreil–Dubreil-
Jacotin–Pisot, Serre applies the “projective modules = vector bundles” idea to an
arbitrary commutative ring A. Guided by transversality arguments of topology, he
proves the following splitting theorem:

Assume A is commutative, noetherian, and that Spec(A) is connected. Then every finitely
generated projective A-module is the direct sum of a free A-module and of a projective
A-module the rank of which does not exceed the dimension of the maximal spectrum of A.

When dim(A) = 1, one recovers the theorem of Steinitz–Chevalley on the structure
of the torsion-free modules over Dedekind rings.

6 Algebraic Number Fields

The Séminaire Bourbaki report [S70, Œ 41(1958)] contains an exposition of Iwa-
sawa’s theory for the p-cyclotomic towers of number fields, and the p-components
of their ideal class groups. The main difference with Iwasawa’s papers is that the
structure theorems for the so-called �-modules are deduced from general statements
on regular local rings of dimension 2; this viewpoint has now become the standard
approach to such questions.

6.0.1. Cours d’Arithmétique [S146, CA(1970)] arose as a product of two lecture
courses taught in 1962 and 1964 at the École Normale Supérieure. The book (which
in its first edition had the format 11 cm × 18 cm and cost only 12 francs) has been
frequently translated and reprinted, and has been the most accessible introduction
to certain chapters of number theory for many years. The first part, which is purely
algebraic, gives the classification of quadratic forms over Q. We find there equa-
tions over finite fields, two proofs of the quadratic reciprocity law, an introduction
to p-adic numbers, and properties of the Hilbert symbol. The quadratic forms are
studied over Qp , over Q, as well as over Z (in the case of discriminant ±1). The
second part of the book uses analytic methods. It contains a chapter on L-functions,
culminating in the standard proof of Dirichlet’s theorem on primes in arithmetic
progressions, and a chapter on modular forms of level 1, together with their rela-
tions with elliptic curves, Eisenstein series, Hecke operators, theta functions and
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Ramanujan’s τ function. In 1995, Serre was awarded the Leroy P. Steele Prize for
Mathematical Exposition for this delightful text.

6.0.2. The notion of a p-adic modular form was introduced by Serre in the pa-
per [S158, Œ 97(1973)], which is dedicated to C.L. Siegel. Such a form is defined
as a limit of modular forms in the usual sense. By using them, together with pre-
vious results on modular forms mod p due to Swinnerton-Dyer and himself, he
constructs the p-adic zeta function of a totally real algebraic number field K . This
function interpolates p-adically the values at the negative integers of the Dedekind
zeta function ζK(s) (after removal of its p-factors); these numbers were already
known to be rational, thanks to a theorem of Siegel (1937). Serre’s results general-
ize the one obtained by Kubota–Leopoldt in the sixties when K is abelian over Q.
They were completed later by D. Barsky (1978), Pierrette Cassou-Noguès (1979)
and P. Deligne–K. Ribet (1980).

7 Class Field Theory

Class field theory describes the abelian extensions of certain fields by means of what
are known as reciprocity isomorphisms. Sometimes, the reciprocity isomorphisms
can be made explicit by means of a symbol computation. The first historical example
is the quadratic reciprocity law of Legendre and Gauss. The cohomological treat-
ment of class field theory started with papers of G.P. Hochschild, E. Artin, J. Tate,
A. Weil and T. Nakayama.

7.1. Geometric Class Field Theory. Groupes Algébriques et Corps de Classes
[S82, GACC(1959)] was the first book that Serre published. It evolved from his
first course at the Collège de France [S69, Œ 37(1957)] and its content is mainly
based on earlier papers by S. Lang (1956) and M. Rosenlicht (1957).

Chapter I is a résumé of the book. Chapter II gives the main theorems on al-
gebraic curves, including Riemann–Roch and the duality theorem (with proofs).
Chapters III–IV are devoted to a theorem of Rosenlicht stating that every ratio-
nal function f : X → G, from a non-singular irreducible projective curve X to a
commutative algebraic group G, factors through a generalized Jacobian Jm. A gen-
eralized Jacobian is a commutative algebraic group, which is an extension of an
abelian variety (the usual Jacobian J ) by an algebraic linear group Lm, depending
on a “modulus” m. The groups Lm provide the local symbols in class field theory.
In Chap. V it is shown that every abelian covering of an irreducible algebraic curve
is the pull-back of a separable isogeny of a generalized Jacobian. When m varies,
the generalized Jacobians Jm form a projective system which is the geometric ana-
logue of the idèle class group. Class field theory for function fields in one variable
over finite fields is dealt with in Chap. VI. The reciprocity isomorphism is proved
and explicit computations of norm residue symbols are made. Chapter VII contains
a general cohomological treatment of extensions of commutative algebraic groups.
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7.1.1. Based on the lecture course [S91, Œ 47(1960)], a theory of commutative pro-
algebraic groups is developed in [S88, Œ 49(1960)]. Its application to geometric
class field theory can be found in [S93, Œ 51(1961)].

Let k be an algebraically closed field. A commutative quasi-algebraic group over
k is defined as a pure inseparable isogeny class of commutative algebraic groups
over k. If G is such a group and is connected, then it has a unique connected linear
subgroup L such that the quotient G/L is an abelian variety. As for the group L, it is
the product of a torus T by a unipotent group U . The group T is a product of groups
isomorphic to Gm and the group U has a composition series whose quotients are
isomorphic to Ga ; it is isogenous to a product of truncated Witt vector groups. The
isomorphism classes of the groups Ga , Gm, cyclic groups of prime order, and sim-
ple abelian varieties are called the elementary commutative quasi-algebraic groups.
The commutative quasi-algebraic groups form an abelian category Q. The finite
commutative quasi-algebraic groups form a subcategory Q0 of Q. If G is a com-
mutative quasi-algebraic group and G0 is its connected component, the quotient
π0(G) = G/G0 is a finite abelian group. The category of commutative pro-algebraic
groups is defined as P = Pro(Q). Let P0 = Pro(Q0) be the subcategory of abelian
profinite groups. The category P has projective limits and enough projective ob-
jects. Every projective object of P is a product of indecomposable projectives and
the indecomposable projective groups coincide with the projective envelopes of the
elementary commutative quasi-algebraic groups. The functor π0 : P → P0 is right
exact; its left derived functors are denoted by G �→ πi(G). One of the main results
of the paper is that πi(G) = 0 if i > 1. The group π1(G) is called the fundamental
group of G. The connected and simply connected commutative pro-algebraic groups
form a subcategory S of P . For each object G in P , there exists a unique group G̃

in S and a morphism u : G̃ → G, whose kernel and cokernel belong to P0, so that
one obtains an exact sequence

1 → π1(G) → G̃ → G → π0(G) → 1.

By means of the universal covering functor, the categories P /P0 and S become
equivalent.

After computing the homotopy groups of the elementary commutative pro-
algebraic groups, it is shown in [S88, Œ 49(1960)] that every commutative pro-
algebraic group has cohomological dimension � 2, if k has positive characteristic;
and has cohomological dimension � 1, if k has characteristic zero.

7.1.2. The paper [S93, Œ 51(1961)] is a sequel to the one mentioned above (and
is also its motivation). It deals with local class field theory in the geometric set-
ting (in an Oberwolfach lecture, Serre once described it as reine geometrische
Klassenkörpertheorie im Kleinen). Let K be a field which is complete with respect
to a discrete valuation and suppose that its residue field k is algebraically closed.
By using a construction of M. Greenberg, the group of units UK of K may be
viewed as a commutative pro-algebraic group over k, so that the fundamental group
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π1(UK) is well defined. The reciprocity isomorphism takes the simple form:

π1(UK)
∼→ Gab

K ,

where Gab
K denotes the Galois group of the maximal abelian extension of K . This

isomorphism is compatible with the natural filtration of π1(UK) and the filtration
of Gab

K given by the upper numbering of the ramification groups. Hence there is a
conductor theory, related to Artin representations (see below).

7.1.3. An Artin representation a has a Z-valued character. In the paper [S90, Œ
46(1960)], it is shown that a is rational over Q� provided � is different from the
residue characteristic, but it is not always rational over Q. The same paper conjec-
tures the existence of a conductor theory for regular local rings of any dimension,
analogous to the one in dimension 1; a few results have been obtained on this re-
cently by K. Kato and his school, but the general case is still open.

7.1.4. An example, in the geometric case, of a separable covering of curves with a
relative different whose class is not a square was given in a joint paper with A. Fröh-
lich and J. Tate [S100, Œ 54(1962)]. Such an example does not exist for number
fields, by a well-known result of E. Hecke.

7.1.5. In [S150, Œ 92(1971)], Serre considers a Dedekind ring A of field of frac-
tions K , a finite Galois extension L/K with Galois group G, and a real-valued
virtual character χ of G. Under the assumption that either the extension L/K is
tamely ramified or that χ can be expressed as the difference of two characters of
real linear representations, he proves that the Artin conductor f = f(χ,L/K) is a
square in the group of ideal classes of A.

7.2. Local Class Field Theory. Group cohomology and, more specifically, Galois
cohomology is the subject of the lecture course [S83, Œ 44(1959)]. The content of
this course can be found in Corps Locaux [S98, CL(1962)].

The purpose of [CL] was to provide a cohomological presentation of local class
field theory, for valued fields which are complete with respect to a discrete valu-
ation with finite residue field. In the first part, one finds the structure theorem of
complete discrete valuation rings. In the second part, Hilbert’s ramification theory
is given, with the inclusion of the upper numbering of the ramification groups, due
to J. Herbrand, and the properties of the Artin representation, a notion due to Weil in
his paper L’avenir des mathématiques (1947). The third part of [CL] is about group
cohomology. It includes the cohomological interpretation of the Brauer group Br(k)

of a field k and class-formations à la Artin–Tate.
Local class field theory takes up the fourth part of the book. The reciprocity

isomorphism is obtained from the class formation associated to the original local
field; it is made explicit by means of a computation of norm residue symbols based
on a theorem of B. Dwork (1958).
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One also finds in [CL] the first definitions of non-abelian Galois cohomology.
Given a Galois extension K/k and an algebraic group G defined over k, the ele-
ments of the set H 1(Gal(K/k),G(K)) describe the classes of principal homoge-
neous G-spaces over k which have a rational point in K . Easy arguments show
that H 1(Gal(K/k),G(K)) = 1 when G is one of the following algebraic groups:
additive Ga , multiplicative Gm, general linear GLn, and symplectic Sp2n.

7.2.1. Another exposition of local class field theory can be found in the lecture
[S127, Œ 75(1967)]; it differs from the one given in [CL] by the use of Lubin–Tate
theory of formal groups, which allows a neat proof of the “existence theorem”.

7.3. A Local Mass Formula. Let K denote a local field with finite residue field k

of q elements and let Ks be a separable closure of K . In [S186, Œ 115(1978)], one
finds a mass formula for the set 
n of all totally ramified extensions of K of given
degree n contained in Ks , namely:

∑

L∈
n

1/qc(L) = n,

where qc(L) is the norm of the wild component of the discriminant of L/K . Al-
though the formula could (in principle) be deduced from earlier results of Krasner,
Serre proves it independently in two elegant and different ways. The first proof is de-
rived from the volume of the set of Eisenstein polynomials. The second uses the p-
adic analogue of Weil’s integration formula, applied to the multiplicative group D∗
of a division algebra D of center K such that [D : K] = n2.

8 p-adic Analysis

Let V be an algebraic variety over a finite field k of characteristic p. One of Weil’s
conjectures is that the zeta function ZV (t) is a rational function of t. This was proved
in 1960 by B. Dwork. His method involved writing ZV (t) as an alternating product
of p-adic Fredholm determinants. This motivated Serre to study the spectral the-
ory of completely continuous operators acting on p-adic Banach spaces [S99, Œ
55(1962)]. The paper, which is self-contained, provides an excellent introduction
to p-adic analysis. Given a completely continuous endomorphism u defined on a
Banach space E over a local field, the Fredholm determinant det(1 − tu) is a power
series in t , which has an infinite radius of convergence and thus defines an entire
function of t . The Fredholm resolvent P(t, u) = det(1 − tu)/(1 − tu) of u is an
entire function of t with values in End(E). Given an element a ∈ K , one shows
that the endomorphism 1 − au is invertible if and only if det(1 − au) 	= 0. If this
is the case, then the relation det(1 − au) = (1 − au)P (a,u) = P(a,u)(1 − au)

is satisfied. If a ∈ K is a zero of order h of the function det(1 − tu), then the
space E uniquely decomposes into a direct sum of two closed subspaces N , F
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which are invariant under u. The endomorphism 1 − au is nilpotent on N and
invertible on F ; the dimension of N is h, just as in F. Riesz theory over C.
Serre proves that, given an exact sequence of Banach spaces and continuous lin-

ear mappings, 0 → E0
d0→ E1 → ·· · dn−1→ En → 0, and given completely continu-

ous endomorphisms ui of Ei such that di ◦ ui = ui+1 ◦ di , for 0 � i < n, then∏n
i=1 det(1 − tui)

(−1)i = 1; this is useful for understanding some of Dwork’s com-
putations.

8.0.1. In [S113, Œ 65(1965)], the compact p-adic analytic manifolds are classified.
Given a field K , locally compact for the topology defined by a discrete valuation,
any compact analytic manifold X defined over K , of dimension n at each of its
points, is isomorphic to a disjoint finite sum of copies of the ball An, where A

denotes the valuation ring of K . Two sums rAn and r ′An are isomorphic if and only
if r ≡ r ′ mod(q − 1), where q denotes the number of elements of the residue field of
A. The class of r mod(q − 1) is an invariant of the manifold; two n-manifolds with
the same invariant are isomorphic.

9 Group Cohomology

By definition, a profinite group is a projective limit of finite groups; special cases
are the pro-p-groups, i.e. the projective limits of finite p-groups. The most inter-
esting examples of profinite groups are provided by the Galois groups of algebraic
extensions and by compact p-adic Lie groups.

9.1. Cohomology of Profinite Groups and p-adic Lie Groups. To each profinite
group G = lim← Gi acting in a continuous way on a discrete abelian group A, one can

associate cohomology groups Hq(G,A) by using continuous cochains. The main
properties of the cohomology of profinite groups were obtained by Tate (and also
by Grothendieck) in the early 1960s, but were not published. They are collected in
the first chapter of Cohomologie Galoisienne [S97, CG(1962)].

In the first chapter of [CG], given a prime p and a profinite group G, the concepts
of cohomological p-dimension, denoted by cdp(G), and cohomological dimension,
denoted by cd(G), are defined. Some pro-p-groups admit a duality theory; they are
called Poincaré pro-p-groups. Those of cohomological dimension 2 are the “De-
mushkin groups”. They are especially interesting, since they can be described by
one explicit relation (Demushkin, Serre, Labute); they appear as Galois groups of
the maximal pro-p-extension of p-adic fields, cf. [S104, Œ 58(1963)] and [CG].

Chapters II and III are devoted to the study of Galois cohomology in the com-
mutative and the non-commutative cases (most of the results of Chap. II were due
to Tate, and an important part of those of Chap. III were due to Borel–Serre).

9.1.1. The Bourbaki report [S105, Œ 60(1964)] summarizes M. Lazard’s seminal
paper (1964) on p-adic Lie groups. One of Lazard’s main results is that a profi-
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nite group is an analytic p-adic group if and only if it has an open subgroup H

which is a pro-p-group and is such that (H,H) ⊂ Hp , if p 	= 2; or (H,H) ⊂ H 4,
if p = 2. If G is a compact p-adic Lie group such that cd(G) = n < ∞, then G is
a Poincaré pro-p-group of dimension n and the character χ(x) = det Ad(x) is the
dualizing character of G. Here Ad(x) denotes the adjoint automorphism of Lie(G)
defined by x. The group G has finite cohomological dimension if and only if it is
torsion-free; the proof combines Lazard’s results with the theorem of Serre men-
tioned below.

9.1.2. The paper [S114, Œ 66(1965)] proves that, if G is a profinite group, p-
torsion-free, then for every open subgroup U of G we have the equality cdp(U) =
cdp(G) between their respective cohomological p-dimensions. The proof is rather
intricate. In it, Serre makes use of Steenrod powers, a tool which he had acquired
during his topological days (cf. [S44 (1953)]). As a corollary, every torsion-free
pro-p-group which contains a free open subgroup is free. Serre asked whether the
discrete analogue of this statement is true, i.e. whether every torsion-free group G

which contains a free subgroup of finite index is free. This was proved a few years
later by J. Stallings (1968) and R. Swan (1969).

9.1.3. More than thirty years later, Serre dedicated [S255, Œ 173(1998)] to John
Tate. The paper deals with the Euler characteristic of profinite groups. Given a profi-
nite group G of finite cohomological p-dimension and a discrete G-module A which
is a vector space of finite dimension over the finite field Fp , the Euler characteristic

e(G,A) =
∑

(−1)i dimHi(G,A)

is defined under the assumption that dimHi(G,A) < ∞, for all i.
Let Greg be the subset of G made up by the regular elements. Serre proves that

there exists a distribution μG over Greg with values in Qp such that e(G,A) =
〈ϕA,μG〉, where ϕA : Greg → Zp denotes the Brauer character of the G-module A.
This distribution can be described explicitly in several cases, e.g. when G is
a p-torsion-free p-adic Lie group, thanks to Lazard’s theory.

9.2. Galois Cohomology. Let G = Gal(K/k) be the Galois group of a field ex-
tension and suppose that A is a discrete G-module. The abelian Galois cohomol-
ogy groups Hq(Gal(K/k),A) are usually denoted by Hq(K/k,A), or simply by
Hq(k,A) when K = ks is a separable closure of k.

Abelian Galois cohomology, with special emphasis on the results of Tate, was the
content of the course [S104, Œ 59(1963)] and of the second chapter of [CG], while
the third chapter of [CG] is about non abelian cohomology. After thirty years, Serre
returned to both topics in a series of three courses [S234, Œ 153(1991)], [S236, Œ
156(1992)], [S247, Œ 165(1994)].

9.3. Galois Cohomology of Linear Algebraic Groups. In his lecture delivered
at Brussels in the Colloquium on Algebraic Groups [S96, Œ 53(1962)], Serre pre-
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sented two conjectures on the cohomology of linear algebraic groups, known as
Conjecture I (CI) and Conjecture II (CII).

Given an algebraic group G defined over a field k, we may consider the coho-
mology group H 0(k,G) = G(k), and the cohomology set H 1(k,G) = isomorphism
classes of G-k-torsors.

In what follows, we will suppose that the ground field k is perfect, and we will
denote by cd(k) the cohomological dimension of Gal(ks/k). The above conjectures
state:

(CI) If cd(k) � 1 and G is a connected linear group, then H 1(k,G) = 0.
(CII) If cd(k) � 2 and G is a semisimple, simply connected linear group,

then H 1(k,G) = 0.

At the time, the truth of Conjecture I was only known in the following cases:

− when k is a finite field (S. Lang);
− when k is of characteristic zero and has property “C1” (T. Springer);
− for G solvable, connected and linear;
− for G a classical semisimple group.

Conjecture I was proved a few years later in a beautiful paper by R. Steinberg
(1965), which Serre included in the English translation of [CG].

M. Kneser (1965) proved Conjecture II when k is a p-adic field, and G. Harder
(1965) did the same when k is a totally imaginary algebraic number field and G does
not have any factor of type E8; this restriction was removed more than 20 years later
by V.I. Chernousov (1989). More generally, for any algebraic number field k, and
any semisimple, simply connected linear algebraic group G, the natural mapping
H 1(k,G) → ∏

vreal H
1(kv,G) is bijective (Hasse’s principle), in agreement with a

conjecture of Kneser. A detailed presentation of this fact can be found in a book by
V. Platonov and A. Rapinchuk (1991).

9.3.1. The Galois cohomology of semisimple linear groups was taken up again by
Serre in the course [S234, Œ 153(1991)]. One of his objectives was to discuss
the “cohomological invariants” of H 1(k,G), i.e. (see below) the relations which
connect the non-abelian cohomology set H 1(k,G) and certain Galois cohomology
groups Hi(k,C), where C is commutative (e.g. C = Z/2Z).

More precisely, let us consider a smooth linear algebraic group G, defined over
a field k0, an integer i � 0, and a finite Galois module C over k0 whose order is
coprime to the characteristic.

By definition, a cohomological invariant of type Hi(−,C) is a morphism of the
functor k �→ H 1(k,G) into the functor k �→ Hi(k,C), defined over the category of
field extensions k of k0. Suppose that the characteristic of k is not 2. Then, examples
of cohomological invariants are provided by

− the Stiefel–Whitney classes wi : H 1(k,O(q)) → Hi(k,Z/2Z);
− Arason’s invariant a : H 1(k,Spin(q)) → H 3(k,Z/2Z);
− Merkurjev–Suslin’s invariant ms : H 1(k,SLD) → H 3(k,μ⊗2

n );
− Rost’s invariants.
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9.3.2. The presentation of recent work on Galois cohomology and the formulation
of some open problems was the purpose of the exposé [S246, Œ 166(1994)] at the
Séminaire Bourbaki. To every connected semisimple group G whose root system
over k is irreducible, one associates a set of prime numbers S(G) which plays a spe-
cial role in the study of the cohomology set H 1(k,G). For example, all the divisors
of the order of the centre of the universal covering G̃ of G are included in S(G).
Tits’ theorem (1992) proves that, given a class x ∈ H 1(k,G), there exists an exten-
sion kx/k of S(G)-primary degree that kills x (that is to say, such that x maps to
zero in H 1(kx,G)). Serre asks whether it is true that, given finite extensions ki/k

whose degrees are coprime to S(G), the mapping H 1(k,G) → ∏
H 1(ki,G) is in-

jective (assuming that G is connected). In this lecture, he also gives extensions and
variants of Conjectures I and II which deal with an imperfect ground field or for
which one merely assumes that cdp(G) � 1 for every p ∈ S(G). He gives a list of
cases in which Conjecture II has been proved, namely:

− groups of type SLD associated to elements of norm 1 of a central simple
k-algebra D, of rank n2, by A.S. Merkurjev and A. Suslin (1983, 1985);

− Spin groups (in particular, all those of type Bn), by A.S. Merkurjev;
− classical groups (except those of triality type D4), by Eva Bayer and Raman

Parimala (1995);
− groups of type G2 and F4.

In conclusion, Conjecture II remains open for the types E6,E7,E8 and triality
type D4.

9.4. Self-dual Normal Basis. E. Bayer-Fluckiger and H.W. Lenstra (1990) defined
the notion of a “self-dual normal base” in a G-Galois algebra L/K , and proved the
existence of such a base when G has odd order. When G has even order, existence
criteria were given by E. Bayer and Serre [S244, Œ 163(1994)] in the special case
where the 2-Sylow subgroups of G are elementary abelian: if 2d is the order of such
a Sylow group, they associate to L/K a d-Pfister form qL and show that a self-dual
normal base exists if and only if qL is hyperbolic. (Thanks to Voevodsky’s proof of
Milnor’s conjecture, this criterion can also be stated as the vanishing of a specific
element of Hd(K,Z/2Z).)

9.4.1. In the Oberwolfach announcement [S275 (2005)], Serre gives a criterion for
the existence of a self-dual normal base for a finite Galois extension L/K of a field
K of characteristic 2. He proves that such a base exists if and only if the Galois
group of L/K is generated by squares and by elements of order 2. Note that the
criterion does not depend on K , nor on the extension L, but only on the structure
of G. The proof uses unpublished results of his own on the cohomology of unitary
groups in characteristic 2.

9.5. Essential Dimension. Let G be a simple algebraic group of adjoint type de-
fined over a field k. The essential dimension of G is, by definition, the essential
dimension of the functor of G-torsors F → H 1(F,G), which is defined over the
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category of field extensions F of k (in loose terms, it is the minimal number of
“parameters” one needs in order to write a generic G-torsor). Here H 1(F,G) de-
notes the non-abelian Galois cohomology set of G. In [S277 (2006)], Serre and
V. Chernousov give a lower bound for the essential dimension at a prime p = 2,
ed(G,2), and for the essential dimension ed(G) of G. It is proved in the paper
that ed(G,2) � r + 1 and, thus, ed(G) � r + 1, with r = rankG. Lower bounds
for ed(G,p) had been obtained earlier by Z. Reichstein and B. Youssin (2000). In
their proof, these authors made use of resolution of singularities, so that their results
were only valid for fields k of characteristic zero (however a recent paper of P. Gille
and Z. Reichstein has removed this restriction). The proof of Chernousov–Serre for
p = 2 is valid in every characteristic different from 2. It makes use of the exis-
tence of suitable orthogonal representations of G attached to quadratic forms. The
quadratic forms involved turn out to be the normalized Killing form. (We should
point out that the bound they obtain has now been superseded—especially for the
Spin groups.)

10 Discrete Subgroups

The study of discrete subgroups of Lie groups goes back to F. Klein and H. Poincaré.
Let us consider a global field k and a finite set S of places of k containing the

set S∞ of all the archimedean places. Let O be the ring of S-integers of k and let
us denote by Ak and AS

k the ring of adeles and of S-adeles of k, respectively. We

write Af
k for the ring of finite adeles of k, obtained by taking S = S∞. Given a linear

algebraic group G defined over k, we shall consider a fixed faithful representation
G → GLn. Let � := G(k) ∩ GLn(O).

In G(k) we may distinguish two types of subgroup, namely, the S-arithmetic
subgroups and the S-congruence subgroups. A subgroup �′ of G(k) is said to be
S-arithmetic if � ∩ �′ is of finite index in both � and �′.

Let q ⊂ O be an ideal and GLn(O,q) := ker(GLn(O) → GLn(O/q)). We define
�q = � ∩ GLn(O,q). A subgroup �′′ of G(k) is said to be an S-congruence sub-
group if it is S-arithmetic and it contains a subgroup �q, for some non-zero ideal q.
The “S-congruence subgroup problem” is the question: is every S-arithmetic sub-
group an S-congruence subgroup? If S = S∞, one just refers to the “congruence
subgroup problem”.

Since an S-congruence subgroup is S-arithmetic, there is a homomorphism of
topological groups π : ̂G(k) → G(k), where ̂G(k) denotes the completion of G(k)

in the topology defined by the S-congruence subgroups and G(k), the completion in
that of the S-arithmetic subgroups. The group G(k) can be identified with the clo-
sure of G(k) in G(Af

k ). Let CS(G) denote the kernel of π . The group CS(G), which
coincides with the ker(π) restricted to �̂, is profinite and π is an epimorphism.

The S-congruence subgroup problem has a positive answer if and only if the
“congruence kernel” CS(G) is trivial, i.e. π is an isomorphism. It is so when G is
a torus (Chevalley, 1951), or is unipotent. When G is semisimple and not simply
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connected, the problem has a negative answer. Hence the most interesting case is
when G is semisimple and simply connected.

10.1. Congruence Subgroups. Recall that a semisimple group over k is said to be
split (or to be a “Chevalley group”) if it has a maximal torus which splits over k.

Split groups provide a suitable framework for the study of the congruence sub-
group problem. In [S126, Œ 74(1967), Œ 103(1975)], H. Bass, J. Milnor and Serre
formulate the S-congruence subgroups conjecture precisely in the following form:
if G is split, of rank � 2, simply connected and quasi simple, then the group ex-
tension 1 → CS(G(k)) → ̂G(k) → G(k) → 1 is central and, moreover, CS(G) is
trivial unless k is totally imaginary; in the latter case CS(G) = μ(k) is the finite
subgroup consisting of the roots of unity of k∗.

10.1.1. Previously, Bass, Lazard and Serre [S108, Œ 61(1964)] had proved the con-
gruence subgroup conjecture for SLn(Z), n � 3, and Sp2n(Z) for n � 2: every arith-
metic subgroup is a congruence subgroup. The same result had been obtained inde-
pendently by J. Mennicke. Bass–Lazard–Serre’s proof is by induction on n � 3.
It relies on a computation of the cohomology of the profinite groups SL2(Zp),
Sp2n(Zp) with coefficients in Q/Z and in Qp/Zp ; this computation is made possi-
ble by Lazard’s results (see above) on the cohomology of p-adic Lie groups.

10.1.2. In [S126, Œ 74(1967), Œ 103(1975)], Bass, Milnor and Serre prove the
congruence subgroup conjecture when k is an algebraic number field, G = SLn for
n � 3, and G = Sp2n for n � 2. In order to do this, they determine the corresponding
universal Mennicke symbols associated to these groups and to the ring of integers
of a totally imaginary algebraic number field k.

10.1.3. The solution of the congruence subgroup problem in the case where G is
a split simply connected simple group of rank > 1 was obtained by H. Matsumoto
(1966, 1969), by using the known cases SL3 and Sp4. The congruence subgroup
problem, as well as its connection to Moore’s theory of universal coverings of
G(Af

k ), is discussed in Séminaire Bourbaki [S123, Œ 77(1967)].

10.1.4. The paper [S143, Œ 86(1970)] is about the S-congruence subgroup problem
for SL2. If #S � 2, the answer is almost positive: the congruence kernel CS is a finite
cyclic group whose order is at most equal to the number of roots of unity in k; if k is
not totally imaginary one has CS = 1: the problem has a positive answer. If #S = 1,
the problem has a quite negative answer: CS is an infinite group. The proof is very
interesting. In the case #S = 1, it uses number theory, while in the case #S > 1 it
uses topology. We shall now provide some of the details of this proof.

In the case #S � 2, Serre shows that CS is contained in the centre of ̂G(k) and
then makes use of a theory of C. Moore in order to determine it, and in partic-
ular to show that it is finite and cyclic. The finiteness of CS has some important
consequences. For instance, given an S-arithmetic subgroup N ⊂ SL2(O), a field
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K of characteristic zero and a linear representation ρ : N → G(K), there exists a
subgroup N1 ⊂ N , of finite index, such that the restriction of ρ to N1 is algebraic.
This implies that ρ is semisimple. Moreover, for every k[N ]-module V of finite
rank over K , we have H 1(N,V ) = 0. In particular, when taking for V the adjoint
representation, one sees that N is rigid.

If #S = 1, Serre shows that, for most S-arithmetic subgroups N , the group Nab

is infinite (this is enough to show that the S-congruence problem has a negative an-
swer). There are three cases: char(k) = p > 0; k = Q; and k an imaginary quadratic
field. In each case, there is a contractible “symmetric space” X on which N acts
properly, and a study of X/N shows that Nab is infinite (with a few exceptions).

In the case of characteristic p > 0, X is the Bruhat–Tits tree. In the case k = Q,
X is Poincaré’s half-plane. In the case where k is an imaginary quadratic field, X is
the hyperbolic 3-space, and the quotient manifold X/N can be compactified by
adding to it a finite set of 2-tori (which correspond to elliptic curves with complex
multiplication by k); this is a special case of the general compactifications intro-
duced a few years later by Borel and Serre, see Sect. 10.2.2.

10.2. Cohomology of Arithmetic Groups. A locally algebraic group A over a per-
fect field k is called by Borel–Serre a k-group of type (ALA) if it is an extension
of an arithmetic Gal(k/k)-group by a linear algebraic group over k. In a joint pa-
per with Borel [S106 (1964)], included in [A. Borel. Œuvres, Collected Papers],
it is proved that for k a number field and S a finite set of places of k, the mapping
H 1(k,A) → ∏

v /∈S H 1(kv,A) is proper, i.e., the inverse image of any point is finite.
This result, applied to A = Aut(G), implies the finiteness of the number of classes
of k-torsors of a linear group G which are isomorphic locally everywhere to a given
k-torsor.

10.2.1. Let k be a global field and S a finite set of places of k. Let L be a linear,
reductive, algebraic group defined over k. In [S139, Œ 83(1969)], [S148 (1971)],
and [S149, Œ 88(1971)], Serre undertakes the study of the cohomology of the
S-arithmetic subgroups � which are contained in L(k). For this purpose, the group
� is viewed as a discrete subgroup of a finite product G = ∏

Gα of (real or ultramet-
ric) Lie groups. The main tool is provided by the Bruhat–Tits buildings associated
to the v-adic Lie groups L(kv), for v ∈ S\S∞. The most important contributions
include bounds for the cohomological dimension cd(�), finiteness properties, and
several results relating to the Euler–Poincaré characteristic χ(�) and its relations
with the values of zeta functions at negative integers (generalizing the well-known
formula χ(SL2(Z)) = ζ(−1) = −1/12).

10.2.2. Borel and Serre [S144, Œ 90(1970)] prove that if G is a connected, reduc-
tive, linear algebraic group defined over Q, which does not have non-trivial charac-
ters, it is possible to associate to G a contractible manifold with corners X, whose
interior, X, is a homogeneous space of G(R) isomorphic to a quotient G(R)/K

for a maximal compact subgroup K of G(R). Its boundary ∂X has the same ho-
motopy type as the Tits building X of G (i.e. the simplicial complex whose faces
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correspond to the k-parabolic subgroups of G). An arithmetic subgroup � ⊂ G(Q)

acts properly on X and the quotient X/� is compact; this gives a compactification
of X/� which is often called the “Borel–Serre compactification”. If � is torsion-
free, then the cohomology of � is isomorphic to that of X/� and certain duality
relations are fulfilled. In particular, the cohomological dimension of � is given by
cd(�) = dim(X) − rgQ(G). If G = SLn, the space X is, essentially, a space already
defined by C.L. Siegel; it is obtained by attaching boundary points and ideal points
to X by means of the reduction theory of quadratic forms.

10.2.3. Borel and Serre investigated in [S152, Œ 91(1971)] the cohomology of S-
arithmetic groups. Let G be a semisimple algebraic group over an algebraic number
field k and let � ⊂ G(k) be an S-arithmetic subgroup. The group � is a discrete
subgroup of

∏
v∈S G(kv). Let XS be the space defined by:

XS = X∞ ×
∏

v∈S\S∞
Xv.

Here Xv is the Bruhat–Tits building of G over kv and X∞ is the variety with corners
associated to the algebraic group Resk/Q(G), obtained by restriction of scalars, see
above. The group G(k) and, a fortiori, the group �, acts on XS . Moreover � acts
properly and the quotient XS/� is compact. The study of the cohomology of � is
thus reduced to that of XS/�. In order to go further, Borel and Serre need some
information on the cohomology with compact support of each Xv ; they obtain it by
compactifying Xv , the boundary being the Tits building of G(kv), endowed with a
suitable topology. Their main results may be summarized as follows:

Let d = dim(X∞), m = dim(XS) − � = d − � + ∑
v∈S\S∞ �v , where �, �v denote the rank

of G over k and kv , respectively. Assume that � is torsion-free. Then

Hq(�,M) � Hm−q(�, IS ⊗ M),

for every �-module M and for every integer q , the dualizing module IS = Hm
c (XS,Z)

being free over Z. Moreover, cd(�) = m and the group Hq(�,Z(�)) is equal to 0 if q 	= m

and is equal to IS if q = m.

The proofs can be found in the two papers by Borel–Serre [S159 (1973)], [S172
(1976)], which are reproduced in [A. Borel. Œuvres, Collected Papers, no. 98 and
no. 105]; see also the survey [S190, Œ 120(1979)].

11 Arithmetic of Algebraic Varieties

11.1. Modular Curves. The three publications [S142 (1970)], [S170 (1975)], and
[S183 (1977)] correspond to lectures delivered by Serre in the Séminaire Bourbaki.
They were very popular in the seventies as introductory texts for the study of the
arithmetic of modular curves.
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11.1.1. The first lecture [S142 (1970)] deals with a theorem of Y. Manin (1969)
according to which, given a number field K , an elliptic curve E defined over K ,
and a prime number p, the order of the p-component of the torsion group Etor(K)

is bounded by an integer depending only on K and p. The proof relies on a previous
result by V.A. Demjanenko and Manin on the finiteness of the number of rational
points of certain algebraic curves; this is applied afterwards to the modular curve
X0(N), where N = N(p,K).

11.1.2. The second lecture [S170 (1975)] was written jointly with B. Mazur. Its
purpose is to present results of A. Ogg on the cuspidal group of the Jacobian of the
modular curve X0(N) and some of the results of Mazur on the rational points of this
curve. In it, we find the modular interpretation of the modular curve, the definition
of the Hecke operators as correspondences acting on it, the study of the Eisenstein
ideal, a study of the Néron model of the Jacobian of the modular curve, a study of
the regular model of the modular curve, and so on.

11.1.3. The third lecture [S183 (1977)] explains the results of Mazur on the Eisen-
stein ideal and the rational points of modular curves (1978), and on the rational
isogenies of prime degree (1978). The main theorem is that, if N is a prime not be-
longing to the set {2,3,5,7,11,13,17,19,37,43,67,163}, then the modular curve
X0(N) has no rational points other than the cusps. As an application, one obtains
the possible structures for the rational torsion groups Etor (Q) of the elliptic curves
defined over Q. In many aspects, the above work paved the way for G. Faltings’
proof of the Mordell–Weil theorem (1983).

11.1.4. The paper [S237 Œ 159(1993)], written with T. Ekedahl, gives a long list of
curves of high genus whose Jacobian is completely decomposable, i.e., isogenous to
a product of elliptic curves. They ask whether it is true that, for every genus g > 0,
there exists a curve of genus g whose Jacobian is completely decomposed or, on the
contrary, whether the genus of a curve whose Jacobian is completely decomposable
is bounded. (The second question has a negative answer in characteristic p > 0.)
The examples are constructed either by means of modular curves or as coverings of
curves of genus 2 or 3. The highest genus obtained is 1297.

11.1.5. Let p be a prime number. In the paper [S254 Œ 170(1997)], Serre deter-
mines the asymptotic distribution of the eigenvalues of the Hecke operators Tp on
spaces of modular forms when the weight or the level varies. More precisely, let
Tp denote the Hecke operator associated to p acting on the space S(N,k) of cusp
forms of weight k for the congruence group �0(N), with gcd(N,p) = 1, and let
T ′

p = Tp/p(k−1)/2. By Deligne’s theorem on the Ramanujan–Petersson conjecture,
the eigenvalues of the operator T ′

p belong to the interval � = [−2,2]. Let us con-
sider sequences of pairs of integers (Nλ, kλ) such that kλ is even, kλ + Nλ → ∞ as
λ → ∞, and p does not divide Nλ. The main theorem proved in the paper states
that the family xλ = x(Nλ, kλ) of eigenvalues of the T ′

p(N, k) is equidistributed
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in the interval � with respect to a measure μp which is given by an explicit for-
mula, similar (but not identical) to the Sato–Tate measure. In fact, in the paper,
we find measures μq which are defined for every q � 1 and have the property that
limq→∞ μq = μ∞, where μ∞ is the Sato–Tate measure. In order to give an interpre-
tation of μq , Serre identifies � with a subset of the spectrum of the automorphism
group G = Aut(A) of a regular tree of valency q + 1, which is a locally compact
group with respect to the topology of simple convergence. Then, μq is the restriction
to � of the Plancherel measure of G. Several interesting consequences are derived
from the equidistribution theorem. For instance, it is shown that the maximum of
the dimension of the Q-simple factors of the Jacobian J0(N) of the modular curve
X0(N) tends to infinity as N → ∞. In particular, there are only finitely many inte-
gers N � 1 such that J0(N) is isogenous over Q to a product of elliptic curves, as
was already stated in [S237, Œ 159(1993)].

11.2. Varieties Over Finite Fields. Let q = pe, with p a prime number and e � 1,
and let Fq be a finite field with q elements. The numbers Nqr , r � 1, of rational
points over Fqr of non-singular projective varieties defined over Fq are encapsulated
in their zeta function. One of the major achievements of A. Grothendieck and his
school was to provide the tools for the proof of the Weil conjectures (1949), relative
to the nature of these functions: cohomological interpretation, rationality, functional
equation and the so-called Riemann hypothesis. Serre had a profound influence on
the process. An account of the landmark paper by P. Deligne (1974) on the proof of
the Riemann hypothesis for the zeta function of a non-singular variety defined over
a finite field can be found in [S166 (1974)].

The paper [Œ 117(1978)] contains a report by Serre on Deligne’s work, upon
request by the Fields Medal Committee. Deligne was awarded the Fields Medal in
1978.

A. Grothendieck was awarded the Fields Medal in 1966, together with M. Atiyah,
P. Cohen and S. Smale. Serre’s original report, written in 1965, on the work of
Grothendieck and addressed to the Fields Medal Committee was reproduced much
later, in [S220 (1989)].

Among many other applications, Weil conjectures imply good estimations for
certain exponential sums, since these sums can be viewed as traces of Frobenius
endomorphisms acting on the cohomology of varieties over finite fields. The results
of Deligne on this subject were explained by Serre in [S180, Œ 111(1977)].

11.3. Number of Points of Curves Over Finite Fields. Let C be an absolutely
irreducible non-singular projective curve of genus g defined over Fq . After the proof
of the Riemann hypothesis for curves, due to Weil (1940–1948), it was known that
the number N = N(C) of the rational points of C over Fq satisfies the inequality
|N − (q + 1)| � 2gq1/2. Several results due to H. Stark (1973), Y. Ihara (1981),
and V.G. Drinfeld and S.G. Vladut (1983) showed that Weil’s bound can often be
improved. On the other hand, it was of interest for coding theory to have curves of
low genus with many points.
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In the papers [S201, Œ 128(1983)] and [S200, Œ 129(1983)], Serre expands the
results of the previous authors and introduces a systematic method to obtain more
precise bounds, based on Weil’s “explicit formula”.

Let Nq(g) be the maximum value of N(C) as C runs through all curves of genus
g defined over Fq . The value Nq(1) was already known; for most q’s it is equal to
q + 1 + �2q1/2�; for the others it is q + �2q1/2�. Serre obtains the exact value of
Nq(2) for every q . It is not very different from Weil’s bound.

If A(q) = lim supg→∞ Ng(q)/q , then Drinfeld–Vladut proved that

A(q) � q1/2 − 1

for every q , and Ihara showed that A(q) = q1/2 − 1 if q is a square. Serre proves
that A(q) > 0 for all q , more precisely A(q) � c · log(q) for some absolute c > 0.
His proof uses class field towers, like in Golod–Shafarevich.

These papers generated considerable interest in determining the actual maximum
and minimum of the number of points for a given pair (g, q).

11.3.1. Kristin Lauter obtained improvements on the bounds for the number of ra-
tional points of curves over finite fields, along the lines of [S201, Œ 128(1983)]
and [S200, Œ 129(1983)]. In her papers [S265 (2001)], [S267 (2002)], we find ap-
pendices written by Serre. The appendix in [S267 (2002)] is particularly appealing.
It gives an equivalence between the category of abelian varieties over Fq which are
isogenous over Fq to a product of copies of an ordinary elliptic curve E defined over
Fq and the category of torsion-free Rd -modules of finite type, where Rd denotes the
ring of integers in the quadratic field of discriminant d , being #E(Fq) = q + 1 − a,
d = a2 − 4q , and under the assumption that d is the discriminant of an imaginary
quadratic field. Polarizations on these abelian varieties correspond to positive def-
inite hermitian forms on R-modules. Thus, in the cases where there is no inde-
composable positive definite hermitian module of discriminant 1, one obtains the
non-existence of curves whose Jacobian is of that type. And, conversely, if such a
hermitian module exists, one obtains a principally polarized abelian variety; if fur-
thermore its dimension is 2, this abelian variety is a Jacobian and one gets a curve
whose number of points is q + 1 − 2a; a similar (but less precise) result holds for
genus 3: one finds a curve with either q + 1 − 3a or q + 1 + 3a points. Partic-
ular results on the classification of these modules in dimensions 2 and 3, due to
D.W. Hoffmann (1991), and a procedure for gluing isogenies are used to deter-
mine the existence or non-existence of certain polarized abelian varieties, useful in
their turn to show that for all finite fields Fq there exists a genus 3 curve over Fq

such that its number of rational points is within 3 of the Serre–Weil upper or lower
bound.

11.3.2. In a letter published in [S230, Œ 155(1991)], Serre answered a problem
posed by M. Tsfasman at Luminy on the maximal number of points of a hypersur-
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face defined over a finite field. On the hypersurface, no hypothesis of irreducibility
or of non-singularity is made. Serre shows that the number N of zeros of a ho-
mogeneous polynomial f = f (X0, . . . ,Xn) in Pn(Fq) of degree d � q + 1 is at
most dqn−1 + pn−2, where pn = qn + qn−1 + · · · + 1 is the number of points
in the projective space Pn(Fq). The result has been widely used in coding the-
ory.

11.4. Diophantine Problems. Certain classical methods of transcendence based
on the study of the solutions of differential equations, mainly due to Th. Schneider,
were transposed to the p-adic setting by S. Lang (1962, 1965). In the Séminaire
Delange–Pisot–Poitou [S124 (1967)], Serre studies the dependence of p-adic expo-
nentials avoiding the use of differential equations.

11.4.1. The book Lectures on the Mordell–Weil Theorem [S203, MW(1984)] arose
from the notes taken by M. Waldschmidt of a course taught by Serre (1980–1981),
which were translated and revised with the help of M. Brown.

The content of the lectures was: heights, Néron–Tate heights on abelian vari-
eties, the Mordell–Weil theorem on the finiteness generation of the rational points
of any abelian variety defined over a number field, Belyi theorem characterizing the
non-singular projective complex curves definable over Q, Chabauty and Manin–
Demjanenko theorems on the Mordell conjecture (previous to Faltings’ theorem
(1983)), Siegel’s theorem on the integral points on affine curves, Baker’s effective
forms of Siegel’s theorem, Hilbert’s irreducibility theorem and its applications to the
inverse Galois problem, construction of elliptic curves of large rank, sieve methods,
Davenport–Halberstam’s theorem, asymptotic formulas for the number of integral
points on affine varieties defined over number fields, and the solution to the class
number 1 problem by using integral points on modular curves.

11.4.2. The paper [S189, Œ 122(1979)] is an appendix to a text by M. Waldschmidt
on transcendental numbers (1970). It contains several useful properties of con-
nected commutative algebraic groups, defined over a field k of characteristic zero.
They concern the following: the existence of smooth projective compactifications;
quadratic growth, at most, of the height function (when k is an algebraic extension
of Q), and uniformization by entire functions of order � 2 when k = C.

11.4.3. The publication [S194 (1980)] reproduces two letters addressed to D.
Masser. The questions concern some of Masser’s results on the linear independence
of periods and pseudo-periods of elliptic functions (1977). In the first letter, Serre
studies independence properties of the fields of �-division points of elliptic curves
defined over an algebraic number field and with complex multiplication by differ-
ent quadratic imaginary number fields. In the second letter, Serre proves that, under
some reasonable assumptions, the degree of the field generated by the �-division
points of the product of such elliptic curves is as large as possible for almost all the
primes �.
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12 Field Theory

The paper [S195, Œ 123(1980)] reproduces a letter of Serre answering a question
raised by J.D. Gray about Klein’s lectures on the icosahedron. The icosahedral group
G = A5 acts on a curve X of genus zero; by extending the field of definition k of
X and G to an algebraic closure, one obtains an embedding of G in the projec-
tive linear group PGL2. Moreover, the field k must contain

√
5. The quotient X/G

is isomorphic to P1. If z is a k-point of X/G, its lifting to X generates a Galois
extension k′ of k whose Galois group is a subgroup of G. Serre explains that the
main question posed by Hermite and Klein turns out to be whether one obtains all
Galois extensions of k with Galois group G in this way. He then shows that the an-
swer to this question is “almost” yes. Suppose that k′/k is a Galois extension with
Galois group G. Serre uses a descent method and works with twisted curves Xk′ .
The curves Xk′ are controlled by a quaternion algebra Hk′ . To go from Xk′ to Hk′ ,
Serre follows two procedures: either using the non-trivial element of H 2(G,Z/2Z),
which corresponds to the binary icosahedral group, or considering the trace form
Tr(z2) in a quintic extension k1/k defining k′/k. Then he shows that k′/k comes
from a covering X → X/G if and only if Xk′ has a rational point over k, if and only
if the class of H ′

k in the Brauer group of k equals the sum of (−1,−1) and the Witt
invariant of the quadratic form Tr(z2), on the subspace of k1 of elements of trace
zero. Moreover, these conditions are equivalent to the fact that k′ can be generated
by the roots of a quintic equation of the form X5 + aX2 + bX + c = 0, which is
consistent with old results of Hermite and Klein.

12.0.1. The obstruction associated to a Galois embedding problem, defined by a
Galois extension L/K and by a central extension of the group Gal(L/K), is given
by a cohomology class, the vanishing of which characterizes the solvability of the
problem. When the kernel of the central extension is the cyclic group C2 of order
2, the cohomology class can be identified with an element of Br2(K) � H 2(K,C2)

(assuming that the characteristic is not 2). In a paper dedicated to J.C. Moore [S204,
Œ 131(1984)], Serre gives a formula relating the obstruction to certain Galois em-
bedding problems to the second Stiefel–Whitney class of the trace form Tr(x2).
Through the use of Serre’s formula, N. Vila (1984, 1985) proved that the non-trivial
double covering Ãn = 2 · An of the alternating group An is the Galois group of a
regular extension of Q(T ), for infinitely many values of n � 4. The result was ex-
tended to all n � 4 by J.-F. Mestre (1990) cf. [S235, TGT(1992)]. Explicit solutions
to solvable embedding problems of this type were later obtained by T. Crespo.

12.0.2. In his report on Galois groups over Q presented to the Séminaire Bourbaki
[S217, Œ 147(1988)], Serre provides a summary of the status of the inverse Galois
problem; that is, of the question of whether all finite groups are Galois groups of
an equation with rational coefficients. He mentions the solution of the problem in
the solvable case due to I. Shafarevich (1954) and its improvements by J. Neukirch
(1979). He gives Hilbert’s realizations of the symmetric and alternating groups as
Galois groups over Q by means of Hilbert’s irreducibility theorem. And, in the
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most detailed part of the exposition, he explains the rigidity methods of H. Matzat
(1980) and J.G. Thompson (1984), and presents a list of the simple groups known
at that moment to be Galois over Q. As another type of example, he considers the
realization of certain central extensions of simple groups, which had recently been
obtained thanks to his Tr(x2) formula [S204, Œ 131(1984)].

12.0.3. The papers [S226, Œ 151(1990)] and [S227, Œ 152(1990)] are related to
the results of Mestre mentioned above. The first one is about lifting elements of odd
order from An to Ãn; if one has several elements and their product is equal to 1, what
is the product of their liftings: 1 or −1? In the second paper (which may be viewed
as a geometrization of the first one), Serre considers a ramified covering π : Y → X

of curves, in which all the ramification indices are odd. He gives a formula relating
several cohomological invariants of this covering; here the behaviour of the theta
characteristics of X under π∗ plays an essential role. He also asks whether there is a
general formula including those in [S204, Œ 131(1984)] and [S227, Œ 152(1990)].
This was done later by H. Esnault, B. Kahn and E. Viehweg (1993).

12.0.4. The course given by Serre [S236, Œ 156(1992)] focuses on the Galois co-
homology of pure transcendental extensions. Suppose that K is a field endowed
with a discrete valuation, v, of residue field k. Let C denote a discrete Gal(Ks/K)-
module, unramified at v and such that nC = 0 for some integer n > 0, coprime to
the characteristic of K . Given a cohomology class α ∈ Hi(K,C), one defines the
notions of a residue of α at v, a pole of α at v, and a value α(v). When K = k(X)

is the function field of a smooth, connected projective curve defined over k, there is
a residue formula and an analogue of Abel’s theorem. The theory is applied to the
solution of specialization problems of the Brauer group of K in the Brauer group
of k. If x ∈ X(K), and α ∈ Brn(K), then α(x) ∈ Brn(k), whenever x is not a pole
of α. Serre looks at the function α(x) and, in particular, at its vanishing set V (α).
In [S225, Œ 150(1990)], he deals with the case K = Q(T1, . . . , Tr ), for n = 2. The
results are completed with asymptotic estimations on the number of zeros of α ob-
tained by sieving arguments; they depend on the number of Q-irreducible compo-
nents of the polar divisor of α. One of the questions raised in this paper (“how often
does a conic have a rational point?”) was solved later by C. Hooley (1993) and
C.R. Guo (1995): the upper bound given by the sieve method has the right order of
magnitude.

12.0.5. Cohomological Invariants in Galois Cohomology [S269, CI(2003)] is a
book co-authored by S. Garibaldi, A. Merkurjev and J.-P. Serre. The algebraic in-
variants discussed in it are the Galois cohomology analogues of the characteris-
tic classes of topology, but here the topological spaces are replaced by schemes
Spec(k), for k a field.

The text is divided in two parts. The first one consists of an expanded version of
a series of lectures given by Serre at UCLA in 2001, with notes by S. Garibaldi. The
second part is due to Merkurjev with a section by Garibaldi; we shall not discuss
it here. In Chap. I, Serre defines a quite general notion of invariant to be applied
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throughout the book to several apparently disparate situations. Given a ground field
k0 and two functors

A : Fields/k0 → Sets and H : Fields/k0 → Abelian Groups,

an H -invariant of A is defined as a morphism of functors

a : A → H.

Here Fields/k0 denotes the category of field extensions k of k0. Examples of functors
A are:

− k �→ Etn(k), the isomorphism classes of étale k-algebras of rank n;
− k �→ Quadn(k), the isomorphism classes of non-degenerate quadratic forms over

k of rank n;
− k �→ Pfistern(k), the isomorphism classes of n-Pfister forms over k of rank equal

to n.

Examples of functors H are provided by the abelian Galois cohomology groups
Hi(k,C) and their direct sum, H(k,C), where C denotes a discrete Gal(ks

0/k0)-
module; or by the functor H(k) = W(k), where W(k) stands for the Witt ring of
non-degenerate quadratic forms on k.

The aim of the lectures is to determine the group of invariants Inv(A,H). In
the background material of the book concerning Galois cohomology, we find the
notion of the residue of a cohomology class of Hi(K,C) at a discrete valuation v

of a field K , as well as the value at v for those cohomology classes with residue
equal to zero. Basic properties of restriction and corestriction of invariants are ob-
tained, in perfect analogy with the case of group cohomology. An important tool is
the notion of versal torsor, which plays an analogous role to that of the universal
bundle in topology: an invariant is completely determined by its value on a ver-
sal G-torsor. These techniques allow the determination of the mod 2 invariants for
quadratic forms, hermitian forms, rank n étale algebras, octonions or Albert alge-
bras, when char(k0) 	= 2. In particular, the mod 2 invariants of rank n étale algebras
make up a free H(k0)-module whose basis consists of the Stiefel–Whitney classes
wi , for 0 � i � [n/2]. This gives a new proof of Serre’s earlier formula on this
subject [S204, Œ 131(1984)], as well as its generalization by B. Kahn (1984). Sim-
ilarly, the W(k0)-module Inv(Sn,W) is free of finite rank, with basis given by the
Witt classes of the first [n/2] exterior powers of the trace form. Among other re-
sults, one finds an explicit description of all possible trace forms of rank � 7 and
an application of trace forms to the study of Noether’s problem, which we recall in
what follows.

Given a finite group G, the property Noe(G/k0) means that there exists an
embedding ρ : G → GLn(k0) such that, if Kρ is the subfield of k0(X1, . . . ,Xn)

fixed by G, then Kρ is a pure transcendental extension of k0. Deciding whether
Noe(G/k0) is true is the Noether problem for G and k0. Serre proves that Noether’s
problem has a negative answer for SL(2,F7), 2 · A6 or the quaternion group Q16 of
order 16. The book includes also several letters; one of these is a letter from Serre
to R.S. Garibaldi, dated in 2002, in which he explains his motivations.
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12.0.6. Let k be a field of characteristic different from 2. The norm form of any
quaternion algebra defined over k is a 2-fold Pfister form. In [S278 (2006)], M. Rost,
J.-P. Serre and J.-P. Tignol study the trace form qA(x) = TrdA(x2) of a central sim-
ple algebra A of degree 4 over k, under the assumption that k contains a primitive
4th root of unity. They prove that qA = q2 + q4, in the Witt ring of quadratic forms
over k, were q2 and q4 are uniquely determined 2-fold and 4-fold Pfister forms,
respectively. The form q2 corresponds to the norm form of the quaternion algebra
which is equivalent to A⊗k A in the Brauer group of k. Moreover, A is cyclic if and
only if q4 is hyperbolic. The images of the forms qj in Hj(k,Z/2Z) yield cohomo-
logical invariants of PGL4, since the set H 1(k,PGL4) classifies the central simple
k-algebras of degree 4.

13 Galois Representations

Serre has studied Galois representations (especially �-adic representations) in sev-
eral books and papers. His pioneering contributions to these topics have broken new
ground and have profoundly influenced their research in the last decades.

13.1. Hodge–Tate Modules. The paper [S129, Œ 72(1967)] is based on a lecture
delivered by Serre at a Conference on Local Fields held in Driebergen (The Nether-
lands). Take as the ground field a local field of characteristic zero whose residue
field is of characteristic p > 0, and let Cp be the completion of an algebraic closure
K of K . If T is the Tate module associated to a p-divisible group, defined over the
ring of integers of K , a deep result of Tate states that Cp ⊗ T has a decomposition
analogous to the Hodge decomposition for complex cohomology. This gives strong
restrictions on the image G of Gal(K/K) in Aut(T ). For instance, if the action of
G is semisimple, then the Zariski closure of G contains a p-adic Mumford–Tate
group. Under some additional hypotheses, Serre shows that the group G is open in
Aut(T ). This applies in particular to formal groups of dimension 1, without formal
complex multiplication.

13.1.1. The topic of Hodge–Tate decompositions was also considered in the book
[S133, McGill(1968)], which we will discuss in a moment.

13.1.2. In [S191, Œ 119(1979)], it is shown that the inertia subgroup of a Galois
group acting on a Hodge–Tate module V over a local field is almost algebraic, in the
sense that it is open in a certain algebraic subgroup HV of the general linear group
GLV . In two important cases, Serre determines the structure of the connected com-
ponent H 0

V of HV . In the commutative case, H 0
V is a torus. If the weights of V are

reduced to 0 and 1, the simple factors of H 0
V are of classical type: An,Bn,Cn,Dn.

13.2. Elliptic Curves and �-adic Representations. Over the years, Serre has given
several courses on elliptic curves. Three of these were at the Collège de France
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[S115, Œ 67(1965)], [S122, Œ 71(1966)], [S153, Œ 93(1971)] and one at McGill
University (Montreal), in 1967. Abundant material was presented in these lectures.
Most of it was published soon after in the papers [S118, Œ 70(1966)], [S154, Œ
94(1972)] and in the book Abelian �-adic representations and elliptic curves [S133,
McGill(1968)].

The course [S115, Œ 67(1965)] covered general properties of elliptic curves,
theorems on the structure of their endomorphism ring, reduction of elliptic curves,
Tate modules, complex multiplication, and so on. Let E be an elliptic curve de-
fined over a field k and let � be a prime different from char(k). The Tate mod-
ules T�(E) = lim← E[�n](ks) are special cases of the �-adic homology groups associ-

ated to algebraic varieties. The Galois group Gal(ks/k) acts on T�(E) and on the
Q�-vector space V�(E) = Q� ⊗ T�(E). We may consider the associated Galois
�-adic representation ρ� : Gal(ks/k) → Aut(T�) � GL2(Z�). The image G� of ρ�

is an �-adic Lie subgroup of Aut(T�). We shall denote by g� the Lie algebra of G�.
The Galois extension associated to G� is obtained by adding the coordinates of the
points of E(k) of order a power of � to the field k.

Suppose that k is an algebraic number field and that the elliptic curve E has
complex multiplication. Thus, there exist an imaginary quadratic field F and a ring
homomorphism F → Q ⊗ Endk(E). Then the Galois group G� is abelian whenever
F ⊂ k, and is non-abelian otherwise. If F ⊂ k, the action of Gal(k/k) on T�(E) is
given by a Grössencharakter whose conductor has its support in the set of places
of bad reduction of E; this result is due to M. Deuring. The usefulness of elliptic
curves with complex multiplication consists in the fact that they provide an explicit
class field theory for imaginary quadratic fields.

13.2.1. A short account of the classical theory of complex multiplication can be
found in [S128, Œ 76(1967)].

13.2.2. By using fiber spaces whose fibers are products of elliptic curves with com-
plex multiplication, Serre [S107, Œ 63(1964)] constructed examples of non-singular
projective varieties defined over an algebraic number field K which are Galois con-
jugate but have non-isomorphic fundamental groups. In particular, although they
have the same Betti numbers, they are not homeomorphic.

13.2.3. The paper [S118, Œ 70(1966)] is about the �-adic Lie groups and the �-adic
Lie algebras associated to elliptic curves defined over an algebraic number field
k and without complex multiplication. The central result is that g� is “as large as
possible”, namely, it is equal to End(V�), when the ground field is Q. In the proof,
Serre uses a wide range of resources: Lie algebras and �-adic Lie groups; Hasse–
Witt invariants of elliptic curves; pro-algebraic groups; the existence of canonical
liftings of ordinary curves in characteristic p; the Lie subalgebras of the ramification
groups; Chebotarev’s density theorem, as well as class field theory, Hodge–Tate
theory, and so on. Serre also observes that, if a conjecture of Tate on Galois actions
on the Tate modules is true, then the determination of the Lie algebra g� can be
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carried out for any algebraic number field. Tate’s conjecture was proved almost two
decades later by G. Faltings (1983) in a celebrated paper in which he also proved
two more conjectures, one due to L.J. Mordell and the other due to I. Shafarevich.
For these results, Faltings was awarded the Fields Medal in 1986.

In the same paper [S118, Œ 70(1966)], Serre shows that the set of places of k

at which a curve E, without complex multiplication, has a supersingular reduction
is of density zero in the set of all the places of k. This does not preclude the set of
these places being infinite. On the contrary, Serre thought that this could well be the
case. Indeed, N.D. Elkies (1987) proved that, for every elliptic curve E defined over
a real number field, there exist infinitely many primes of supersingular reduction, in
agreement with Serre’s opinion. (Note that the case of a totally imaginary ground
field remains open.) S. Lang and H. Trotter (1976) conjectured an asymptotic for-
mula (which is still unproved) for the frequency of the supersingular primes in the
reduction of an elliptic curve E without complex multiplication and defined over Q.

13.2.4. The results of [S118, Œ 70(1966)] were completed in the lecture course
[S122, Œ 71(1966)] and in [S133, McGill(1968)].

In Chap. I of [McGill], Serre considers �-adic representations of the absolute
Galois group Gal(ks/k) of a field k. For k an algebraic number field, he defines the
concepts of a rational �-adic representation, and of a compatible system of rational
�-adic representations (these notions go back to Y. Taniyama (1957)). He relates the
equidistribution of conjugacy classes of Frobenius elements to the existence of some
analytic properties for the L-functions associated to compatible systems of rational
�-adic representations, a typical example being that of the Sato–Tate conjecture.

In Chap. II, Serre associates to every algebraic number field k a projective family
(Sm) of commutative algebraic groups defined over Q. (From the point of view of
motives, these groups are just the commutative motivic Galois groups.) For each
modulus m of k, he constructs an exact sequence of commutative algebraic groups
1 → Tm → Sm → Cm → 1, in which Cm is a finite group and Tm is a torus. The
characters of Sm are, essentially, the Grössencharakteren of type A0, in the sense of
Weil, of conductor dividing m. They appear in the theory of complex multiplication.

In Chap. III, the concept of a locally algebraic abelian �-adic representation is
defined. The main result is that such Galois representations come from linear rep-
resentations, in the algebraic sense, of the family (Sm). When the number field k

is obtained by the composition of quadratic fields, it is shown that every semisim-
ple abelian rational �-adic representation is locally algebraic. The proof is based
upon transcendence results of C.L. Siegel and S. Lang. Serre observes that the re-
sult should also be true for any algebraic number field; this was proved later by
M. Waldschmidt (1986), as a consequence of a stronger transcendence result.

In Chap. IV, the results of the previous chapters are applied to the �-adic rep-
resentations associated to elliptic curves. The main theorem is that, if E is an el-
liptic curve over an algebraic number field k, without complex multiplication, then
g� = End(V�). The proof turns out to be a clever combination of a finiteness theorem
due to Shafarevich together with the above mentioned results on abelian and locally
algebraic �-adic representations of k.
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Serre also proves that, if E is an elliptic curve over an algebraic number field k

such that its j -invariant is not an algebraic integer of k, then the group G := Imρ,
where ρ = ∏

ρ�, is open in
∏

GL2(Z�). Later, Serre would eliminate the condition
regarding the modular invariant j (see below).

It is also proved in [McGill] that, if E, E′ are elliptic curves defined over an
algebraic number field k, whose invariants j (E), j (E′) are not algebraic integers
and whose Gal(k/k)-modules V�(E), V�(E

′) are isomorphic, then E and E′ are
isogenous over k. The result is a special case of the Tate conjecture proved later by
G. Faltings (1983).

13.2.5. The above results were improved in the seminal paper Propriétés galoisi-
ennes des points d’ordre fini des courbes elliptiques [S154, Œ 94(1972)], which
is dedicated to André Weil. The main theorem states that, if E is an elliptic curve
defined over an algebraic number field k, which does not have complex multiplica-
tion, then G� = Aut(T�(E)), for almost all �. In particular, we have Gal(k[E�]/k) �
GL2(F�), for almost all �. The proof is based upon local results relative to the ac-
tion of the tame inertia group on the points of finite order of the elliptic curves. This
action can be expressed in terms of products of fundamental characters, and the
main point is that these exponents have a uniform bound (namely the ramification
index of the local field). This boundedness plays a role similar to that of the local
algebraicity which had been used in [McGill]. Serre conjectures that similar bounds
are valid for higher dimensional cohomology; this has been proved recently, as a
by-product of Fontaine’s theory.

He also raised several questions concerning the effectiveness of the results. The
paper includes many numerical examples in which all the prime numbers for which
Gal(k[E�]/k) 	� GL2(F�) are computed.

In the summary of the course, Serre also mentions that if A is an abelian surface
such that End(A) is an order of a quaternion field D defined over Q (a so-called
“fake elliptic curve”) then the group ρ(Gal(Q/Q)), where ρ = ∏

ρ�, is open in
D∗(Af ). This was proved later by M. Ohta (1974), following Serre’s guidelines.

13.3. Modular Forms and �-adic Representations. Many arithmetical functions
can be recovered from the Fourier coefficients of modular functions or modular
forms. In an early contribution at the Séminaire Delange–Pisot–Poitou [S138, Œ
80(1969)], one finds the remarkable conjecture that certain congruences satisfied by
the Ramanujan τ function can be explained by the existence, for each prime �, of a
2-dimensional �-adic representation

ρ� : Gal(Q/Q) → Aut(V�),

unramified away from �, and such that Tr(ρ�(Fp)) = τ(p), det(ρ�(Fp)) = p11, for
each Frobenius element Fp , at any prime p 	= �. Assume this conjecture (which
was proved a few months later by Deligne (see below)). The �-adic representa-
tion ρ� leaves a lattice of V� stable, and thus may be viewed as a representation
in GL2(Z�). When varying the different primes �, the above representations ρ�
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make up a compatible system of rational �-adic representations of Q, in the sense of
[McGill], and the images of ρ� are almost always the largest possible. The primes
for which this does not happen are called the exceptional primes and they are fi-
nite in number. More specifically, in the case of the τ function, the exceptional
primes are 2,3,5,7,23,691 (this was proved later by Swinnerton-Dyer). For exam-
ple: τ(p) ≡ 1 + p11 (mod 691) is the congruence discovered by Ramanujan. As a
consequence, the value of τ(p) mod � cannot be deduced from any congruence on
p, if � is a non-exceptional prime.

13.3.1. Serre’s conjecture on the existence of �-adic representations associated to
modular forms was soon proved by Deligne (1971). This result has been essential for
the study of modular forms modulo p, for that of p-adic modular forms, as well as
for the work of H.P.F. Swinnerton-Dyer (1973) on congruences. Swinnerton-Dyer’s
results on this topic were presented by Serre at the Séminaire Bourbaki [S155, Œ
95(1972)].

13.3.2. In the papers [S161, Œ 100(1974)], [S168 (1975)] and [S173, Œ 108(1976)],
it is proved that, given a modular form f = ∑∞

n=0 cne
2πinz/M with respect to a con-

gruence subgroup of the full modular group SL2(Z), and of integral weight k � 1,
for each integer m � 1, the set of integers n which satisfy the congruence cn ≡ 0
(mod m) is of density 1. The proof uses �-adic representations combined with an
analytic argument due to E. Landau. Given a cusp form f = ∑

anq
n, q = e2πiz,

without complex multiplication, of weight k � 2, normalized eigenvector of all the
Hecke operators and with coefficients in Z, Serre shows that the set of integers
n such that an 	= 0 has a density which is > 0; in particular, the series f is not
“lacunary”.

13.3.3. Deligne and Serre, in the paper [S162, Œ 101(1974)] dedicated to H. Cartan,
prove that every cusp form of weight 1, which is an eigenfunction of the Hecke op-
erators, corresponds by Mellin’s transform to the Artin L-function of an irreducible
complex linear representation ρ : Gal(Q/Q) → GL2(C). Moreover, the Artin con-
ductor of ρ coincides with the level of the cusp form (provided it is a newform).
In order to prove the theorem, Serre and Deligne construct Galois representations
(mod �), for each prime �, of sufficiently small image; this allows them to lift these
representations to characteristic zero and to obtain from them the desired complex
representation (the proof also uses an average bound on the eigenvalues of the Hecke
operators due to Rankin). Note that here the existence of �-adic representations as-
sociated to modular forms of weight k � 2 is used to deduce an existence theorem
for complex representations associated to weight k = 1 modular forms!

The paper became a basic reference on the subject, since it represents a small
but non-trivial step in the direction of the Langlands conjectures. In particular, it
shows that certain Artin L-functions are entire. Another consequence is that the
Ramanujan–Petersson conjecture holds for weight k = 1. (For weight k � 2, its
truth follows from Deligne’s results on Weil’s conjectures and on the existence of
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�-adic representations associated to cusp forms.) Not long after, the study of mod-
ular forms of weight k = 1 was illustrated by Serre in [S179, Œ 110(1977)] with
many numerical examples, due to Tate.

13.3.4. In 1974, Serre opened the Journées Arithmétiques held in Bordeaux with a
lecture on Hecke operators (mod �) [S169, Œ 104(1975)]—in those days a fairly
new subject for most of the audience. Consider the algebra M̃ of modular forms
(mod �) with respect to the modular group SL2(Z). Serre proves that the systems
of eigenvalues (ap) of the Hecke operators Tp , p 	= �, acting on F� ⊗ M̃ are finite
in number. In particular, there exists a weight k(�) such that each system of eigen-
values can be realized by a form of weight � k(�); the precise value for k(�) was
found by Tate. As an illustration, Serre gives a complete list of all the systems (ap)

which occur for the primes � � 23. He also raises a series of problems and conjec-
tures which lead, twelve years later, to his own great work [S216, Œ 143(1987)] on
modular Galois representations. As is well known, this became a key ingredient in
the proof of Fermat’s Last Theorem.

13.3.5. In [S178, Œ 113(1977)], Serre and H. Stark prove that each modular form
of weight 1/2 is a linear combination of theta series in one variable, thus answering
a question of G. Shimura (1973). The proof relies on the “bounded denominator
property” of modular forms on congruence subgroups.

13.3.6. In the long paper entitled Quelques applications du théorème de densité de
Chebotarev [S197, Œ 125(1981)], one finds a number of precise estimates both for
elliptic curves and for modular forms. These estimates are of two types: either they
are unconditional, or they depend on the Generalized Riemann Hypothesis (GRH).
The work in question is essentially analytic. It uses several different ingredients:

− explicit forms of Chebotarev theorem due to J.C. Lagarias, H.L. Montgomery,
A.M. Odlyzko, with applications to infinite Galois extensions with an �-adic Lie
group as Galois group;

− properties of �-adic varieties such as the following: the number of points
(mod �n) of an �-adic analytic variety of dimension d is O(�nd), for n → ∞;

− general theorems on �-adic representations.

Let us mention two applications:
Given a non-zero modular form f = ∑

anq
n, which is an eigenvalue of all the

Hecke operators and is not of type CM (complex multiplication) Serre proves that
the series f is not lacunary; more precisely, if Mf (x) denotes the number of integers
n � x such that an 	= 0, then there exists a constant α > 0 such that Mf (x) ∼ αx

for x → ∞. On the other hand, if f 	= 0 has complex multiplication, then there
exists a constant α > 0 such that Mf (x) ∼ αx/(logx)1/2, for x → ∞. In concrete
examples, Serre provides estimates for α.

Furthermore, if E/Q is an elliptic curve without complex multiplication and if
we assume (GRH), then there exists an absolute constant c such that the Galois
group G� of the points of the �-division of E is isomorphic to GL2(F�) for every
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prime � � c(logNE)(log log 2NE)3, where NE denotes the product of all the primes
of bad reduction of E.

13.3.7. The Dedekind η function is a cusp form of weight 1/2. In [S208, Œ
139(1985)], a paper which Serre dedicated to R. Rankin, he studies the lacunar-
ity of the powers ηr , when r is a positive integer. If r is odd, it was known
that ηr is lacunary if r = 1,3. If r is even, it was known that ηr is lacunary for
r = 2,4,6,8,10,14,26. Serre proves that, if r is even, the above list is complete.
By one of the theorems proved in his Chebotarev paper (see above), this is equiva-
lent to showing that ηr is of CM type only if r = 2,4,6,8,10,14 or 26. The proof
consists of showing that the complex multiplication, if it exists, comes from either
Q(i) or Q(

√−3).

13.3.8. The paper [S216, Œ 143(1987)], entitled Sur les représentations modulaires
de degré 2 de Gal(Q/Q), contains one of Serre’s outstanding contributions. In this
profound paper, dedicated to Y.I. Manin, Serre formulates some very precise con-
jectures on Galois representations which extend those made twelve years before in
Bordeaux [S169, Œ 104(1975)]. We shall only mention two of these conjectures:
conjectures (3.2.3?) and (3.2.4?), known nowadays as Serre’s modularity conjec-
tures (or, simply, Serre’s modularity conjecture). Let ρ : Gal(Q/Q) → GL2(Fp) be
a continuous irreducible representation of odd determinant.

(3.2.3?) There exists a cusp form f , with coefficients in Fp which is an eigenfunc-
tion of the Hecke operators, whose associated representation ρf is isomor-
phic to the original representation ρ.

(3.2.4?) The smallest possible type of the form f of (3.2.3?) is equal to (N(ρ), k(ρ),

ε(ρ)), where the level N(ρ) is the Artin conductor of ρ (it reflects the ram-
ification at the primes � 	= p); the character ε(ρ) is χ1−k · det(ρ), where χ

is the �-cyclotomic character; the weight k(ρ) is given by a rather sophis-
ticated formula, which depends only on the ramification at p.

The paper contains numerical examples for p = 2,3,7 in support of the conjecture;
they were implemented with the help of J.-F. Mestre. Some months after the appear-
ance of this paper, and after examining the examples more closely, Serre slightly
modified the conjectures for the primes p = 2,3 in the case of Galois representa-
tions of dihedral type.

Since their publication, Serre’s conjectures have generated abundant literature.
They imply Fermat’s Last Theorem (and variants thereof) as well as the Shimura–
Taniyama–Weil Conjecture (and generalizations of it). As G. Frey (1986) and Serre
pointed out, a weak form of conjecture (3.2.4?), known as conjecture epsilon, is suf-
ficient to prove that Fermat’s Last Theorem follows from the Shimura–Taniyama–
Weil conjecture in the semistable case. Conjecture epsilon was proved by K. Ribet
(1990) in a brilliant study in which he made use of the arithmetical properties of
modular curves, Shimura curves and their Jacobians. Once Ribet’s theorem was
proved, the task of proving Shimura–Taniyama–Weil conjecture in the semistable
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case would be accomplished five years later by A. Wiles (1995) and R. Taylor and
A. Wiles (1995).

Serre’s modularity conjecture may be viewed as a first step in the direction of
a mod p analogue of the Langlands program. Many people have worked on it.
A general proof was presented at a Summer School held at Luminy (France), July
9–20, 2007 (a survey of this work can be found in the expository paper [Ch. Khare
(2007)]).

According to the Citation Database MathSciNet, [S216, Œ 143(1987)] is Serre’s
second most frequently cited paper, the first one being (fittingly) the one he dedi-
cated to A.Weil [S154, Œ 94(1972)].

13.3.9. A summary of Serre’s lecture course on Galois representations (mod p)

and modular forms (mod p) can be found in [S218, Œ 145(1988)]. In it, Serre
relates modular forms modulo p with quaternions. Two letters on this subject, ad-
dressed to J. Tate and D. Kazhdan, are collected in [S249, Œ 169(1996)]. In the
letter to Tate, Serre formulates a quaternion approach to modular forms modulo a
prime p through quaternion algebras. Let D be the quaternion field over Q ram-
ified only at p and at ∞, and let D∗(A) be the group of the adelic points of the
multiplicative group D∗, viewed as an algebraic group over Q. The main result of
the letter to Tate is that the systems of eigenvalues (a�), with a� ∈ Fp , provided by
the modular forms (mod p) coincide with those obtained under the natural Hecke
action on the space of locally constant functions f : D∗(A)/D∗

Q → Fp . The result
is proved by evaluating the modular forms at supersingular elliptic curves. In the
letter to Kazhdan, Serre studies certain unramified representations of GL2(Q�), in
characteristic p 	= �, which are universal with the property of containing an eigen-
vector of the Hecke operator T� with a given eigenvalue a�. In an appendix to the
paper, R. Livné mentions further developments of these questions. For example, a
general study of the representations of GL2(Q�) in characteristic p 	= � was done
later by Marie-France Vignéras (1989); the case p = � has recently been studied by
several people.

13.3.10. The general strategy of the work of Wiles (1995) and Taylor–Wiles (1995)
on modular elliptic curves and Fermat’s Last Theorem was presented by Serre at the
Séminaire Bourbaki [S248, Œ 168(1995)]. The proof that any semistable elliptic
curve defined over Q is modular is long and uses results of Ribet, Mazur, Lang-
lands, Tunnell, Diamond, among others. On this occasion, Serre said that he did not
claim to have verified all the technical details of the proof, “qui sont essentiels, bien
entendu”.

13.4. Abelian Varieties and �-adic Representations. Let A be an abelian variety
of dimension d defined over a field k. Given a prime � 	= char(k), the Tate module
T�(A) = lim← A[�n](ks) is a free Z�-module of rank 2d . Let V�(A) = T�(A) ⊗ Q�.

The action of the absolute Galois group of k on the Tate module of A gives an
�-adic representation ρ� : Gal(ks/k) → GL(T�(A)) = GL2d(Z�); its image, G�,
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is a compact subgroup of GL2d(Z�), hence it is a Lie subgroup of the �-adic Lie
group GL(T�). The Lie algebra g� of G� is a subalgebra of gl(V�) and does not
change under finite extensions of the ground field; it acts on V�. When k is finitely
generated over Q, it is known that the rank of g� is independent of �, but it is not
known whether the same is true for the dimension of g�. Serre has written several
papers and letters on the properties of G� and g� (see below).

13.4.1. The first occurrence of the G� and the g� in Serre’s papers can be found in
[S109, Œ 62(1964)]; it was complemented a few years later by [S151, Œ 89(1971)].
When k is a number field, the Mordell–Weil theorem says that the group A(k) of
the k-rational points of A is a finitely generated abelian group. J.W.S. Cassels had
asked whether it is true that every subgroup of finite index of A(k) contains a con-
gruence subgroup, at least when A is an elliptic curve. In the first paper, Serre trans-
formed the problem into another one relative to the cohomology of the G�’s, namely
the vanishing of H 1(g�,V�) for every � and he solved it when dim(A) = 1. In the
second paper, he solved the general case by proving a vanishing criterion for the
cohomology of Lie algebras which implies that Hn(g�,V�) = 0, for every n, and
every �.

13.4.2. In 1968, Serre and Tate published the seminal paper Good reduction of
abelian varieties [S134, Œ 79(1968)]. Let K be a field, v a discrete valuation, Ov

the valuation ring of v and kv its residue field, which is assumed to be perfect.
Given an abelian variety A defined over K , the authors start from the existence of
the Néron model Av of A with respect to v, which is a group scheme of finite type
over SpecOv . Serre and Tate define the concept of potential good reduction of A,
which generalized that of good reduction. They prove that A has good reduction at
v if and only if the Tate module T�(A) is unramified at v, where � denotes a prime
which differs from the characteristic of kv . This criterion is partially due to A.P. Ogg
(in the case of elliptic curves) and partially to I. Shafarevich. In their proof, the struc-
ture of the connected component Ã0

v of the special fiber Ãv of Av appears: it is an
extension of an abelian variety B by a linear group L, and L is a product of a torus
S by a unipotent group U . The abelian variety A has good reduction if and only if
L = 1; it has potential good reduction if and only if L = U ; and it has semistable
reduction if and only if L = S. A second theorem says that A has potential good
reduction if and only if the image of the inertia group I (v) for the �-adic represen-
tation ρ� : Gal(Ks/K) → Aut(T�) is finite. An appropriate use of the characters of
Artin and Swan then allows the definition of the conductor of A. The semistable
reduction theorem, conjectured by Serre in 1964 and proved later by Grothendieck
in (SGA 7), would allow the definition of the conductor for every abelian variety.
(The semistable reduction theorem was also proved by D. Mumford, except that his
proof, based on the use of theta functions, did not include the case where the residue
characteristic is equal to 2.)

Suppose that A has complex multiplication by F over the field K , where F

denotes an algebraic number field of degree 2d , d = dim(A). In the same work,
Serre and Tate prove that every abelian variety, defined over an algebraic number
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field K and with complex multiplication over this field, has potential good reduction
at all the places of K , and that it has good reduction at the places of K outside
the support of its Grössencharakter. This result generalizes some earlier ones of
M. Deuring (1955) in the case of elliptic curves. The exponent of the conductor at v

is given by 2dnv , where nv is the smallest integer such that the Grössencharakter is
zero when restricted to the ramification group I (v)nv , in the upper numbering.

13.4.3. In [S209, Œ 135(1985)], Serre explains how the theorems obtained by
G. Faltings (1983) in his paper on the proof of Mordell’s conjecture allow a better
understanding of the properties of the �-adic representations associated to abelian
varieties.

In the first part of the lectures, Serre gives an effective criterion for showing that
two �-adic representations are isomorphic (the “méthode des corps quartiques”).
This criterion was applied to prove that two elliptic curves, studied by J.-F. Mestre,
of conductor 5077, are isogenous.

Let K be an algebraic number field and A an abelian variety defined over K of
dimension d . Let ρ� : Gal(K/K) → GL(T�(A)) be the �-adic representation de-
fined by the Tate module. Let G

alg
� be the closure of G� under the Zariski topology,

which is a Q�-algebraic subgroup of the general linear group GL2d . Mumford and
Tate conjectured that, given A and K , the group G

alg
� is essentially independent of �

and, more precisely, that the connected component (G
alg
� )0 could be deduced from

the Mumford–Tate group by extension of scalars of Q to Q�. In the second part of
the course [S209, Œ 135(1985)], Serre proves a series of results in this direction. He
shows for instance that the finite group G

alg
� /(G

alg
� )0 is independent of �.

13.4.4. In the course [S213, Œ 136(1986)], Serre studies the variation with � of the
�-adic Lie groups associated to abelian varieties. Let us keep the previous notation.
Given the homomorphism

ρ : Gal(K/K) →
∏

�

G� ⊂
∏

�

Aut(T�),

Serre proves that, if K is sufficiently large, the image of ρ is open in the prod-
uct

∏
� G�, i.e. the ρ� are “almost independent”. In the case where n is odd, or is

equal to 2 or 6, and if End(A) = Z, he shows that the image of ρ is open in the
product of the groups of symplectic similitudes

∏
GSp(T�, e�). Here e� is the al-

ternating form over T�(A) deduced from a polarization e of A. The ingredients of
the proof are many: the above theorems of Faltings, Frobenius tori, McGill theory,
properties of inertia groups at the places which divide �, as well as group-theoretic
information regarding the subgroups of GLN(F�) supplied by theorems of V. Nori
(1985–1987).

The proofs of the above results have not been published in a formal way, but one
can find an account of them in Serre’s letters to K. Ribet [Œ 133(1981)] and [Œ
138(1986)], to D. Bertrand [Œ 134(1984)], and to M.-F. Vignéras [Œ 137(1986)].
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13.5. Motives. A first lecture on zeta and L-functions in the setting of the theory of
schemes (of finite type over Spec(Z)) was given by Serre in [S112, Œ 64(1965)].
One finds in it a generalization of Chebotarev’s density theorem to schemes of arbi-
trary dimension.

13.5.1. In his lecture in the Séminaire Delange–Pisot–Poitou [Œ 87(1969/70)],
Serre introduces several definitions and formulates several conjectures about the
local factors (gamma factors included) of the zeta function of a smooth projective
variety over a number field. The local factors at the primes of good reduction do
not raise any problem. The interesting cases are: (a) the primes with bad reduction;
(b) the archimedean primes. In both cases Serre gives definitions based, in case (a),
on the action of the local Galois group on the �-adic cohomology, and in case (b),
on the Hodge type of the real cohomology. The main conjecture is that such a zeta
function has an analytic continuation to the s-plane and a very simple functional
equation.

13.5.2. The subject of �-adic representations had already been considered by Serre
in [S177, Œ 112(1977)], in his address to the Kyoto Symposium on Algebraic Num-
ber Theory. In this paper, which is rich in problems and conjectures, we find the
statement of the conjecture of Shimura–Taniyama–Weil, according to which any
elliptic curve over Q of conductor N is a quotient of the modular curve X0(N).

13.5.3. The paper [S229, Œ 154(1991)] is a short introduction to the theory of mo-
tives. Along these lines, we also highlight the paper [S239, Œ 160(1993)], which
corresponds to a text Serre wrote for Bourbaki in 1968. The paper deals with alge-
braic envelopes of linear groups and their relationship with different types of alge-
bras, coalgebras and bialgebras. Its last section contains an account of the dictionary
between compact real Lie groups and complex reductive algebraic groups.

13.5.4. To finish this section we shall briefly summarize the paper entitled Pro-
priétés conjecturales des groupes de Galois motiviques et des représentations
�-adiques [S243, Œ 161(1994)]. Serre formulates a series of conjectures regard-
ing �-adic representations which generalize many of his previous results. We denote
by M the category of pure motives over a subfield k of C, which we suppose to be
of finite type over Q. The motivic Galois group GM is related to the absolute Ga-
lois group of k by means of an exact sequence 1 → G0

M → GM → Gal(k/k) → 1.

Given a motive E over k, let M(E) be the smallest Tannakian subcategory of M

which contains E. Suppose that the standard conjectures and Hodge conjecture are
true. Under these assumptions and in an optimistic vein, Serre formulates a series
of conjectures and questions aimed at the description of Grothendieck’s “motivic
paradise”. We stress the following ones:

(1?) The motivic Galois group GM is pro-reductive.
(2?) The motivic Galois group GM(E) is characterized by its tensor invariants.
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(3?) The group GM(E)/Q�
is the closure in the Zariski topology of the image of the

�-adic representation ρ�,E : Gal(k/k) → GM(E)(Q�), associated to E.
(4?) The connected pro-reductive group G0

M decomposes as G0
M = C ·D, where C

is a pro-torus, equal to the identity component of the centre of G0
M , and D is a

pro-semisimple group, equal to the derived group of G0
M .

(5?) If S = (G0
M)ab, then S is the projective limit of the tori Tm defined in his

McGill book.
(6?) Every homomorphism G0

M → PGL2 has a lifting to G0
M → GL2.

(7) Which connected reductive groups are realized as GM(E)? Are G2 and E8
possible?

(8?) The group G�,E = Im(ρ�,E) is open in GM(E)(Q�). Let

ρE = (ρ�,E) : Gal(k/k) →
∏

�

G�,E ⊂ GM(E)(Af ).

Suppose that GM(E) is connected. Then E is a “maximal motive” if and only
if Im(ρE) is open in the group GM(E)(Af ), where Af is the ring of the finite
adeles of Q.

The paper ends with a statement of the Sato–Tate conjecture for arbitrary motives.

14 Group Theory

In response to a question raised by Olga Taussky (1937) on class field towers, Serre
proves in [S145, Œ 85(1970)] that for a finite p-group G, the knowledge of Gab

does not in general imply the triviality of any term Dn(G) of its derived series.
More precisely, for every n � 1 and for every non-cyclic finite abelian p-group P

of order 	= 4, there exists a finite p-group G such that Dn(G) 	= 1 and Gab � P .

14.1. Representation Theory. Serre’s popular book Représentations linéaires des
groupes finis [S130, RLGF(1967)] gives a reader-friendly introduction to represen-
tation theory. It also contains less elementary chapters on Brauer’s theory of mod-
ular representations, explained in terms of Grothendieck K-groups, the highlight
being the “cde triangle”. The text is well known to physicists and chemists1, and its
first chapters are a standard reference in undergraduate or graduate courses on the
subject.

14.1.1. The paper [S245, Œ 164(1994)] is about the semisimplicity of the tensor
product of group representations. A theorem of Chevalley (1954) states that, if k

is a field of characteristic zero, G is a group, and V1 and V2 are two semisimple

1Indeed the first part of the book was written by Serre for the use of his wife Josiane who was a
quantum chemist and needed character theory in her work.



76 P. Bayer

k(G)-modules of finite dimension, then their tensor product V1 ⊗V2 is a semisimple
k[G]-module. Serre proves that this statement remains true in characteristic p > 0,
provided that p is large enough. More precisely, if Vi , 1 � i � m, are semisimple
k[G]-modules and p >

∑
(dimVi − 1), then the k[G]-module V1 ⊗ · · · ⊗ Vm is

also semisimple. The bound on p is best possible, as the case G = SL2(k) shows.
In order to prove this, Serre first considers the case in which G is the group of
points of a simply connected quasi-simple algebraic group, and the representations
V1 and V2 are algebraic, irreducible, and of restricted type. In this case, the proof
relies on arguments on dominant weights due to J.C. Jantzen (1993). The general
case is reduced to the previous one by using a “saturation process” due to V. Nori,
which Serre had already used in his study of the �-adic representations associated
with abelian varieties (see Sect. 13.4 above). The study of these topics is continued
in [S252, Œ 171(1997)], where one finds converse theorems such as: if V ⊗ V ′ is
semisimple and dim(V ′) is not divisible by char(k), then V is semisimple. Here the
proofs use only linear (or multilinear) algebra; they are valid in any tensor category.

14.1.2. In the Bourbaki report [S273 (2004), SEM(2008)], Serre extends the notion
of complete reducibility (that is, semisimplicity) to subgroups � not only of GLn

but of any reductive group G over a field k. The main idea is to use the Tits build-
ing T of G. A subgroup � of G is called completely reducible in G if, for every
maximal parabolic subgroup P of G containing �, there exists a maximal parabolic
subgroup P ′ of G opposite to P which contains �. There is a corresponding no-
tion of “G-irreducibility”: � is called G-irreducible if it is not contained in any
proper parabolic subgroup of G, i.e. if it does not fix any point of the building X.
There is also a notion of “G-indecomposability”. These different notions behave
very much like the classical ones, i.e. those relative to G = GLn; for instance, there
is an analogue of the Jordan–Hölder theorem and also of the Krull–Schmidt theo-
rem. The proofs are based on Tits’ geometric theory of spherical buildings. As one
of the concrete applications given in the paper, we only mention the following: if
� ⊂ G(k), G is of type E8 and Vi , 1 � i � 8, denote the 8 fundamental irreducible
representations of G, and if one of them is a �-module semisimple, then all the
others are also semisimple provided that char(k) > 270.

14.1.3. The Oberwolfach report [S272 (2004)], states without proof two new re-
sults on the characters of compact Lie groups. The first one is a generalization of a
theorem of Burnside for finite groups: given an irreducible complex character χ of
a compact Lie group G, of degree > 1, there exists an element x ∈ G of finite order
with χ(x) = 0. The second one states that Tr(Ad(g)) � −rank(G) for all g ∈ G, the
bound being optimal if and only if there is an element c ∈ G such that ctc−1 = t−1

for every t ∈ T , where T is a maximal torus of G; the proof is a case-by-case ex-
plicit computation (in the E6 case, the computation was not made by Serre himself
but by A. Connes).

14.1.4. In another Oberwolfach report [S279 (2006)], Serre defines the so-called
Kac coordinates in such a way that they can be used to classify the finite subgroups
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of G which are isomorphic to μn, without having to assume that n is prime to the
characteristic.

14.1.5. In 1974, Serre had asked W. Feit whether, given a linear representation

ρ : G → GLn(K)

of a finite group G over a number field K , it could be realized over the ring of
integers OK . Although he did not expect a positive answer, he did not know of any
counterexample. Given ρ, there are OK -lattices which are stable under the action
of G; but the point is that as OK is a Dedekind ring, these lattices need not be
free as OK -modules. There is an invariant attached to them which lies in the ideal
class group CK = Pic(OK) of K . Feit provided the following counterexample: if
G = Q8 is the quaternion group of order 8 and K = Q(

√−35), the answer to the
question is no. The paper [S281 (2008)], reproduces three letters of Serre to Feit
about this question, written in 1997. Their purpose was to clarify the mysterious
role of

√−35 in Feit’s counterexample. Let K = Q(
√−N), for N a positive square

free integer, N ≡ 3 (mod 8). Let OK denote its ring of integers. The field K splits
the quaternion algebra (−1,−1), hence there exists an irreducible representation
V of degree 2 over K of Q8. In the first letter, Serre proves that there exists an
OK -free lattice of V which is stable under the group Q8 if and only if the integer
N can be represented by the binary quadratic form x2 + 2y2. In order to prove this
equivalence, Serre makes use of Gauss genus theory: any lattice L ⊂ V stable under
Q8 yields an invariant c(L) which lies in the genus group CK/C2

K of the quadratic
field K . It turns out that L is free as OK -module if and only if c(L) = 1. The exact
evaluation of the genus characters on c(L) yields the criterion above.

Another version of the computation of the invariant c(L) is explained in the sec-
ond letter. Serre uses the fact, due to Gauss, that for a positive square-free inte-
ger N , N ≡ 3 (mod 8), any representation of N as a sum of three squares yields
an OK -module of rank 1 which lies in a well defined genus and, moreover, every
class in that genus is obtainable by a suitable representation of N as a sum of three
squares. If D = (−1,−1) denotes the standard quaternion algebra over Q and R

is its Hurwitz maximal order, Serre embeds the ring of integers OK in R by map-
ping

√−N to ai + bj + ck, where a2 + b2 + c2 = N . It turns out that the invariant
c(R) is the same as the one obtained before. In the third letter, and more gener-
ally, given any quaternion algebra D over Q and an imaginary quadratic field K

which splits D, if we choose an embedding K → D, the OK -invariant c(OD) of
a maximal order OD containing OK does not depend on the choice of OD . Serre
determines c(OD) = c(D,K) ∈ CK/C2

K in terms of D and K . By making use of
the Hilbert symbol, the genus group CK/C2

K can be embedded in the 2-component
of the Brauer group Br2(Q); moreover the image of c(D,K) in Br2(Q) is equal
to (D) + (dD,−d). In this formula, (D) denotes the element of the Brauer group
defined by the quaternion algebra D, dD is the signed discriminant of D, −d , with
d > 0, is the discriminant of K , and (dD,−d) stands for the Hilbert symbol. In
the special case D = (−1,−1) and Q8, the formula tells us that there exists a free



78 P. Bayer

OK -module of rank 2 which gives the standard irreducible representation of Q8

over K = Q(
√−d) if and only if either (−2, d) = 0 or (−1, d) = 0; that is, if and

only if d is representable either by x2 + 2y2 or by x2 + y2. For example, if d = 8p,
p ≡ 3 (mod 8), p prime, non-free lattices exist.

14.2. Algebraic Groups. The lecture course [S141, Œ 84(1969)] focused on dis-
crete groups. Some of its contents would be published in [S139, Œ 83(1969)] and
[S149, Œ 88(1971)]. Another part was published in the book Arbres, amalgames,
SL2, [S176, AA(1977)], written with the help of H. Bass. In the first chapter Serre
shows that it is possible to recover a group G which acts on a tree X from the quo-
tient graph or fundamental domain G\X, and the stabilizers of the vertices and of
the edges. If G\X is a segment, then G may be identified with an amalgam of two
groups and, moreover, every amalgam of two groups can be obtained in this way.
The study of relations between amalgams and fixed points show that groups such
as SL3(Z) and Sp4(Z) are not amalgams, since one can show that they always have
fixed points when they act on trees, see [S163 (1974)]; the method extends to all
G(Z), where G is any reductive group-scheme over Z which is simple of rank � 2.

In the second chapter, the results are applied to the study of the groups SL2(k),
where k is a local field. The group SL2(k) acts on the Bruhat–Tits tree associated
to the space k2. The vertices of this tree are the classes of lattices of k2. In this
way, Serre recovers a theorem due to Y. Ihara by which every torsion-free discrete
subgroup of SL2(Qp) is free.

According to MathSciNet, this book is now Serre’s most cited publication.

14.2.1. A question raised by Grothendieck concerning linear representations of
group schemes was answered by Serre in [S136, Œ 81(1968)]. Suppose that C is
a coalgebra over a Dedekind ring A which is flat. If ComA denotes the abelian cate-
gory of comodules over C which are of finite type as A-modules, one may consider
the Grothendieck ring RA of ComA. Let K be the field of fractions of A. Serre
proves that the natural morphism i : RA → RK , E �→ E ⊗ K , is an isomorphism
if A is principal and under the assumption that all decomposition homomorphisms
(defined as in Brauer’s theory for finite groups) are surjective. If M is an abelian
group and TM denotes the A-group scheme whose character group is M , the bialge-
bra C(M) can be identified with the group algebra A[M]. If A is principal, one has
an isomorphism ch : RA(TM)

∼→ Z[M], provided by the rank. Next, Serre considers
a split reductive group G and a split torus T of G, which exists by hypothesis. By
composing ch with the restriction homomorphism Res : RK(G) → RK(T ), a ho-
momorphism chG : RK(G) → Z[M] is obtained. Serre proves that chG is injective
and that its image equals the subgroup Z[M]W of the elements of Z[M] which are
invariant under the Weyl group W of G relative to T . As an illustration of this re-
sult, the paper gives the following example: if G = GLn, M = Zn and W = Sn is
the symmetric group on n elements, then Z[M] = Z[X1, . . . ,Xn,X

−1
1 , . . . ,X−1

n ]
and RA(GLn) = RK(GLn) = Z[M]W = Z[λ1, . . . , λn]λn , where λ1, . . . , λn denote
the elementary symmetric functions in X1, . . . ,Xn, and the subscript stands for lo-
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calization with respect to λn. This was what Grothendieck needed for his theory of
λ-rings.

14.3. Finite Subgroups of Lie Groups and of Algebraic Groups. The problem of
the determination of the finite subgroups of a Lie group has received a great amount
of attention. Embedding questions of finite simple groups (and their non-split cen-
tral extensions) in Lie groups of exceptional type have been solved by the work
of many mathematicians. The paper [S250, Œ 167(1996)] contains embeddings of
some of the groups PSL2(Fp) into simple Lie groups. Let G denote a semisim-
ple connected linear algebraic group over an algebraically closed field k, which is
simple of adjoint type; let h be its Coxeter number. The purpose of the paper is to
prove that, if p = h + 1 is a prime, then the group PGL2(Fp) can be embedded
into G(k) (except if char(k) 	= 2 and h = 2), and that if p = 2h + 1 is a prime, then
the group PSL2(Fp) can be embedded into G(k). Since for G = PGL2 one has
h = 2, the theorem generalizes the classical result that the groups A4 = PSL2(F3),
S4 = PGL2(F3), and A5 = PSL2(F5) can be embedded into PGL2(C). The result
for p = 2h + 1 was known in the case of characteristic zero; it was part of a con-
jecture by B. Kostant (1983), and it had been verified case by case with the aid of
computers. Moreover, the values h + 1 or 2h + 1 for p are maximal in the sense
that if PGL2(Fp), respectively PSL2(Fp), are embedded in G(C) then p � h + 1,
respectively p � 2h + 1.

In his paper, Serre proves the two results in a unified way.
One starts from a certain principal homomorphism PGL2(Fp) → G(Fp) if

p � h. If p = h + 1, this homomorphism can be lifted to a homomorphism
PGL2(Fp) → G(Zp). A key point is that the Lie algebra L of G/Fp

turns out to be
cohomologically trivial as a PGL2(Fp)-module through the adjoint representation.
This is not the case if p = 2h + 1, since then H 2(PGL2(Fp),L) has dimension 1;
lifting to Zp is not possible; one has to use a quadratic extension of Zp . Once this is
done, the case where char(k) = 0 is settled. An argument based on the Bruhat–Tits
theory gives the other cases.

As a corollary of the theorem, one obtains that PGL2(F19) and PSL2(F37) can
be embedded in the adjoint group E7(C) and that PGL2(F31) and PSL2(F61) can
be embedded in E8(C).

14.3.1. In his lecture [S260 (1999), SEM(2008)] delivered at the Séminaire Bour-
baki (1998–1999), Serre describes the state of the art techniques in the classifica-
tion of the finite subgroups of a connected reductive group G over an algebraically
closed field k of characteristic zero. He begins by recalling several important results.
For example, if p is a prime which does not divide the order of the Weyl group W

of G, then every p-group A of G is contained in a torus of G and hence is abelian.
The torsion set Tor(G) is, by definition, the set of prime numbers p for which there
exists an abelian p-subgroup of G which cannot be embedded in any torus of G.
The sets Tor(G), for G simply connected and quasi-simple, are well known; for in-
stance Tor(G) = {2,3,5} if G is of type E8; moreover Tor(G) = ∅ is equivalent to
H 1(K,G) = 0 for every extension K of k. For A a non-abelian finite simple group,
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Serre reproduces a table by Griess–Ryba (1999) giving the pairs (A,G) for which
G is of exceptional type and A embeds projectively in G. In order to see that the
table is, in fact, complete, the classification of finite simple groups is used.

14.3.2. Part of the material of the paper [S280 (2007)] arose from a series of three
lectures at the École Polytechnique Fédérale de Lausanne in May 2005. Given a
reductive group G over a field k and a prime � different from char(k), and A a finite
subgroup of G(k), the purpose of the paper is to give an upper bound for v�(A),
that is the �-adic valuation of the order of A, in terms of invariants of G, k and �.
Serre provides two types of such bounds, which he calls S-bounds and M-bounds,
in recognition of previous work by I. Schur (1905) and H. Minkowski (1887).

The Minkowski bound, M(n,�), applies to the situation G = GLn and k = Q and
is optimal in the sense that for every n and for every � there exists a finite �-subgroup
A of GLn(Q) for which v�(A) = M(n,�). By making use of the (at the time) newly
created theory of characters, due to Frobenius, Schur extended Minkowski’s results
to an arbitrary number field k: he defined a number Mk(n, �) such that v�(A) �
Mk(n, �) for any finite �-subgroup of GL2(C) such that Tr(g) belongs to k for any
g ∈ A. As in the case k = Q, Schur’s bound is optimal. Both results were recalled
by Serre in his lectures with almost complete proofs.

The S-bound for any reductive group and any finite subgroup of G(k) is obtained
in terms of v�(W), the �-adic valuation of the order of the Weyl group of G and cer-
tain cyclotomic invariants of the field k, defined ad hoc. The Minkowski bound is
more precise, but in order to obtain it, Serre needs to assume that the group G is
semisimple of inner type (the action of Gal(ks/k) on its Dynkin diagram is trivial).
If r is its rank, then its Weyl group W has a natural linear representation of degree r .
The ring of invariants Q[x1, . . . , xr ]W is a polynomial algebra Q[P1, . . . ,Pr ], where
Pi are homogenous polynomials of degrees d1 � d2 � · · · � dr . Under the as-
sumption that G is semisimple of inner type, with root system R, Serre gives a
Minkowski-style bound M(�, k,R) for G which depends only on the �-cyclotomic
invariants of the field k and the degrees di, i = 1, . . . , r . Moreover, it is optimal,
except when � = 2 and −1 does not belong to W . As an illustration, let us mention
that, if G is a Q-group of type E8, then the order of any finite subgroup of G(Q)

divides

M(Q,E8) = 230 · 313 · 55 · 74 · 112 · 132 · 19 · 31,

and that this bound is sharp.

15 Miscellaneous Writings

Serre has written an endless number of impeccable letters over the years. They are
now found as appendices of books, in papers or, simply, carefully saved in the draw-
ers of mathematicians. As mentioned above, some of these letters are included in
the Œuvres. Some were collected in the text edited by S.S. Chern and F. Hirze-
bruch in [Wolf Prize in Mathematics, vol. 2, World Scientific, 2001]: a letter to John
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McCleary (1997), two letters to David Goss (1991, 2000), a letter to Pierre Deligne
(1967), and a letter to Jacques Tits (1993). One finds in them comments on his the-
sis, on the writing of FAC, on �-adic representations, as well as historical data on
the “Shimura–Taniyama–Weil” modularity conjecture. In the letter to Tits, there is
an account of the themes on which Serre was working in the years around 1993: Ga-
lois representations, inverse Galois problem, Abhyankar’s problem, trace forms, and
Galois cohomology. The Grothendieck–Serre correspondence [S263, GRSE(2001)],
published more recently, is another invaluable resource for understanding the origins
of the concepts and tools of current algebraic geometry.

15.0.1. Serre has written essays on the work of other mathematicians: for exam-
ple, a publication of historical character on a prize delivered to J.S. Smith and
H. Minkowski [S238 (1993)], or publications about the life and work of A. Weil
[S259 (1999)] and that of A. Borel [S270 (2004)], [S271 (2004)]. He was the editor
of the Collected Works of F.G. Frobenius [S135 (1968)], in three volumes. He and
R. Remmert were the editors of the Collected Works of H. Cartan [S192 (1979)],
also in three volumes. He was the editor of the Collected Works of R. Steinberg
[S253 (1997)].

15.0.2. We should also mention expository papers that Serre likes to call “math-
ematical entertainment”, where he takes a rather simple-looking fact as a starting
point for explaining a variety of deeper results.

One such paper is [S206, Œ 140(1985)], whose title is just the high school dis-
criminant formula � = b2 − 4ac. Given an integer �, one wants to classify the
quadratic polynomials ax2 +bx+c with discriminant �, up to SL2(Z)-conjugation.
This is a classical problem, started by Euler, Legendre and Gauss. Serre explains the
results which were obtained in the late 1980s by combining Goldfeld’s ideas (1976)
with a theorem of Gross–Zagier (1986) and Mestre’s proof (1985) of the modularity
of a certain elliptic curve of conductor 5077 and rank 3.

Another such paper is [S268 (2002), SEM(2008)]. By an elementary theorem
of C. Jordan (1872), if G is a group acting transitively on a finite set of n > 1
elements, the subset G0 of the elements of G which act without fixed points is non-
empty. Moreover, P.J. Cameron and A.M. Cohen (1992) have refined this result by
proving that the ratio |G0|/|G| � 1/n, and that it is > 1/n if n is not a prime power.
Serre gives two applications. The first one is topological and says that if f : T → S

is a finite covering of a topological space S, of degree n > 1, and with T path-
connected, then there exists a continuous map of the circle S1 in S which cannot
be lifted to T . The second application is arithmetical and concerns the number of
zeros Np(f ) in the finite field Fp of a polynomial f ∈ Z[X]. Serre shows that, if
the degree of f is n > 1 and f is irreducible, then the set P0(f ) of the primes p

such that Np(f ) > 0 has a natural density � 1/n. The proof consists of combining
Cameron–Cohen’s theorem with Chebotarev’s density theorem. The paper is illus-
trated with the computation of Np(f ) for f = xn − x − 1 and n = 2,3,4. In these
three cases, it is shown how the numbers Np(f ) can be read from the coefficients
of suitable cusp forms of weight 1.
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And, finally, let us mention the preprint How to use finite fields for problems
concerning infinite fields, a mathematical entertainment just written by Serre [S284
(2009)] in which he discusses old results of P.A. Smith (1934), M. Lazard (1955)
and A. Grothendieck (1966), and shows how to prove them (and sometimes improve
them) either with elementary tools or with topological techniques.

Acknowledgements. The author acknowledges the valuable help provided by Jean-Pierre Serre
and by the editors of the book during the preparation of the manuscript.
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