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v

Au reste il me paraît que si l’on veut faire des progrès dans les math-
ématiques il faut étudier les maîtres et non pas les écoliers.

Niels Henrik Abel1

1“It seems to me that if one wants to make progress in mathematics, one should study the masters,
not the pupils.” In: “Mémoires de Mathématiques par N.H. Abel”, Paris, August 9, 1826, in the
margin of p. 79. Original (Ms.fol. 351 A) in The National Library of Norway. Reprinted with
permission.



Preface

In 2002, the year marking the bicentennial of Abel’s birth, the Norwegian Par-
liament established the Niels Henrik Abel Memorial Fund with the objective
of creating an international prize for outstanding scientific work in the field of
mathematics—the Abel Prize.

In this book we present the Abel Laureates for the period of 2008–2012. It is a
sequel to our first book.1

The present volume starts with the history of the Abel Prize written by the histo-
rian Kim Helsvig. He had unrestricted access to all sources and interviewed the key
people involved in the creation of the Abel Prize, and he presents his independent
view on the prize.

There is one chapter for each of the years 2008–2012. Each chapter starts with
an autobiographical piece by the laureate(s). Then follows a text on the laureate’s
work: R. Lyons and R.M. Guralnik write on the work of John G. Thompson while
F. Buekenhout writes on the work of Jacques Tits. The work of Mikhail Gromov is
described by M. Bestvina, D. Burago, F. Forstnerič, L. Guth, Y. Eliashberg, A. Nab-
utovsky, A. Phillips, J. Roe and A. Vershik, coordinated and edited by D. Burago
and Y. Eliashberg. J. Milne writes about the work of John Tate. H. Bass, M. Lyubich,
and L. Siebenmann treat different aspects of John Milnor’s work. Finally, T. Gowers
describes the work of Endre Szemerédi. Each chapter contains a complete bibliog-
raphy and a curriculum vitae, as well as photos—old and new.

Each year Martin Raussen and Christian Skau interviewed the laureate in con-
nection with the Prize ceremonies, and the interviews have been broadcast on Nor-
wegian national television. The interviews can be streamed from the Abel Prize web
site www.abelprize.no or the Springer web site http://www.springerimages.com/
videos/978-3-642-39449-2. Transcripts of all interviews have been published in the
EMS Newsletter and the Notices of the AMS.

We have included a facsimile of a letter dated September 25, 1828, from Niels
Henrik Abel to his publisher August Leopold Crelle. The handwritten letter in Ger-

1H. Holden, R. Piene (eds.) The Abel Prize 2003–2007. The First Five Years, Springer, Heidelberg,
2010.
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man is transcribed and also translated into English. More interestingly, the letter is
set into a historical perspective by Christian Skau. In 2007 the original was procured
from Institut Mittag-Leffler, Stockholm, Sweden, thanks to a generous donation by
Alf Bjørseth and the company Scatec. The original letter resides at the National Li-
brary of Norway in Oslo. Finally, we have included an update to the first volume in
this series.

We would like to express our gratitude to the laureates for collaborating with us
on this project, especially for providing the autobiographical pieces and the photos.
We would like to thank the mathematicians who agreed to write about the laureates,
and thus are helping us in making the laureates’ work known to a broader audience.

Thanks go to Martin Raussen and Christian Skau for letting us use the interviews
and to Marius Thaule for his LATEX expertise and the preparation of the bibliogra-
phies.

The technical preparation of the manuscript was financed by the Niels Henrik
Abel Board.

Helge Holden and Ragni PieneOslo, Norway
March 6, 2013
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The Abel Prize—The Missing Nobel
in Mathematics?

Kim G. Helsvig

By the spring of 2001, the lobbying to establish a prize in mathematics in memory
of the Norwegian mathematician Niels Henrik Abel (1802–1829) was well under-
way. On May 10, Professor Arnfinn Laudal from the Department of Mathematics at
the University of Oslo sent an e-mail to the president of the International Mathemat-
ical Union, Jacob Palis. Laudal described a campaign that was recently launched by
some activists in the department to establish a prize in mathematics. They hoped it
would persuade the international mathematical community and Norwegian politi-
cians “. . . to present the Abel Prize as the ‘missing Nobel Prize’ in mathematics”.1

Until quite recently, no mathematician had suggested that the time was right to
establish a scientific prize in mathematics comparable to the various Nobel Prizes.
It is true that there existed several international prizes in mathematics, but the ob-
vious absence of a prize that could be compared with the most prestigious prizes
in physics, chemistry and medicine had been a source of frustration among mathe-
maticians ever since the Nobel Prizes were first awarded in 1901. The mathematical
community had apparently learned to live with this frustration, but when the initia-
tive to establish a prize in mathematics on the same level as the Nobel was suddenly
introduced from the mathematical periphery of Norway, it was a wakeup call that
resonated with mathematicians. The initiative would in a short time gain support,
not only among Norwegian mathematicians, but also in the international mathemat-
ical community as well as from influential sectors of Norwegian society. Only after
a few months of the campaign being launched in the spring of 2001, the Norwegian
government decided to set aside NOK 200 million (approximately USD 35 million)

1E-mail from Professor Arnfinn Laudal, Department of Mathematics, University of Oslo to the
president of IMU Jacob Palis, 10.5.2001. Nils Voje Johansen’s private archive, file “Abel-pris”
(hereafter NVJ).
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of the rapidly increasing national petroleum fund to establish the Niels Henrik Abel
Memorial Fund, and in June 2003 King Harald V presented the first Abel Prize of
NOK 6 million to Jean-Pierre Serre—one of the most influential mathematicians of
the twentieth century—during a solemn ceremony in the university assembly hall in
an Abel-celebrating Oslo city center in full spring blossom.

The successful campaign was based on the mobilization of both the Norwegian
history of mathematics and the history of the dissolution of the political union be-
tween Sweden and Norway in 1905. This mobilization was presented to the inter-
national mathematical community, which had waited for one hundred years for a
scientific prize at the highest level, and to the Norwegian political community, who
for several years had expressed increasing concerns at the lack of interest and com-
petence in the natural science arena throughout the entire national schooling and
higher education systems. The way in which this was done might explain why the
campaign was well received by both the vast majority of the international mathemat-
ical community and Norway’s politicians, but it might also explain why it seriously
irritated the Swedish Nobel Foundation.

In this article, I hope to shed light on the dynamics of the history of the intensive
campaign that led to the establishment of the Abel Prize in 2002. This investigation
also leads to more tentative considerations regarding to what degree the prize has
lived up to the high expectations placed on it during the first decade of its existence.

1 Science Prizes in Historical Perspective

Historians and sociologists of science have long noted the rich variety and changing
nature of prizes in the world of science. Although national academies of science
might occasionally award prizes to foreigners, the notion of a truly international
prize first emerged with the establishment at the turn of the twentieth century of the
Nobel prizes [3, 5]. Although Swedish and Norwegian national institutions would be
responsible for awarding the various prizes, Alfred Nobel’s testament underscored
that they should be awarded based on merit whether or not the candidates were Scan-
dinavian or not. This clearly stated goal, as well as the implementation a system of
nomination of candidates that at the time was unprecedented in its international
scope, reinforced the assumption of a prize that could serve as a so-called level
playing field on which the so-called civilized nations of the world could compete
peacefully to prove their cultural strength and vitality [5, 6, pp. 158–162]. Although
the prize committees remained national, and although recent historical studies have
demonstrated a range of biases that have entered into deliberations on awarding
prizes, the will to believe in a truly impartial international prize, from the very start
in 1901, tended to slow down criticism and skepticism. National scientific com-
munities and competing elite institutions within a country generally understood the
importance of international recognition as a resource for local prestige and bene-
fits [6].

The emergence and rapid acceptance of international prizes by significant na-
tional scientific communities occurred at a time when internationalism blossomed
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in academic cultures. The rise during the 19th century of international organiza-
tions and international commissions for science not only fomented their supposed
missions of the advancement of knowledge through facilitating communication and
collaboration, they also enabled national scientific leaders to appeal locally for funds
and authority based on their international activities and recognition. Appeals to the
trans-national republic of letters to gain prestige in local cultural politics was noth-
ing new, but seemingly such tendencies grew in intensity starting in the late nine-
teenth century and interrupted only occasionally during the First World War [6].

During the last quarter of the 20th century the number of international prizes
in science really started to proliferate. Wealthy patrons of culture gladly donated
fortunes to endow prizes that would carry their name in the name of advancing and
stimulating science. Several such prizes attempted to outdo the Nobels in the amount
of money to be awarded; some clearly aimed to bring prestige to the nation awarding
the prizes. Universities and state ministries for research and higher education gladly
turned to such alleged measures of excellence in their efforts to support national
science [16].

The cult of excellence, as defined by prizes and awards, was largely a feature
of American science and academia for much of the 20th century. Especially dur-
ing the last two decades of the century, it spread to Europe and Asia. Although
this phenomenon has been noted, its causes seem complex and not fully explored.
New management thinking, an emerging global economy of higher education and
research, higher costs for doing research and universities confronting post-Cold War
reductions of state-funding of science seem to be some of the most obvious factors.
Similarly the rise of global media coverage such as CNN, BBC World etc. helped
transform the awarding of enormously huge prizes and award ceremonies into news
events to an even greater extent than previously. Some of the prizes has thus became
potentially much more powerful marketing tools for both institutions and nations
alike in en ever more fierce competition for status, prestige and funds in the aca-
demic world.

The Abel prize plans were introduced in the context of this increasingly over-
heated culture and economy of international prizes in science. And the eventual
birth of a major international prize for mathematics in a nation not normally con-
sidered a major player in international science was marked by multiple intentions
and motivations, and what might be seen as pure luck. The story of how the Abel
prize came about is a story of tight networks of contacts among academics, politi-
cians, bureaucrats and industrial leaders in a small nation. It is at once both a piece
of contemporary national history, offering a preliminary glimpse behind the scenes
of how things might happen in a small and wealthy nation, as well as an account of
how cultural heritage can be recruited as a resource for science policy: Here one
of Norway’s legendary highly-gifted mathematicians would be recruited for a wide
spectrum of cultural-political purposes from differing constituencies with a variety
of interests some 170 years after his death.

The article is based on a variety of sources: Private archives—to a large extent
e-mail archives, project drafts and personal notes—from the central mathematicians
involved in the process, interviews with relevant mathematicians, bureaucrats and
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politicians, Norwegian and international newspaper articles and magazines and pri-
mary sources from the Norwegian Ministry of Education and Research and the Nor-
wegian Academy of Science and Letters. Most of the key actors in the Norwegian
mathematical community seem to have been quite aware that the process might be
of interest for historians in the future, and most of them have kept personal—and
often overlapping—archives and notes almost in the wait of an historian knocking
on their door. These archives have provided not only a very rich mosaic of primary
sources, but also glimpses from different angles into the most important contacts
with Norwegian politicians and bureaucrats as well as with international mathe-
matical communities during the process. Seen together with the rest of the source
material—especially documents and official records from the Ministry of Education
and Research—these personal archives have proven most valuable for the study.
Problems related to the study of contemporary science, including the challenges of
source materials are further discussed in many of the essays in The Historiography
of Contemporary Science, Technology, and Medicine: Writing Recent Science [4].

2 A National Icon

During the nineteenth century, Niels Henrik Abel became an important part of the
Norwegian national narrative of the country’s unique history and cultural identity, a
narrative that became ever more important in the years leading up to the dissolution
of the political union with Sweden in 1905. At the centennial of his birth in 1902,
and three years before the break from Sweden, Abel was celebrated as a national
hero in the Norwegian capital Christiania (renamed Oslo in 1925). In a letter to
the Norwegian 1903 Nobel Prize in Literature laureate Bjørnstjerne Bjørnson, the
scientist, polar hero and later Nobel Peace Prize laureate Fridtjof Nansen wrote as
chairman of the Abel celebrations, “For me it stands as a duty to make the most of
an event like the birth of Abel in our nation; by holding this up for the rest of the
world, we prove our right to exist as an independent state” [10, p. 5].

The celebration was the perfect occasion to display the desire for national inde-
pendence. When the Swedish and Norwegian king, Oscar II, invited 500 guests to
supper at the Royal Palace, the students at the Royal Frederick University—later
the University of Oslo—seized the opportunity and arranged the greatest torchlight
parade ever seen in the city. The university invited mathematicians from all over
the world and appointed numerous honorary doctors. A memorial publication was
published in both Norwegian and French, and the National Theater put on a celebra-
tory performance of the Norwegian play Peer Gynt by Henrik Ibsen (now the most
well-known Norwegian play), followed by the national anthem sung by the entire
auditorium [7]. A competition was also called to create an Abel memorial monu-
ment. Six years later—and three years after the dissolution of the political union
with Sweden—a pedestaled monument by Gustav Vigeland nearly forty feet high
was erected in the Royal Gardens (in what later came to be known as Abelhaugen)
close to the university buildings.
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It is in no doubt that Abel played an important role as a symbol of Norway’s
growth as an independent nation from the beginning of the twentieth century. He
was perhaps most important as an academic ideal in a period when the natural sci-
ences especially received both scientific and economic importance and prestige in
Norway [12]. On the centenary of Abel’s death in 1929, a series of Abel stamps were
issued—an honor previously only given to royalty and Henrik Ibsen—and again in-
ternational honorary doctors were appointed at the university. Abel’s portrait was
also printed on the Norwegian 500 kroner bill between 1948 and 1991, and many
Norwegian cities and towns have streets and squares named after him. In 1966 the
mathematicians at the University of Oslo, where Abel himself was a student from
1821 to 1825, moved into the new Niels Henrik Abel building at the modern Blin-
dern campus on the western outskirts of the city center.

Abel’s name was once again brought to the forefront in the late 1990s as part
of plans for two major international mathematical events in Norway. The Abel bi-
centennial in 2002 was approaching while the International Mathematical Union
(IMU) made preparations for the International Congress of Mathematicians to be
held the same year. The IMU leadership was aware that China would apply to host
the world congress, but the international union feared that such an event would be a
highly controversial or even impossible because of China’s human rights situation.
In 1995, a professor of mathematics at the University of Oslo, Jens Erik Fenstad,
shared a seat with the then IMU secretary and later IMU president Jacob Palis on
the executive board of the International Council of Scientific Unions. Palis asked
Fenstad if it was possible for Norway as both a politically and mathematically un-
controversial nation to prepare a back-up application to host the 2002 IMU Interna-
tional Congress of Mathematicians as a plan B if it proved politically unattainable
to proceed with the original plan to hold the congress in Beijing.2

In a relatively short time, it became clear that the IMU plans were going ahead
as scheduled, and that China would host the 2002 congress. The Norwegian prepa-
rations for a back-up plan, which had been started shortly after Palis’ request, were
soon transformed into plans for a major international mathematical conference in
memory of Abel. A working committee of five mathematicians from the University
of Oslo and the Norwegian University of Science and Technology in Trondheim
was put in place and given the task to make appropriate preparations for a “Niels
Henrik Abel Bicentennial Conference” in Oslo in the spring of 2002. This commit-
tee also made preparations for Norway’s role in the World Mathematical Year 2000.
Even though Abel’s name and history was prominent in the preparations for both
these events, it never occurred to anybody in the Norwegian mathematical commu-
nity that these occasions could be used to advocate the creation of an international
prize in mathematics in memory of Abel. One hundred years earlier, major efforts
had been made to do so when Norwegian mathematicians had launched an extensive
campaign to establish a prize as part of the Abel centennial celebrations in 1902.

2Jens Erik Fenstad, undated and unpublished, “3.4 Abelåret og Abelprisen” in “Noen notater om
matematikken etter annen verdenskrig”, in Jens Erik Fenstad’s private archive (hereafter JEF).
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3 The Initiative

The new initiative to create a prize in memory of Abel was presented from a different
angle by the author and poet Arild Stubhaug. Stubhaug had published several poetry
collections, but he had also studied mathematics at the University of Bergen. As a
passionate stamp collector, Stubhaug was from an early age acquainted with and
fascinated by Abel’s life. Abel had died at the age of 26, only two days before
the Frederick William University in Berlin—later known as Humboldt University—
was to offer him the tenured position as professor he needed to be able to fully
concentrate on his mathematical work. Abel also died convinced that his main work,
the so-called Parisian manuscript, was lost forever. The same day as the letter was
posted offering him the professorate in Berlin, the manuscript was found in Paris.
More than anything this work laid the foundation for Abel’s posthumous fame and
acknowledgment both in Norway and in the international mathematical community
[9, 14].

Arild Stubhaug had for a long time wanted to write about Abel. From the early
1980s he lived in Arendal, close to Gjerstad where Abel spent his childhood years,
and not far from Froland where the mathematician died. In 1988 Stubhaug was en-
couraged by the publishing house Aschehoug to go forward with his plans. The
research and writing took him eight years and resulted in the critically acclaimed
biography Et foranskutt lyn (the English version, Called Too Soon by Flames Afar:
Niels Henrik Abel and His Times, was published in 2000). The response of the Nor-
wegian daily newspapers was close to panegyrical and wrote of a “biographical
masterpiece” and a “first class cultural biography”.3 The Notices of the American
Mathematical Society several years later, when the book had been translated into En-
glish, wrote of “a great contribution to our knowledge of Abel and his time”.4 The
research and the positive reception of the book brought Stubhaug in close contact
with the Norwegian mathematical community in general, particularly with mathe-
maticians at the University of Oslo. Shortly after the release of the Abel biography,
the mathematicians in Oslo encouraged him to write a biography about a further
great nineteenth century Norwegian mathematician, Sophus Lie (1842–1899). In
1997 Stubhaug got his own office next to the Oslo mathematicians in the Niels Hen-
rik Abel building on Blindern campus.

During his work on the two biographies, Stubhaug collected a great deal of ma-
terial detailing how Sophus Lie dedicated a good part of the last years of his life to
establishing an international mathematical prize in acknowledgment of Abel. Lie’s
work was clearly inspired by the grand Nobel prize plans presented in 1897. Those
plans did not include any prize in mathematics because Nobel first and foremost
wanted to encourage the practical outcomes of science and technology, and found

3VG—24.9.1996 “Biografi-bragd”, Aftenposten—24.9.1996, “Storslått Abel-biografi”, Dag-
bladet—30.9.1996, “Kultur-biografi av ypperste rang”.
4Book review by Jesper Lützen, “Called Too Soon by Flames Afar: Niels Henrik Abel and His
Times”, in Notices of the American Mathematical Society, August 2002 Volume 49 Issue 7.
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the mathematical world far too theoretical and abstract. Sophus Lie received much
support for his plans from the leading mathematical circles in Europe.

International support for the award was closely connected to Lie personally, and
it essentially dwindled away after his death in 1899. Efforts to create an Abel Prize
were now carried along within a national framework. In close cooperation with
some of Lie’s colleagues, the Scientific Society of Christiania (now the Norwe-
gian Academy of Science and Letters), represented by W.C. Brøgger—the future
rector of the university—and Fridtjof Nansen, developed statutes and rules for an
Abel Prize in mathematics. The prize of a gold medal worth 1000 kroner was to be
awarded every fifth year for “outstanding work within pure mathematics”. The No-
bel medals were at this time worth 500 kroner and awarded annually [10, pp. 6–8].

The Brøgger/Nansen initiative was financially supported by the king of Sweden
and Norway, Oscar II, who took a personal interest in mathematics, and it was ap-
plauded by leading Norwegian mathematicians and cultural personalities. However,
after the dissolution of the political union between the two countries in 1905, the
Norwegian Academy was not able to collect the necessary funds to finance the prize
in the relatively poor, independent Norway. The dissolution of the union was even-
tually peaceful, even though some days in September 1905 saw tens of thousands
of troops lined up on both sides of the border. It was nevertheless financial con-
straints and not resentment against the Swedes that made it impossible to go on
with the prize plans after the separation. W.C. Brøgger was by far the most influ-
ential organizational entrepreneur in Norwegian science in the first decades of the
20th century, and he was above all a great admirer of Swedish science and Swedish
scientific institutions. Almost all of Brøgger’s influential institutional work within
Norwegian science in the first three decades of the 20th century was in fact modeled
after Swedish ideals on how to provide ever more substantial funding for science
and scientific institutions [2, pp. 19–22]. It was a great disappointment for a resigned
Norwegian mathematical and scientific community that the money for a prestigious
Norwegian prize in mathematics disappeared with the dissolution of the union with
Sweden. Fridtjof Nansen wrote: “the Abel Prize that we had been promised by good
King Oscar went to heaven with the union” [10, pp. 6–8].

Arild Stubhaug gave many lectures in the years following the publication of
his biography on Abel. Time and again he told of the plans to establish an Abel
Prize around the 1902 centennial, and time and again he told of how the plans were
aborted with the death of the mathematician Sophus Lie and the dissolution of the
union with Sweden. Stubhaug frequently asked, would one hundred years later not
be the perfect opportunity to revitalize these plans and finally create a prize in mem-
ory of Abel? He aired his thoughts among a great number of Norwegian mathemati-
cians, but even though several found the history and the idea interesting, the general
attitude in the mathematical community was that an Abel Prize was, in Stubhaug’s
words, “extremely unrealistic” [13, p. 5].

Stubhaug’s efforts to bring the idea of an Abel Prize back to life seemed to
amount to nothing when suddenly things brightened up in the summer of 2000,
nearly four years after the publication of the biography. The book had now been
translated into English, and on July 1, Stubhaug was invited to a bookstore in the
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small coastal town of Risør, close to where Abel both grew up and died, to sign
books on the final day of a yearly chamber music festival. Every year this festival
attracts many tourists and potential customers to town. Abel’s mother grew up in
Risør in a house close to the store, and the owner had arranged for the translated
biography to be sent by courier in time for the festival. Thus, the bookstore in the
small harbor town of Risør became the first to sell the English edition of the Abel
biography.5

When Stubhaug turned up at the bookstore, a few minutes late, he met the CEO
of Telenor (a Norwegian telecommunications company) Tormod Hermansen on his
way out the door with a copy of the Abel biography under his arm. Towards the
end of the 1990s, the prominent Labour Party politician and industrial leader Her-
mansen was characterized as both “the most powerful bureaucrat in Norway” and
“Norway’s most powerful man” [15]. He was primarily known as one of the most
influential architects of the far-reaching and controversial public sector reforms of
the past couple of decades, heavily inspired by the principles of New Public Man-
agement. Hermansen had held different key positions in the state bureaucracy since
the early 1970s, and as Under-secretary of State he led a profound reorganization
of the Ministry of Finance towards the end of the 1980s. As chairman of the Gov-
ernment Bank Insurance Fund he was in charge of the rescue plan for private banks
during the Norwegian bank crisis in the early 1990s, and had been CEO of Telenor
(the former state-owned telephone monopoly Televerket) since 1995 [15].

Stubhaug and Hermansen were not previously known to each other, but they sat
down to talk in the bookstore. During the conversation Stubhaug told Hermansen
about the failed attempts to create an Abel Prize one hundred years earlier. As on
numerous occasions during his lectures about the Abel biography, he made sure
again to mention that the forthcoming bicentennial celebrations provided a new op-
portunity for such an award. According to Stubhaug, Hermansen took special notice
of how the dissolution of the union between Sweden and Norway in 1905 had halted
the plans for an Abel Prize.6 As CEO of Telenor, Hermansen had his own and very
recent experiences on how relations with Norway’s Swedish neighbors could put an
end to grand-scale plans. At the time of the meeting with Stubhaug, Hermansen had
just finished protracted and failed negotiations regarding a merger between Telenor
and the Swedish telecommunication giant Telia. This had been one of the most con-
tested and controversial political issues in both countries in the past two years. After
fierce political, administrative and personal struggles for power, the two companies
broke an already signed merger deal. Hermansen took much of the blame for the
failure [15]. The relationship with the Swedes should not also end the plans for an
Abel Prize, and the Telenor CEO promised Stubhaug that he would do everything
he could to grab this new opportunity. The two separated with mutual assurances
that they would promote the cause with a new strength, Hermansen through his po-

5Interview with Arild Stubhaug, 7.2.2012. Telephone interview with Torkjel Gudmund Johansen,
owner of Risør Bokhandel, 9.2.2012.
6Interview with Arild Stubhaug, 7.2.2012.
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litical contacts and Stubhaug through the mathematicians at the University of Oslo
[13, p. 5].

4 Mobilization

Shortly after the meeting in Risør, Stubhaug made his colleagues in the Department
of Mathematics at the university aware of the new development. The department
immediately got in contact with Hermansen. Together with Stubhaug, the head of
department and head of office “looked into what had to be done to create a powerful
prize with international recognition”. There “was no Nobel Prize in mathematics”.
Abel “was a world known name that enjoyed the highest scientific recognition”,
and the department suggested that the establishment of a prize in Abel’s name was
something that Telenor might take interest in as part of their internationalization
strategies.7

However, Tormod Hermansen did not envision Telenor as a sponsor of an Abel
Prize. This was a matter of national importance that had to be presented to the
Labour Party government. In early September 2000, Hermansen called the Minister
of Education and Research, Trond Giske, and some days later the Telenor CEO sent
the Minister a letter regarding “the Abel Prize”. In the letter Hermansen expressed
his hopes that Giske would get people truly exited about the idea. The enclosed
memorandum from the Department of Mathematics stated that Abel’s name was
among the very greatest in “the history of mathematical-technical science”. An Abel
Prize would “highlight a research area that is at the core of all scientific progress,
and as such it would create both attention and respect for Norway all around the
world”.8

The Ministry did nothing about Hermansen’s initiative during the fall and winter
of 2000–2001. The pessimists seemed to be proven the most realistic; there was
no obvious reason to believe that there would be a break-through to establish an
Abel Prize one hundred years after it “went to heaven with the union” with Sweden.
Stubhaug tried to call Hermansen several times, but was only able to speak to his
secretary, who had no new information.9

Therefore, it came totally out of the blue when Hermansen called Stubhaug early
in the morning on March 12, 2001, and said that they had to immediately set up a
meeting with the mathematicians in Oslo. Hermansen had been involved in some
promising talks with possible key political actors regarding establishing a mathe-
matical prize. Not only had he spoken to the Minister of Education and Research,

7“Opprettelse av Abelpris”, letter from the head of department Arne Bang Huseby and the head
of office Yngvar Reichelt in the Department of Mathematics to Telenor CEO Tormod Hermansen,
22.8.2000, NVJ.
8Letter from Tormod Hermansen to the Minister of Education and Research, Trond Giske,
7.9.2000. Ministry of Education and Research archive (hereafter KD): Saksnr. 00/7309, FO./ESO,
Archive code 757, “Abelprisen i matematikk, Niels Henrik Abels minnefond”.
9Interview with Arild Stubhaug 7.2.2012.
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he had also been in contact with the Prime Minister’s office, and he had received
positive signals from the experienced Under-secretaries of State in both the Min-
istry of Education and Research and in the Ministry of Finance.10

As noted above, a national committee had been set up in the late 1990s to prepare
the program for the Abel bicentennial celebrations as well as the academic program
for the international “Niels Henrik Abel Bicentennial Conference” in 2002. The
Ministry of Education and Research contacted the leader of this committee, the
mathematician Jens Erik Fenstad at the University of Oslo. In 1995 Fenstad was
asked by the later president of IMU, Jacob Palis, to design a Norwegian alternative
for the 2002 International Congress of Mathematicians, and in doing so Fenstad co-
operated closely with the Ministry of Education and Research. The Ministry now
apparently believed that it was the National Abel Bicentennial Committee that had
come up with the initiative to create an Abel Prize as part of the 2002 celebrations.
However, the national committee knew nothing of any such plans. The few involved
at the Department of Mathematics at the University of Oslo had not deemed it nec-
essary to inform the national committee in the early stages of the process, and as
autumn passed and winter came without any new information or developments, the
department members lost interest in the project and the issue was nearly forgotten.11

Up until March 2001, there were only a handful of people in the mathematical
community at the University of Oslo who even knew of the plans for an Abel Prize;
this was more than eight months after the biographer Stubhaug met the Telenor
CEO Hermansen at the Risør bookstore during the chamber music festival. The
future planning of the prize would be carried out by a small group of people at
the Department of Mathematics in Oslo, where Stubhaug had his office and closest
contacts with the Norwegian mathematical community.

5 The Abel Prize “Working Group”

On March 21, Tormod Hermansen and his Telenor colleague Kjell Stahl met with
the Oslo mathematicians on one of the top floors of the Niels Henrik Abel building
on Blindern campus. The head of department Arne Bang Huseby, head of office
Yngvar Reichelt and university lecturer Nils Voje Johansen had all known of the
plans from their inception nearly one year prior. The biographer Arild Stubhaug
was of course present. From this date the University of Oslo mathematics profes-
sors Arnfinn Laudal, Jens Erik Fenstad and Ragni Piene became fully involved in
the process. Laudal was head of the scientific committee for the forthcoming Abel
Bicentennial Conference, and both Fenstad and Piene were members of the national
committee for the Abel bicentennial celebrations.

10Jens Erik Fenstad in an e-mail to Trond Fevolden 3.4.2001, JEF. Telephone interview with Tore
Eriksen 23.01.2012.
11Interview with Nils Voje Johansen, 16.12.2011.



The Abel Prize—The Missing Nobel in Mathematics? 11

During the meeting, Tormod Hermansen told of the contacts with the Office of
the Prime Minister and the two core ministries, Education and Research and Fi-
nance. He made it clear that there was a good chance of success if the government
could be persuaded to use the petroleum fund, where surplus profits from Norwe-
gian petroleum income were deposited. By the end of 2000, the fund had reached
NOK 386.4 billion (approximately USD 45 billion). He had reason to be optimistic.
Two years earlier, the government had used the petroleum fund to establish a re-
search fund of NOK 3 billion, and the profits were allocated to support Norwegian
research. With such use of the funds, the Ministry of Finance had deviated from the
normal practice to make all public spending visible in the national budget through
explicit postings. A similar exception was possible for the Abel Prize. The Under-
secretary of State of the Ministry of Finance said in a later interview that he made
it explicitly clear to both Hermansen, as well as later contacts concerning the Abel
Prize, that the Ministry would not normally encourage such a practice. Nevertheless
he also stated that it was a widely held belief in the Ministry of Finance at the time
that an Abel Prize could be important in future recruitment, within an academic field
that many in the Ministry believed to be of the greatest importance. According to
the Undersecretary of State, there existed nothing less than “a genuine enthusiasm
for promoting mathematics” within the Ministry. Initially, there was a fear in the
Ministry that an Abel Prize might become “a home-made Norwegian prize”, but
such concerns gradually diminished as the campaign for the prize proceeded into
the spring of 2001.12

The meeting with Hermansen made it clear to all those present that it was pos-
sible that they would obtain more than anyone had dared to dream. Jens Erik Fen-
stad stated that the government “could just earmark a sum of money, and leave the
profits from the interest to pay for both the award and the arrangement”.13 Her-
mansen’s passion fuelled others; “Hermansen inspired us to aim high”, Nils Voje
Johansen voiced and “his enthusiasm rubbed off on us”, wrote Jens Erik Fenstad.14

Several of those present at this initial meeting tell that they immediately understood
the importance of putting aside all potential conflicts and power struggles that of-
ten characterize the inner life of academic institutions. There were already more
than enough potential time bombs in the room. Only a few years earlier it would
have been unthinkable that Hermansen’s colleague Kjell Stahl and Professor Arn-
finn Laudal would sit together in the same room peacefully. Laudal had been a
central force behind a strong university opposition in 1990 that ended Kjell Stahl’s
short career as director at the University of Oslo after the most fierce internal con-
flict and crisis within the university since WWII. As pro-rector at the time, Jens Erik
also played a central role in this conflict [8, pp. 75–79]. Now, however, there were
important matters of mutual interest that everybody focused on.

12Telephone interview with Tore Eriksen, 23.1.2012.
13Aftenposten, 28.5.2001, “Ber om 150 mill. til Abel-pris”.
14“Noen notater . . . ” and “Abel-prisen—punkter fra historien”, NVJ. Interview with Yngvar Re-
ichelt, 13.2.2011.
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From the very beginning of the work in this group, the Nobel Prizes were es-
tablished as the “gold standard”. Before the meeting, the Oslo mathematicians had
prepared a presentation on the Nobel organization and its budget. During the meet-
ing it was decided that the committee should seek advice from the director of the
Norwegian Nobel Institute and the leader of the Norwegian Nobel Committee. It
was suggested that a fund of approximately NOK 100–150 million was required to
present an award of the same value and prestige as the Nobel Prizes.15

Before the meeting, Arnfinn Laudal had mentioned the plans to the General Sec-
retary of the Norwegian Academy of Science and Letters. The Academy, which at
this time was beginning to regain some strength after decades in decline, was more
than willing to take on the task of administrating a scientific prize on a Nobel level
[7, pp. 194–198]. As we have seen, the Academy would have also taken care of the
Abel Prize if it had been created one hundred years earlier. There was also general
agreement that the Academy would provide the prize with a greater national legiti-
macy than if it was handled by the University of Oslo. The latter option would have
most probably started one of the very common and time-consuming Norwegian de-
bates about localization, which might have jeopardized the whole project.

The meeting ended with the creation of an informal “working group” for the
Abel Prize in the Department of Mathematics at the University of Oslo. It consisted
of biographer Stubhaug, head of office Reichelt, lecturer Voje Johansen and the three
professors Laudal, Fenstad and Piene. In the time that followed, the six people in this
working group came to run an intense campaign directed towards the international
mathematical community and the national public opinion to obtain a political green
light for their plans.

6 Scientific Legitimization and Support

The members of the working group tell of an informal and level structure where each
was given more or less a defined area of responsibility, and where the development
of the work was coordinated via contact by e-mail and in frequent meetings. Partly
depending on each member’s personal networks in academic and political circles,
and influential echelons of Norwegian society, the working group contacted people
in the international mathematical community and those in Norwegian society that
would benefit the campaign which was by now really getting underway. The work
was proceeding without any major tensions and in an enthusiastic environment. The
trustful atmosphere was also most likely strengthened by the fact that the initiative
was being met with open arms from almost all arenas.

From the beginning, the working group was assured of full support from the Nor-
wegian Academy of Science and Letters where all three professors of the working

15Minutes from the meeting with Hermansen 21.3.2001 noted in Ragni Piene’s academic diary.
Ragni Piene’s private archive (hereafter RP). Minutes from the meeting with Hermansen 21.3.2001,
JEF.
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group were members. In just a few weeks after the first request, the working group
received the Academy’s formal acceptance that the institution would like to take
responsibility for the prize.16 By the end of April 2001, Oslo mathematicians Piene
and Laudal contacted the European Mathematical Society (EMS) and IMU to obtain
further support for the plans for an Abel Prize from the highest level in European
and world mathematics.

Professor Piene wrote to the president and vice-president of EMS, Rolf Jeltsch
and Bodil Branner, to tell them that they were now making plans in Norway for a
prize in mathematics “comparable to the Nobel Prize in the other sciences”. Piene
asked EMS if they wanted to support such an idea, and if so, were they willing to
write a letter to confirm “that the name of Niels Henrik Abel is indeed a good, in-
ternationally recognized name, worthy to be used for a prize of this magnitude”.
She added “in fact, it seems quite realistic, though of course it is yet too soon to
say precisely how realistic it is”. Over the duration of the day, many e-mails were
sent between Piene, Jeltsch and Branner. Jeltsch got in contact with the EMS execu-
tive committee, and stated that he had received an important message from Norway
about the establishment of a prestigious prize in mathematics. If he did not receive
any objections from the committee, Jeltsch made clear that he was going to write a
letter in support of the idea as soon as possible.17

Later the same day, EMS vice-president Bodil Branner could inform her Norwe-
gian contact that the distinguished American mathematician John H. Hubbard from
Cornell University was visiting her. Hubbard is especially known for his studies
within complex dynamics, a core field in Abel’s works. When Branner told Hub-
bard about the plans, he immediately wrote a text which—Branner added—“I think
is what you need in Norway”. In his letter Hubbard wrote that Abel’s ideas—like
those of “the very greatest scientists”—“have so permeated mathematics that one is
no longer aware where they come from”. According to Hubbard, Abel had “revo-
lutionized the theory of equations, complex analysis, number theory and algebraic
geometry”. Abel was “responsible for the deepest work on algebraic integrals of the
nineteenth century”, and “the ideas he initiated are still, 170 years later, central to
the best of mathematics”. “Abelian groups” are part of the undergraduate vocabu-
lary; “Abelian varieties”, “Abelian integrals” are part of standard topics in graduate
courses. The next day Hubbard’s panegyric appreciation of Abel was enclosed in a
letter of wholehearted support from the president Rolf Jeltsch on behalf of EMS:
“It is with great pleasure that I hear that Norway plans to honor its famous Mathe-
matician Niels Henrik Abel by introducing a prestigious prize. I can assure you that
the European Mathematical Society is enthusiastically supporting this idea. For us,
there is no doubt that his name is worthy to be used for this prize”.18

16Ragni Piene to the Norwegian Academy of Science and Letters, 18.4.2001. Final confirmation
in mail from the academy to the working group, 20.4.2001. RP and NVJ.
17Rolf Jeltsch to the EMS executive committee, 18.4, NVJ.
18President of the EMS Dr. Rolf Jeltsch to Ragni Piene, 19.4.2001. KD: Saksnr. 00/7309, FO./ESO,
Archive code 757, “Abelprisen i matematikk, Niels Henrik Abels minnefond”.
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Professor Laudal had by now got in contact with the president of IMU, Jacob
Palis, who liked the idea very much.19 IMU already awarded the most prestigious
international prize in mathematics, the Fields Medal. The Fields Medal—which his-
tory can be traced back to 1924—is awarded every four years during the Interna-
tional Congress of Mathematicians to recognize outstanding mathematical achieve-
ment for existing work and for the promise of future achievement to mathematicians
under the age of 40. The prize amount was however modest. In 2000 it was well un-
der NOK 100,000 (approximately USD 10,000). IMU did not want a new prize to
compete with the Fields Medal, and Laudal assured Palis that the planned Abel Prize
would not be comparable to any of the existing IMU prizes. As we saw in the in-
troduction, the prize was therefore also presented as “the ‘missing Nobel Prize’ in
mathematics”.

This argument was very well received by IMU, which had for one hundred years
been longing for a scientific prize comparable to the Nobel Prizes. This desire is
evident in the strength of the stories retold in the international mathematical com-
munity, about how Nobel allegedly decided not to establish a prize in mathematics
because of quarrels over a woman with the Swedish mathematician Gösta Mittag-
Leffler. Even though this story has been proven false, the almost haunting issue of
the “missing Nobel in mathematics” has been kept very much alive [11, 13, p. 17].
This might explain why the working group was soon able to present Norwegian
politicians and state authorities with overwhelming support for the plans from the
world’s leading mathematical organization.

Through President Palis, IMU expressed its “full support to [the] initiative to cre-
ate the Prize named after Abel, one of the greatest mathematicians of all time”. The
mathematical union considered the establishment of an Abel Prize no less than “the
most important project in many years for the development of mathematics world-
wide”. A prize at this level was very much welcomed and would not interfere with
the other IMU prizes such as the Fields Medal or the Nevanlinna Prize. According
to IMU leadership, the absence of a prize “similar to the Nobel Prize for Mathe-
matics is a century old one and an ever discussed missing feature of the scientific
work of our community”. The creation of the Abel Prize would therefore be most
appropriate “to fill such a serious gap”.20

7 Political Lobbying

During May 2001 the working group gathered support from the members of the par-
liamentary Standing Committee on Education, Research and Church Affairs, and
key persons in Norwegian science, culture and public life. One main objective of

19Jacob Palis to Arnfinn Laudal 1.5.2001, NVJ.
20KD, Saksnr. 00/7309, FO./ESO, Archive code 757, “Abelprisen i matematikk, Niels Henrik
Abels minnefond”. (E-mail 19.7.2001. This message was sent in different versions, in both e-mail
and letters through the spring and summer of 2001).
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the prize was, according to the working group’s four-page public presentation, “to
create better understanding of the importance of mathematics and science in today’s
society”. Mathematics, it was emphasized, is a broad discipline, ranging from “pure
mathematics to a vast number of applications within science, society and technol-
ogy”. The prize would contribute to make these applications more visible to the gen-
eral public, whether they dealt with understanding ecological systems, the study of
financial markets, oil drilling, medical diagnostics or biotechnological development.
The working group’s presentation also highlighted the Nobel Prizes as the obvious
ideal for the new prize, both in organizational and economical terms: “If handled
properly, an annual Abel Prize might draw great attention and in time achieve the
same status as the Nobel Prizes within the other sciences”.21

The responses were welcomed and strongly supported the need to make the im-
portance of mathematics much more visible to the general public. This, many of the
respondents maintained, was essential to create a much needed interest in mathe-
matics and science, and to improve the poor and declining recruitment numbers in
those fields over the past decades. Soon the working group had a list of 29 prominent
people supporting the plan. The list included the rectors of all four Norwegian uni-
versities, the presidents of the Norwegian Academy of Science and Letters in Oslo
and the Royal Norwegian Society of Sciences and Letters in Trondheim, several
other professors, a recent Minister of Education and Research and the most influen-
tial prime ministers of the past two decades, Kåre Willoch (Conservative Party) and
Gro Harlem Brundtland (Labour Party).22

The then Minister of Education and Research, Trond Giske (Labour Party), was
nevertheless somewhat reluctant. The initiative was presented to him and his office
several months earlier and nothing had happened. Some days after the first meeting
in late March, the working group invited the Minister to meet the group to be “in-
formed and initiate a dialogue [. . . ] about possible solutions”.23 But Minister Giske
was still not very enthusiastic, and made it clear that he did not have millions of kro-
ner just lying around. And if he did, he was not at all sure that he would spend them
on a mathematics award.24 In contrast, the working group had a “very encouraging
meeting” with the Under-secretary of State in Giske’s department.25

Towards the end of May, the group seemed somewhat uncertain about what their
next move should be: was it strategically wise to proceed with talks with Giske’s
Ministry or would it be better to head straight for the Office of the Prime Minister?26

21Prospectus “Abel-prisen”, spring 2001, JEF/NVJ. See also Aftenposten 27.6.2001, “Blant de
største” by Jens Erik Fenstad.
22Prospectus “Abel-prisen”, spring 2001, JEF/NVJ.
23Letter from Yngvar Reichelt on behalf of the Abel Prize working group to the Minister of Edu-
cation and Research Trond Giske, “Abelpris i matematikk”, 29.3.2001. Yngvar Reichelt’s archive
(hereafter YR).
24E-mail from Rolf Reikvam to Arnfinn Laudal, 18.5.2001, NVJ.
25E-mail from Jens Erik Fenstad to Kjell Stahl 27.4.2001, JEF.
26E-mail from Laudal to Reikvam, 16.5.2001, and e-mail from Reikvam to Laudal, 19.5.2001,
NVJ.
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They chose a broad approach. By the end of May the working group made three
parallel moves: (1) they sent a letter to Prime Minister Stoltenberg and asked for
a meeting; (2) Professor Laudal got the Socialist Left Party representative in the
Standing Committee on Education, Research and Church Affairs—who was very
enthusiastic about the plans—to present a formal question in Parliament (Stortinget)
to Minister Giske; and (3) Professor Fenstad got full-page coverage in the large
national newspaper Aftenposten, regarding the possible creation in the near future
of a prestigious mathematics award in memory of Abel.27

Together with the letter to the Prime Minister and the news coverage, the formal
question asked in Parliament raised the political temperature of the issue.28 In his
question, the Socialist Left Party representative first made clear that the prize had
to be on level with Nobel Prizes to gain the necessary prestige. He summed up
by asking “Will the Minister take action and establish a fund so that the prize can
be awarded already next year?”29 Based on the letter to the Prime Minister and
the question in Parliament, a state secretary at the Office of the Prime Minister
advised Minister Giske to meet with the Abel Prize working group. Even Giske’s
own Department of Research now urged the Minister to give Parliament a positive
answer, and invite the working group to a follow-up meeting.30

In his answer to Parliament in the beginning of June, Giske stated that he was
fully aware of the plans, and that he agreed that “the building up and strengthening
of the national competence within mathematics and the natural sciences is needed”.
He had also noted that the plans were supported in “important academic circles”. If
the government was to establish a fund “that placed a prospective Abel Prize on level
with the Nobel Prize”, then the proposal had to “be evaluated together with other
measures to strengthen recruitment and improve the scholarly quality of Norwegian
mathematics and natural science”. In accordance with the clear political signals from
both the Office of the Prime Minister and his own Department of Research, Giske
promised to look closer into the matter and invite the Abel working group to further
talks.31

27KD, Saksnr. 00/7309, FO./ESO, Archive code 757, “Abelprisen i matematikk, Niels Hen-
rik Abels minnefond” and Saksnr: 01/4385, FO./ESO, Archive code 001 “Spørsmål til skriftlig
besvarelse fra representanten Rolf Reikvam om etablering av en Abelpris i matematikk”. Aften-
posten 28.5.2001. “Ber om 150 mill. til Abel-pris”.
28E.g., Aftenposten 1.6.2001, “Økt press på Abel-prisen”.
29“Spørsmål til skriftlig besvarelse” (spørsmål nr. 421), 30. May 2001. KD, Saksnr. 01/4385,
FO./ESO, Archive code 001 “Spørsmål til skriftlig besvarelse fra representanten Rolf Reikvam
om etablering av en Abelpris i matematikk”.
30KD, Saksnr. 01/4385, FO./ESO, Archive code 001 “Spørsmål til skriftlig besvarelse fra repre-
sentanten Rolf Reikvam om etablering av en Abelpris i matematikk”. See also the letter from the
secretary of state Tom Therkildsen at the Office of the Prime Minister to the Abel Prize working
group, 18.6.2001, NVJ.
31Trond Giske’s response 7.6.2001. KD, Saksnr. 01/4385, FO./ESO, Archive code 001 “Spørsmål
til skriftlig besvarelse fra representanten Rolf Reikvam om etablering av en Abelpris i matem-
atikk”.
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8 Breakthrough

On July 18, the working group received a call from a state secretary in the Ministry
of Education and Research who asked if they could come to a meeting the following
day. This was now “a matter of great importance”. The director general in the Min-
istry’s Department of Research and a state secretary from the Ministry of Finance
would also take part in the meeting. The working group immediately got together to
prepare their answer to the main question that would come up the next day: why an
Abel Prize in mathematics?32

At the July 19 meeting, the State Secretaries of both the Ministry of Educa-
tion and Research and the Ministry of Finance emphasized that for the Abel plans
to come to fruition, it was absolutely crucial that the prize would contribute to
strengthen the position and status of the natural sciences and mathematics in Nor-
way, and increase public awareness of the societal importance of these fields of
knowledge. The working group was asked to formulate some thoughts about this
issue as soon as possible. Four days later the group presented a document on how
the Abel Prize could meet those requirements with regard to both school-aged and
university students, researchers and the general public. There already existed two
Abel associated mathematics competitions in Norwegian schools: KappAbel at the
final level of primary school and the Abel competition in upper-secondary school.
These competitions could organizationally be placed under the umbrella of the Abel
Prize, and this merger would increase media attention as well as the status of the
competitions. Students at universities and university colleges could find motivation
from the fact that the international mathematical stars would come to Norway on a
regular basis, and Norwegian mathematicians would be given unique opportunities
to create networks and work with the world’s top mathematicians and mathemati-
cal research centers. In this way—the working group argued—the Abel Prize would
also contribute to enhance public understanding of mathematics and the natural sci-
ences as important cornerstones of modern society. The Abel Prize working group
ended with a quote from the IMU president Jacob Palis: “Abel’s prize would cer-
tainly make mathematics much more visible to society and perhaps this is more
important than ever”.33

Then things really began to move. In early August the working group was again
contacted by the Ministry, which wanted them to specify the organizational struc-
tures and budget. A couple of weeks later the Ministry wanted further biograph-
ical details on Abel and his scientific contributions and importance. The working
group was now totally on home ground, and their paper “Facts about Niels Hen-
rik Abel” was immediately—and without the knowledge of anyone in the working

32Jens Erik Fenstad in two e-mails to the working group, 18.7.2001. NVJ.
33Letter from Nils Voje Johansen on behalf of the working group to the secretary of state Randi
Øverland in the Ministry of Education and Research, 23.7.2001, “Abel-prisen og rekruttering til
realfagene” og notat til KUF og Finansdepartementet, “Virkninger av en Abel-pris i matematikk”.
KD, Saksnr. 00/7309, FO./ESO, Archive code 757, “Abelprisen i matematikk, Niels Henrik Abels
minnefond”. E-mail from Jacob Palis to Arnfinn Laudal, 19.7.2001, NVJ.
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group—passed on from the Ministry of Education and Research to the Office of the
Prime Minister.34 Like many of the Ministry of Finance economists, Prime Minis-
ter Stoltenberg was educated at the University of Oslo’s Department of Economics.
And like many of the economists in the Ministry of Finance, Stoltenberg would soon
prove to be very much in favor of creating an international mathematics prize that
was believed to support the visibility of and interest in mathematics in Norway.35

The working group had no idea that Prime Minister Stoltenberg would announce
the establishment of the Abel Prize during a speech to the local Labour Party youth
organization Arbeidernes Ungdomsfylking (AUF) at the University of Oslo’s Blin-
dern campus on August 23, 2001. The working group knew that the Prime Minister
was scheduled for a meeting with the university rector later in the day, and because
of this they had provided the rector with further arguments in support of the prize.36

Three of the six working group members nevertheless walked the few meters from
the Niels Henrik Abel building to the auditorium in the neighboring Vilhelm Bjerk-
nes building, where the Prime Minister was to meet with the AUF. Here the working
group members hoped to have a quick word with Stoltenberg and deliver a letter
they just had received from the IMU president. In the letter Jacob Palis gave an as-
surance that the IMU “in every possible way” would cooperate with the Norwegian
government and the Norwegian Academy of Science and Letters “in establishing
such a wonderful prize and in implementing it in the most dignified form”.37

IMU would soon get the opportunity to do so. The Abel Prize working group
members immediately understood what was coming when they saw that all of their
bureaucratic and political contacts from the past month were present at the Prime
Minister’s meeting with the local branch of AUF at Blindern.

9 High Expectations

A press release from the Office of the Prime Minister later that same day stated that
“the Government wanted to heavily increase the focus on mathematics and natural
sciences”. The Abel Prize should “serve as an encouragement for both students and
researchers alike” at a time “when great parts of the Western world experienced a
decline of interest in these fields of knowledge”. The prize was intended “to make
visible the importance of mathematics and the natural sciences”. Prime Minister
Stoltenberg hoped the prize would “improve the recruitment of young people to

34The paper “Fakta om Niels Henrik Abel” was sent from the Ministry of Education and Research
to the Office of the Prime Minister til SMK on the 22.8.2001. KD, Saksnr. 00/7309, FO./ESO,
Archive code 757, “Abelprisen i matematikk, Niels Henrik Abel minnefond”. Interview with Nils
Voje Johansen, 16.12.2011.
35Telephone interview with Prime Minister Stoltenberg 7.11.2011.
36E-mail from Jens Erik Fenstad to Helge Holden, 2.11.2001, NVJ.
37Telefax from Jacob Palis to the Abel Prize working group, 22.8.2001. KD, Saksnr. 00/7309,
FO./ESO, Archive code 757, “Abelprisen i matematikk, Niels Henrik Abels minnefond”.
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mathematics and the natural sciences, the strengthening of Norwegian mathematical
research, and the image of Norway as a knowledge society”.38

The Labour Party government was not alone in wanting to strengthen the posi-
tion and status of mathematics and the natural sciences. From around the turn of
the century, this topic was considered to be one of the most important issues by
all major Norwegian political parties. The first OECD Programme for International
Student Assessment (PISA) survey in 2001 presented a gloomy picture of Norwe-
gian students’ knowledge about, and attitudes towards, mathematics and the natural
sciences. This was a serious wake up call that seemed to confirm what had been an
increasing suspicion recent years: the Norwegian educational system was in poor
shape. High quality competence in mathematics, natural sciences and technology
was now seen as the key factor to improve the future capacity for innovation and
economic growth in the so-called global knowledge economy.

This shift was evident in all areas of Norwegian education and research policy.
In research, the creation of the Norwegian Centres of Excellence system in 2002
represented a serious break with the traditional and essentially egalitarian national
policy in that field. In higher education, the so-called Quality Reform in 2003 was
inspired by similar concerns, as was the Knowledge Promotion reform in primary
and secondary schools in 2006. Since 2002, both the center-right and the center-
left governments have presented and updated their own strategic plans to support
mathematics, natural science and technology studies and research. These fields of
knowledge were all matters of increasing political attention, and simultaneously
more elitist perspectives gained ground in the Norwegian debate regarding primary
and secondary schools, higher education and research. The Abel Prize plans en-
compassed the very essence of this political wave as it was about to break over the
Norwegian political landscape [8, pp. 115–144].

The need to improve within the fields of mathematics, natural science and tech-
nology in order to succeed in the developing so-called knowledge economy thus
became an axiom of all major Norwegian political parties—from the Socialist Left
Part on one side to the right-wing Progressive Party on the other—from about the
turn of the century. All the members of the parliamentary Standing Committee on
Education, Research and Church Affairs thus fully supported the prize when it was
announced, and basically for the same reason: fear that the Norwegian educational
system—from top to bottom—was unprepared to meet the challenges from the de-
veloping knowledge economy when it came to mathematics, natural science and
technology. The Conservative Party representative stated that Norway “was facing
a general natural sciences crisis”, and that any measure taken to counteract this was
“most appropriate”. The Liberal Party committee member hoped the prize would
help to turn the “decay of natural science in this country”. The former minster of
education and research and Christian Democratic Party representative said the prize
might come to mean just as much for natural science in Norway “as the Nobel Prizes
means for science in Sweden”.39 The right-wing Progressive Party had for a long

38Press release 155/2001, 23.8.2001. The Office of the Prime Minister.
39Aftenposten, 24.8.2001: “200 millioner kr til nyopprettet Abel-pris”.
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time warned against the economical consequences of a decline in the “hard subjects”
within the national educational system, and the party’s representative had early in
the process encouraged the Abel Prize working group to ask for more money.40

On the other side of the political spectrum, the Socialist Left Party representative
became—as we have seen—the most important advocate of the committee when he
brought the question about the prize to Parliament in the end of May.

A significant section of the international mathematical community now hoped
that they would soon be enjoying a mathematical counterpart to the Nobel Prizes.
Because of the frustration caused by—as IMU president Palis had put it—“a century
old one and an ever discussed missing feature of the scientific work of our commu-
nity”, the history about the Abel Prize and how it “went to heaven” with the disso-
lution of the union between Sweden and Norway in 1905, did resonate extremely
well in the international mathematical community. The story brought forward by the
Abel Prize working group was nothing less than the story of how one hundred years
earlier Norway had been on the verge of creating a prize in mathematics almost as
prestigious as the Nobel Prizes, and at the same time and in the same kingdom! This
was undoubtedly the single most important reason for the overwhelming and abso-
lutely decisive support from the highest level in European and world mathematics
via the EMS and IMU.

The establishment of the Abel Prize one hundred years later could therefore also
be seen as the righting of old wrongs against mathematics. In influential parts of the
international mathematical community, the Abel Prize was from the very beginning
clearly seen as a very close relative to the Nobel Prizes, both historically and ge-
ographically. One week after the announcement of the prize, Science—the journal
of the American Association for the Advancement of Science—stated it clear and
simple: “For mathematics, Abel = Nobel” [1]. President of EMS Rolf Jeltsch wrote
in his annual report that the creation of the Abel Prize would have enduring conse-
quences for mathematics both in Europe and in the rest of the world. In a short time
it also became common for mathematicians internationally to speak about the Abel
Prize as the “Nobel Prize in Mathematics”.41

However, some Canadian mathematicians soon became concerned about what
the creation of the Abel Prize would mean for the status and prestige of the Fields
Medal, and wrote an open letter to their prime minister: According to the Canadian
mathematicians, few people were aware that John Charles Fields was a Canadian,
that the prize was originally a Canadian idea and that the medal foundation was in
Canada. They argued, largely in vain, that the newly established Abel Prize had to
be met by the Canadian government with a strong manifestation of the Canadian
identity of the Fields Medal and a marked increase in the modest prize value.42

IMU—which awarded the Fields Medal—was nevertheless relatively clear in its

40Nils Voje Johansen’s meeting with Ursula Evje (FrP) in Parliament (Stortinget) 23.5.2011, NVJ.
41President Rolf Jeltsch to EMS, December 2001, NVJ.
42“Open letter to the Prime Minister of Canada”, 7.5.2002. From Nassif Ghoussoub, Arvind Gupta
and Robert V. Moody. YR.



The Abel Prize—The Missing Nobel in Mathematics? 21

support for the new Abel Prize as a mathematics counterpart to the Nobel Prizes.
And obviously the generous funding of the prize from the rich Norwegian state
played an important role in gaining this support from large parts of the international
mathematical community. The marketing of the Abel Prize during the first years thus
came to show clear similarities to the establishment of the Nobel Prizes in the early
twentieth century; both prize winners and their often very influential scholarly com-
munities almost systematically praised their respective prizes very highly, thereby
increasing the prestige of both the prizes and the academic elites that received them.
In these processes, media attention has been of vital importance. Media fascination
from the start seemed to reinforce a general will to believe that a prize that entails
so much money as well as so much prestige simply must be just and important [5,
especially pp. 268–272].

In summary, it is fair to say that when the initiative was finally brought out in
the open in the spring of 2001, the entire spectrum of Norwegian political parties
and significant and influential sections of the international mathematical commu-
nity were fervent in their desire for the prize, but for entirely different reasons. For
many years the campaign started by Abel’s biographer Arild Stubhaug had garnered
polite interest but little true support among Norwegian mathematicians. When the
Telenor CEO and Labour Party veteran Tormod Hermansen came into the picture
in the summer of 2000, the issue was put into a much larger cultural and political
context, and soon the Abel Prize initiative proved to be much more in tune with the
times than anybody had expected: Norwegian politicians across the whole politi-
cal spectrum—from the Socialist Left Party to the Progressive Party—saw the prize
as an opportunity to promote mathematics and science and counteract an alarming
decline in these fields within the national educational system, as well as a way to
promote Norway as a knowledge society. And the international mathematical com-
munity finally—after one hundred years—got a prize they both hoped and believed
could equal the Nobel prizes. Well underway, the process was also characterized by
close and informal contacts among academics, politicians, bureaucrats and indus-
trial leaders, relationships that would possibly be much harder to manage in a larger
political system.

The story of how the Abel Prize came about is a piece of contemporary national
history about how politics could be made off the public scene through close net-
works in a small nation. The story would also almost repeat itself in 2005 when
the Kavli Prizes in Astrophysics, Nanoscience and Neuroscience were established
with an ambition to become as important for the development of these fields of
knowledge in the 21st century as the Nobels had been for physics, chemistry and
medicine in the 20th. As the Abel Prize, the Kavli prizes would also be awarded by
the Norwegian Academy of Science and Letters. And again the establishment was
a result of a close collaboration between an industrial leader, scientists, bureaucrats,
and the Ministry of Education and Research. Only this time the sponsor provid-
ing the necessary funding to reach the level of the Nobel prizes was not the ever
richer Norwegian state but the US-based Norwegian-born entrepreneur, billionaire
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and long time science benefactor Fred Kavli.43 The story of the Abel prize is also an
account of how cultural heritage can be recruited as a resource for science policy:
how the prize could bring together politicians, bureaucrats and mathematicians for a
spectrum of cultural-political purposes from differing constituencies working with
a variety of interests.

10 Nobel Level?

It is too soon to accurately present an authoritative historical judgment of the first
ten years of the Abel Prize. Nevertheless, it is possible to make some tentative ob-
servations regarding the extent that the prize has succeeded in establishing its repu-
tation and status, both in the academic community and in the greater public, both in
Norway and internationally.

It was a bold ambition to establish the Abel Prize as a mathematical counterpart
to the Nobel Prizes, but as we have seen, the approach was warmly welcomed by the
international mathematical community. This support was not only important but also
absolutely necessary for the subsequent political acceptance of the prize. During
the first ten years, the prize seems to have been firmly established, not the least
because the winners are chosen by an international committee whose members are
nominated by the EMS and IMU. Unlike the national Swedish Nobel committees
and the national Norwegian Peace Prize committee, the Abel committee leans on
the expertise of the highest European and world organizations within the field. So
far few controversies have risen from the Abel awards. After just two years, and the
awards to Jean-Pierre Serre (2003) and the shared prize to Michael F. Atiyah and
Isadore M. Singer (2004), the mathematics section of the US National Academy of
Sciences sent their most sincere congratulations:

We extend our congratulations to the Abel Prize Committee, to the Nor-
wegian Academy, and to the Norwegian Government, for their outstanding
management of the Abel Prize these two first years. [. . . ] In two unerringly
placed awards, you have made the Abel Prize the leading international prize
in Mathematics—the true “Nobel Prize” of Mathematics.44

In spite of the strong academic support, the prize has had problems in obtaining
media attention both in Norway and internationally. To increase the general aware-
ness and knowledge of the prize, key persons have tried to establish more formal
links between the Abel Prize and the Nobel Prizes. Former IMU President David
Mumford was a member of the first Abel committee, and he had very high ambitions
for the prize. To ensure that the Abel Prize would reach “the general consciousness

43http://www.kavliprize.no.
44Letter from Richard V. Kadison, Chairman for the mathematics section in National Academy of
Sciences, USA, to the Norwegian Academy of Science and Letters, 28.4.2004. The archives of the
Norwegian Academy of Science and Letters (hereafter DNVA), file: Abelkomiteen.

http://www.kavliprize.no
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of the world” in a way comparable to the Nobel Prizes, he advocated to use more
actively the history behind the prize. This history—according to Mumford—showed
“that the Abel Prize is logically the long missed mathematics component of the No-
bel awards”. Mumford thus suggested that the president of the Norwegian Academy
of Science and Letters should get in contact with its Swedish sister academy to ask
if they could officially present the creation of the Abel Prize during the 2002 Nobel
Prize award ceremony in Stockholm.45 The following year, the new IMU president
John Ball followed up on Mumford’s idea. If the Norwegian Academy of Science
and Letters did not have any objections, he would very much like to try to persuade
the Royal Swedish Academy of Sciences to, at least, “give a recognition of the Abel
Prize”.46

Both within the Norwegian Academy and the Niels Henrik Abel Memorial
Fund Board it was generally known that such recognition from either the Swedish
Academy or the Nobel Foundation was not likely given the traditional and strong
exclusivity of the Nobel Prizes. At the same time, the Norwegians enjoyed the ref-
erences in print and media stating that the Abel Prize was a Nobel in mathemat-
ics.47 It took six years for the New York Times to include a full-page article on the
Abel Prize; by then it was—according to the newspaper—“widely regarded as the
Nobel of mathematics”.48 The Nobel Foundation was not at all pleased with the
repeated presentation of the Abel Prize as a Nobel in mathematics, and after some
years they took action to ensure that this practice at least was not officially pro-
moted by the Abel Prize itself. In 2008 the foundation sent a stern message to the
Norwegian Academy: “The Nobel Foundation has noticed that the ‘Abel Prize’ in
some contacts with media, and in some e-mails, has been presented as ‘the Nobel
Prize of Mathematics’.” Further, the letter stated that it was a registered trademark,
and the Norwegian Academy should know that the Nobel Foundation always had
and always would protect this trademark “from degeneration and watering down
with great care and determined efforts”. Those responsible for the Abel Prize were
strongly requested to “carefully avoid” such practice in the future “in a, for us, mat-
ter of great importance”.49 Apart from this—and although the Abel Prize has not
been the subject of much media attention in Sweden—it seems that the Abel Prize

45E-mail from David Mumford to the president of the Norwegian Academy of Science and Letters,
Lars Walløe, 29.10.2002, NVJ.
46E-mail from IMU President John Ball to Chairman of the Abel Committee Erling Størmer, Chair-
man of the Abel Board Jens Erik Fenstad, and General Secretary of the Norwegian Academy of
Science and Letters Reidun Sirevåg, 17.11.2003. JEF.
47See for example F. Thomas Bruss, “Homage to the Abel Prize. Homage to Norway” in EMS
Newsletter June 2005, NVJ.
48New York Times, 31.5.2009: “Complex Math, Simple Sum: 3 Awards in 5 Years” http://www.
nytimes.com/2009/06/01/nyregion/01nyu.html (visited 10.12.2011). The theme of the NYT article
was that in the short history of the Abel Prize, already three professors at New York University had
received the prize.
49Letter from the Nobel Foundation to the Norwegian Academy of Science and Letters, 21.4.2008,
DNVA.

http://www.nytimes.com/2009/06/01/nyregion/01nyu.html
http://www.nytimes.com/2009/06/01/nyregion/01nyu.html
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has been received in a rather welcoming way also there. Perhaps it helped that the
Swedish mathematician Lennart Carleson was awarded the Abel prize in 2006, as
three years later, the leading Swedish newspaper Dagens Nyheter presented both
the Fields medal and the Abel Prize as the only prizes in mathematics on “Nobel
level”?50

Even though only very few Norwegian mathematicians were involved in the plan-
ning for an Abel Prize, the whole Norwegian mathematical community did receive
it with open arms. Initially it caused some frustration that the planning was carried
out in secrecy as an exclusive project of a small group of Oslo mathematicians.
For example, in 2001 Professor Helge Holden from the Norwegian University of
Science and Technology in Trondheim was heading the national committee for the
Abel bicentennial celebrations together with Jens Erik Fenstad from the University
of Oslo. Holden was not very pleased that he, in this position, knew nothing about
the prize plans until he read about them in the newspapers.51

When the Abel Prize plans became known to the public at the end of May 2001,
both the Royal Norwegian Society of Sciences and Letters in Trondheim (in the
middle of the country) and a planned university in Abel’s home county Agder (in
the south) wanted their share of the prize. The Academy in Trondheim—the oldest in
the country—pointed to the fact that Abel had been an Academy member. In Agder,
it was suggested that the planned university would be called the Niels Henrik Abel
University. It was then, they argued, “a natural consequence that the prize would
be awarded by the university which carries his name”.52 When the plans became
known outside Oslo, they had nevertheless been developed to a point where there
was little room for a traditional Norwegian regional or center vs. periphery debate.

Additional activities were soon put in place to secure support from Norway’s
mathematicians and universities. Parts of the official program took place in Trond-
heim, central Norway, Bergen in the west and Kristiansand in the south. The Nor-
wegian Mathematical Society was thoroughly revitalized in numerous ways. Most
importantly, the society was put in charge of the annual and week-long international
Abel Symposia which since 2004 has attracted cutting edge mathematicians from
all over the world, and every year different Norwegian universities have been given
special responsibilities for the symposium. Abel stipends have been created to sup-
port recruitment at the universities, and there are numerous activities in Norwegian
schools connected to the prize, most notably the primary school KappAbel compe-
tition and the upper secondary school Abel competition.

The Niels Henrik Abel Memorial Fund was from the start worth NOK 200 mil-
lion (approximately USD 35 million), NOK 50 million more than the Abel Prize

50Dagens Nyheter, 11.10.2009, “Matematik i praktiken”.
51E-mails between Jens Erik Fenstad and Helge Holden 2.11.2001, JEF.
52Letter from the President of the Royal Norwegian Society of Sciences and Letters in Trond-
heim, Karsten Jacobsen, to the Abel Prize Working Group, 12.6.2001, NVJ. Letter from the Agder
County Council to Prime Minister Kjell Magne Bondevik (Christian Democratic Party), 2.4.2002,
“Sørlandet som utdelingssted for matematikkpris og lokaliseringssted for fondstiftelse”. KD, Sak-
snr. 00/7309, FO./ESO, Archive code 757, “Abelprisen i matematikk, Niels Henrik Abels minne-
fond”. The new university was finally called the University of Agder.
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working committee had asked for. This came close to an embarrassment for the
mathematicians, as the symbolism of asking for 200 million at the bicentennial
should be more than obvious. The NOK 200 million fund also provided almost
exactly the income the group had wanted: a budget of NOK 12.4 million to cover
the prize (NOK 6 million), administration and associated activities, such as the Abel
Symposia and the school competitions.53 These additional activities were also im-
portant from the view of Norwegian politicians. Because of this, the Abel Memo-
rial Fund Board soon created a Child and Youth Committee to support and fund
mathematical activities all over the country. A mathematics teachers’ prize was also
established in 2005 in honor of Abel’s teacher, Bernt Michael Holmboe. An annual
Holmboe Prize of NOK 50,000 (approximately USD 8,500) is awarded in Abel’s
old school, Oslo Cathedral School, by the Minister of Education and Research the
day before the Abel Prize itself, and in the presence of the Abel Prize laureate.

11 Conclusion—And the Need for Future Adjustments?

In conclusion, it is fair to say that the Abel Prize has gained significant reputation
and prestige in the international mathematical community, and has injected new life
into Norwegian mathematics. This article has explained how the prize was estab-
lished in light of multiple intentions and ambitions among a great variety of actors
and stakeholders, both nationally and internationally, during a short period of time
in 2000 and 2001.

From the outset, the plans for an Abel Prize in mathematics were presented by
Abel’s biographer, the poet and author Arild Stubhaug, without gaining much sup-
port from the Norwegian mathematical community. The plans were nevertheless
eventually warmly embraced by the major Norwegian political parties, all increas-
ingly concerned with educational performances in mathematics, natural science and
technology and the future capacity for innovation and economic growth in the so-
called global knowledge economy. In the process of creating political awareness of
the prize plans, Stubhaug initially got substantial help from the prominent Labour
Party politician and industrial leader Tormod Hermansen. But it was also of crucial
importance that Norwegian mathematicians took real interest in the project in the
spring of 2001. The small group of mathematicians at the University of Oslo was
instrumental in collecting the decisive support from the highest level in European
and world mathematics via the EMS and IMU. Without this strong international aca-
demic support, it is not likely that the plans would have seen a political breakthrough
in Norway.

For the international mathematical community in large, and especially for EMS
and IMU, the Abel Prize was an opportunity finally—after one hundred years—
to establish “the missing Nobel in mathematics”. For Norwegian mathematicians
the Abel prize became a welcome opportunity to celebrate one of their own grand
heroes and increase their international attention and cooperation. And, even though

53The fund was placed in government bonds with a ten-year fixed interest rate of 6.2 %.
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the prize was unanimously supported by all major Norwegian political parties, the
Labour party government could proudly present a prize that—as previously noted—
aimed to “improve the recruitment of young people to mathematics and the natural
sciences, the strengthening of Norwegian mathematical research, and the image of
Norway as a knowledge society”.54 In this way the story of the creation of the Abel
Prize stands as no exception when it comes to how it promised pride and prestige
to important stakeholders. But the story to some extent stands out in the way both
political authorities and national and international academic communities could read
quite different desires and ambitions into the prize in a given place at a given time:
the wealthy oil-nation Norway concerned with educational performances at the time
of the Niels Henrik Abel bicentennial. In a matter of months, this nexus of desires
and ambitions gave rapid and strong momentum to the establishment of a science
prize that just a handful of people could only imagine one year earlier.

There is nothing to suggest that the broad support obtained through the process
described in this article has diminished in any way during the first ten years. How-
ever, the finance model changed from 2012 because of the steep fall in interest rates
during the international financial crisis. The fund was liquidated, and the Abel Prize
was now listed clearly as a separate post on the national budget. This of course
means greater insecurity for the future, but in the first year after the change the
Abel budget was increased by a few hundred thousand NOK. As we have seen, the
prize has also had problems with low levels of media attention. In addition, it has
been especially difficult to ensure that the laureates’ work is understandable to the
general public. As the need to increase the popularity and visibility of mathematics
was a major argument in obtaining political support for the creation of the prize,
these problems are challenging. The Abel Prize working group stated in the spring
of 2001, the prize would “demonstrate the numerous mathematical applications in
science, society and technology”; the prize has only lived up to this promise to a
small extent.

It would appear that first and foremost the Norwegian Academy of Science and
Letters and the Abel committees wanted to firmly establish the prize via uncontro-
versial awards to the grand old men of “pure” mathematics. In the short run, this
seems to have been a successful strategy. In the longer run however, this strategy
may prove somewhat risky, when much of what is of most—at least obvious—
importance for the rest of the world, goes on in more applied parts of the broad
mathematical field. A systematic opening of the prize towards more applied areas
of mathematics could instigate controversies within the mathematical community
and lead to more controversial awards. It might also increase the level of outside
and media attention. Such an adjustment would be a bold one after just ten years,
but then again, the history of the Abel Prize—both the long and the short one—is
paved with bold ideas.
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2008

John G. Thompson
and

Jacques Tits

“for their profound achievements in algebra and in particular for shaping modern
group theory”



Some Reflections

John G. Thompson

“My enthusiasm for mathematics had perhaps had as its principal basis my
horror of hypocrisy; hypocrisy, in my eyes, meant my Aunt Séraphie, Mme
Vignon, and their priests. In my opinion, hypocrisy was impossible in math-
ematics, and in my youthful simplicity, I thought it was also the case in all
sciences to which I had heard they were applied. What were not my feelings
when I perceived that nobody could explain to me how it came about that
minus multiplied by minus gives plus (−×−=+)? (This is one of the fun-
damental bases of the science called algebra.)”1

The entire chapter, indeed the entire work is vibrant and gossipy. My own diffi-
culties with minus multiplied by minus show that math had the power to engage my
full attention. I asked my father why this rule was true, and when he could not ex-
plain it, I started crying, tears of frustration welling up. Such a passionate response
to incomprehension was an indicator of possible future devotion to math, which my
life has borne out.

My older brother showed me how to cast out nines as a check on the accuracy
of computed sums. It was not until I learned of modular arithmetic in the first few
pages of the Disquisitiones that I understood why it works.

Having read Stendhal’s autobiography, I sense his genuine interest in math,
which was superceded by his commitment to literature. In my case, there were no
viable alternate career paths to impede my choice.

It was my good fortune to team up with Walter Feit. Our work generated inter-
est and results in the theory of finite groups. The program of Gorenstein to classify

1Stendhal, The Life of Henry Brulard, Chap. 34.
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all the finite simple groups was begun energetically by him, carried forward by
Lyons and Solomon, and fundamentally aided by Aschbacher, and by Aschbacher
and Smith. The simple groups discovered by Janko, Conway, McLaughlin, Sims,
D. Higman, Lyons, O’Nan, M. Hall, G. Higman, Held, Norton, Harada, Rudvalis,
Fisher, Suzuki, Ree, and Steinberg, and the deep work of Steinberg and Tits con-
tributed mightily to the completion of the classification of all finite simple groups.
The combined efforts of these mathematicians and others too numerous to mention
here have created a body of results which I hope and expect will serve diverse areas
of scientific research.
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John G. Thompson in Oslo, 2008 (Photo Harald Hanche-Olsen)

John G. Thompson (2012)



A Biography of Jacques Tits

Francis Buekenhout

1 1930–1944

1.1 A Belgian Mathematician

Jacques Léon Tits was born on August 12, 1930, in Uccle (Ukkel in Dutch) in
Belgium, a southern township of Brussels. All of his publications, except one, are
signed Jacques Tits and this is how I [Francis Buekenhout] will refer to him from
now. Tits, as well as his ancestors over several generations, are Belgians. However,
he became a French citizen in 1975. This was required by French law in order to be-
come a Professor at the Collège de France. Tits always remained faithful to Belgium
and proud of his roots despite some bad experiences.

This article is based on a conversation between Jacques and Marie-Jeanne Tits, and Francis and
Monique Buekenhout, which took place in the apartment of Tits in Paris on June 30, 2011.
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1.2 Ancestors

I have had the privilege to have in my possession a family document1 centered on
Yvonne Tits, the youngest sister of Jacques. This document contains an accurate list
of the ancestors of Jacques Tits going back to 1719. The text also includes a chapter,
which we will return to, written by Gertrude Tits (1905–2006) who was known to
Jacques’s family as Aunt Gertrude.

Another most valuable source has been the “Interview with Jacques Tits”2

by Francis Buekenhout, Bernhard Mühlherr, Jean-Pierre Tignol and Hendrik Van
Maldeghem.

1.3 Parents

Jacques’s father Léon Tits (1880–1943) was a mathematician and received his edu-
cation from the Université Catholique de Louvain. His mother, Maria Louisa André
(1889–1957) was a piano teacher. She used to be called Louisa, and I will do so
hereafter. Léon and Louisa got married in 1917. Their first child lived only 5 weeks.
However, they had four other children, all of whom received a degree in science
at the Université libre de Bruxelles: Jean (1923–1993) was awarded a degree in
civil engineering; he married Violet de la Ruwière (1921–). Ghislaine (1926–2003)
was awarded a degree in chemistry (1948). She married Jean-Claude Piret (1926–
2003), who was the best friend of Jacques and a mathematician. Yvonne (1929–)
was awarded a degree in physics (1951). She married Roald Bingen (1929–1963),
an engineer. Jacques, born on August 12, 1930 in Uccle, was awarded his first de-
gree in mathematics (1948). He married Marie-Jeanne Dieuaide (1932–), a historian
educated at the Université libre de Bruxelles. They met in 1953 at the Academia Bel-
gica in Rome where both were living as researchers of the Belgian F.N.R.S. (“Fonds
National de la Recherche Scientifique”). They married in Brussels in 1956, and had
no children. From 1956 on, they have been inseparable: For example, when Tits
entered a lecture room to teach, Marie-Jeanne would leave, and come back when,
according to her, time was over. The year after Jacques got married, Louisa died
feeling secure that someone was going to take care of her youngest son.

There are more mathematicians in Tits’s family, namely the two children of Ghis-
laine and Jean-Claude Piret: Claude Piret (1954–) was awarded a degree in math-
ematics from the Université libre de Bruxelles. She married the mathematician Di-
dier Misercque (1957–). Their son Corentin (1991–) is an engineer. Jacques Piret
(1959–) was awarded a degree in mathematics from the Université libre de Brux-
elles.

1Johan D’Hondt, Livre de famille préparé à l’occasion du quatre-vingtième anniversaire d’Yvonne
Bingen-Tits (130 pages, February 2009). Warm thanks are due to my friend Franz Bingen who
provided me with this text.
2The interview was made in Paris, September 21, 2006, and will appear in “The Collected Works
of Jacques Tits”, The Publishing House of the European Mathematical Society, Zürich.
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1.4 Grandparents

The parents of Léon were Auguste Tits (1850–1901) and Anne-Marie Rigaux
(1853–1928). The parents of Louisa were Louis André (1851–1927) and Cornelia
Becquaert (1852–1912). Auguste became an orphan at the age of three. He was wel-
comed and raised by his aunt Adèle and her brother Coët, who lived in Louvain. He
was a very good pupil at school. He got a job at the Volksbank (later called Krediet-
bank) and he was a director there. His aunt and uncle were good friends with their
neighbors, the Rigaux family who were merchants and whose daughter Anne-Marie
would become the spouse of Auguste. They had been friends since childhood. When
a young man visited Mr. Rigaux in order to ask if he could marry Anne-Marie, the
father consulted his daughter, and she again consulted her friend Auguste. The lat-
ter ran immediately to the father and asked the same. Their marriage was celebrated
soon thereafter. Gertrude explained that these people were all bilingual. French was
used in official matters and for studies. The Flemish language of Leuven (Louvain)
was used in daily life. Not long after, French became the exclusive language of the
Tits family.

Auguste Tits and Anne-Marie had eight children and Léon was the third. He was
reputed to have been the quietest child in the world in contrast to his elder brother.
Léon was extremely docile, and he cried a lot. He was very clever, gifted in math-
ematics and music, and he was a very good pupil. Apparently, his mother always
thought that he would become a priest, which he eventually became. He made bril-
liant studies at the Université Catholique de Louvain, where he later became an
assistant. Furthermore, he won the prestigious “Concours Interuniversitaire”, and
he became a Professor at the Institut Saint-Louis, Bruxelles, which was and remains
a top level catholic secondary school in Brussels.

In the interview with Tits (loc. sit.), Jacques stated “. . . he [Léon] was a very timid
man. In fact, he was about to become a full professor at the University of Louvain
when he left religion, and then he was thrown out. At that time it was very difficult
to find a job in any official position, and in order to earn a living . . . he had to resort
to private tutoring, and it took a lot of his time and he was . . . really overworked.
Furthermore he smoked, and that is probably why he died rather early . . . at the age
of 63.”

At some point in 1914, Léon visited his superior, Cardinal Mercier, and explained
that he had lost his faith and that he felt it to be dishonest to remain in the Church.3

I continue with the testimony of Aunt Gertrude. In those times, the Church was
dominated by the crisis of modernism to which Rome was violently opposed. This
resulted in many conscience problems. In 1914, Léon left the priesthood. It was a
major drama in his mother’s life. Léon faced the vindication of all those who were
right-believers. However, Cardinal Mercier did all he could do in order to help him.
He found a position for him in the United States as a university professor. Léon was
too afraid to cross the ocean in times of war and he refused. He was also reputed

3This statement is due to Jacques.
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to be fearful, refusing, in particular, to visit a dentist despite his awful sufferings.
He got a position from the official “schools network” as a professor at the Athénée
d’Arlon. The mayor of the city established such a cabal against him that he was
forced to leave. From then on he lived from very badly paid courses he could give
at private institutes or private lessons. All those who benefited from his courses
remembered his remarkable pedagogical talent. In 1917, he married Louisa André,
an excellent pianist. He had known her at home in his youth. She was the daughter
of a cousin of his father. She was a warm, cordial and deeply honest woman. Later
in life, Léon suffered from Parkinson’s disease.

1.5 Child Prodigy—Always Ahead of His Age and of His Time

The Tits family was living in their house at 21 Avenue Victor-Emmanuel III in Uc-
cle. The age difference between Yvonne and Jacques is one and a half year, and in
their early childhood they were together most of the time. When Louisa explained
something to Yvonne, Jacques got it as well, as by osmosis. It soon became clear
that he was learning with an exceptional facility. He could read and write before
the age of five. At the École Decroly, where he was from 1936 to 1940, he im-
mediately entered the second primary class, where he was from 1936 to 1940. In
1940, he should have entered the sixth and final year. However, Yvonne entered the
first year of secondary school at the Athénée d’Uccle. Their mother insisted that
the school accept Jacques for an entrance examination. Thus, he skipped the sixth
and last primary class and entered secondary school at the age of ten. He studied
there from 1940 to 1944. In the interview with Tits (loc. sit.), Jacques stated “When
I was very young, say one and a half years (laughs) I got very quickly interested
in mathematics, and my father explained things to me; for instance, very early he
told me how to use complex numbers to solve algebraic equations, and so on. All
that was fantastic for me, and I learned very quickly a lot of things especially in
analysis.” At the family table, his elder brother asked his father mathematical ques-
tions. Jacques captured pieces of the conversations, and he reconstructed the facts.
He mastered second degree equations when he was only nine and in the fifth pri-
mary class. In 1942 his elder brother entered the Faculty of Engineering, called the
École Polytechnique. Jacques was now hearing of differential and integral calculus.
As always, he wanted to understand. A great reference on the matter was a treatise in
two volumes by Charles-Jean de La Vallée Poussin (1866–1962), the most reputed
Belgian mathematician in the first half of the 20th century. These volumes were on
his father’s bookshelves. His father forbade Jacques to look at these books because
he feared that the boy was going too fast and that he might neglect his courses in
school. At the time, Léon was severely ill and remained in bed. Profiting from this
situation, Jacques got the two volumes and read them. Soon after, he went to his
father saying: “Now I know.” In April 1943, his father passed away. Jacques under-
stood the economic pressure put on his mother and his family. Some months later,
he was a pupil in the fourth class of secondary school. He gave lessons to his brother
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Charles Nootens (right) and Jacques Tits (left)

and friends, explaining topics in their course on differential and integral calculus in
the second year at the École Polytechnique. At that time, the Université libre de
Bruxelles was closed. The students had to work on their own in little groups. They
had to pass examinations before a State Jury or at another university. Jacques was
helping a friend from the final year to prepare for the entrance examination at the
École Polytechnique.

1.6 Charles Nootens and Petit Jacques

Tits entered the fifth year at the Athénée d’Uccle in September 1944 at the age of
14. School started with a delay of several days. Indeed, since May 1940, Belgium
had been occupied by the German troops and ruled by the Nazi regime. Now, after
the fierce battle of Normandy the Allies were progressing through Normandy and
the North of France. The liberation of Brussels took place on September 3 and 4. It
was a time of popular celebration and reorganization in all respects.

Tits was in the class taught by the mathematician Charles Nootens, who received
his degree in mathematics at the Université libre de Bruxelles in the thirties. He
passed away in 1999. We have a photo of Tits and Nootens from the nineties.

Nootens always called him “Petit Jacques,” as he was indeed younger than the
other pupils by two years and he was not tall for his age. Nootens had a strong
grip. Soon after “Petit Jacques” became his pupil and at the beginning of some les-
son, he sent Tits to the blackboard and asked him to state the theorem he had to
study. “Petit Jacques” started a proof. He was interrupted by the teacher who said
he wanted the statement of the theorem first. “Petit Jacques” replied that he would
reconstruct the statement at the end of the proof. Nootens said: “You did not learn
your lesson, you get a zero. Go back to your seat.” Many mathematicians who had
the privilege of listening to Tits later on, will recognize this style of his: recon-
struction from the memorized basics. Over the months, Nootens realized that “Petit
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Jacques” was a mathematical genius. He realized that the boy already knew calcu-
lus, and Nootens realized that it would be advantageous for Tits to skip the last year
of high school and actually to interrupt the ongoing fifth year as well. Nootens found
out how to proceed. In Uccle, one is within walking distance of the Université libre
de Bruxelles. In November 1941, when the Nazi Regime increased its pressure, the
Administration Council decided to close the university. In September 1944, with the
liberation, the Université libre de Bruxelles started to reorganize itself rapidly with
the goal of starting a short academic year on January 1, 1945, which was late by
three months with respect to the traditional beginning. In September 1944, Nootens
knew and told Jacques that he might perhaps enter the university right away. How-
ever, how could it be done without a high school diploma? Again, Nootens knew
of a solution. In order to enter the École Polytechnique, candidates had to pass an
entrance examination extending over a week in October. If “Petit Jacques” passed
the examination, he would be accepted as a student, and he would even be admit-
ted to the study of mathematical sciences. Tits decided to do so. Nootens knew that
there was a subject included in the examination that was not studied in high school,
namely spherical trigonometry. He lent a book of about 60 pages on that subject to
“Petit Jacques.” The book was returned the next day, to the teacher’s surprise. Was
“Petit Jacques” unwilling to study it? Tits said that he had studied the essentials and
that he could reconstruct the rest from it. In the reputed entrance examination of the
École Polytechnique, Tits scored the highest! He once told me the secret: “When
reading a math book, start at the end. If you understand it, you do not need to read
the rest.” About the examinations, I was given the testimony of Henri Levarlet.4

He was in charge of the section on solid geometry. Tits was asked to establish the
volume of a sphere and to solve a numerical example. The boy of fourteen calmly
asked whether he was allowed to use integral calculus. Levarlet was surprised for
an instant because this approach was not part of the entrance curriculum. He nev-
ertheless agreed. In the audience were teachers and prospective candidates . . . they
reacted to Levarlet’s acceptance. Levarlet had great fun when colleagues reproached
him for having accepted the proposal of Tits.

2 1945–1949

2.1 At the Age of Fourteen, Tits Entered University

At the beginning of 1945, Jacques Tits entered the Department of Mathematics at
the Universitté libre de Bruxelles. He was already renowned as a little genius by
those who had heard of him. He followed courses given by Paul Libois (Géométrie
analytique), Théophile Lepage (Calcul différentiel et intégral, Algèbre), Frans van
den Dungen (Mécanique analytique), Robert Debever (Géométrie descriptive), etc.
Every course had a component of “project work” supervised by an assistant. The

4A letter dated July 17, 1987.
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course by Libois was called “Geometry” by everybody. Its leading theme was an
introduction to spaces in dimensions two and three with an eye to other dimensions,
especially dimension one which was going to matter for Tits’s first research. Eu-
clidean, affine, projective, inversive, Lobachevski, de Sitter and Minkowski spaces
all came to the forefront, together with groups and their inclusions. Unity of the var-
ious geometries came from projective spaces and projective quadrics over the real
and the complex fields.

2.2 Jean-Claude Piret, a Friend for Life

Jacques was not lost at the university. His sister Ghislaine undertook the study of
chemistry in January 1945, at the same time as he started with mathematics. Their
older brother Jean was already in the fourth year at the École Polytechnique.

The first session of the “project work” in geometry was held after three weeks.
Libois organized this in an original way, inspired by the great pedagogue Ovide
Decroly with whom he had a lasting friendship. The students were distributed in
teams of four or five on a spontaneous basis. Each team included a second year stu-
dent. Older students circulated from team to team. The idea was to discuss geometry
questions within the team. Every person was supposed to participate without any re-
strictions. Libois had a pile of note cards. On every card he had written a problem.
In principle, every problem could keep a team busy for several two hours sessions.
The pile circulated from team to team and every team made its choice. In the team
of Tits there was a tall freshman, Jean-Claude Piret, whom Tits met for the first
time. When the pile of cards was in their hands, Tits looked at the cards. When he
had read a card, he made a comment like “Yes, of course,” meaning that it was not
really a problem. Then he put the card in the bottom of the pile. Piret who was a
well-prepared student, objected as he wanted more explanations, but Tits contin-
ued. There was a unique problem that he found worthy of study, which remained
famous for many generations of students. It reads as follows: Candles of lengths
l1, l2, . . . , ln stand on a horizontal plane. They burn simultaneously. What is the lo-
cus of their center of mass? Tits and Piret became inseparable friends. Later on, Piret
married Ghislaine, the sister of Jacques. The close friendship of Tits and Piret lasted
for dozens of years, until the death of Piret in 2003. In May–June 1945, Jacques’s
friends were working hard in order to prepare for their exams. Jacques had nothing
to do; he knew it all and much more. Ghislaine was dealing with the huge chemistry
course in the first year. Tits decided to help his sister and in this way he learned a
great deal of basic chemistry. At Tits’s own exam in geometry, Libois surprisingly
asked him whether he could compare the projective quadrics that he had studied to
the cubic surfaces of which he had never thought. When Tits left the examination
room he said to his friends that he had failed. In fact, Libois had given him the high-
est mark, 20 out of 20, after a moment of hesitation. One day in 1964, Libois did it
again for Pierre Deligne.
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2.3 Lectures of Libois in 1945–1946

Tits was attracted by Analysis, the preferred name given to the course of Lepage that
was more precisely devoted to Real Variables. A renowned “Treatise of Analysis”
by Goursat, comprised three thick volumes. It went well beyond the material that
could be covered in the three first years at the Université libre de Bruxelles. Tits got
to know it completely in 1945–1946, at age fifteen. He was a little disappointed in
Lepage. Indeed, after six weeks in the first year, the boy had decided to try to obtain
his first degree in two years rather than four. Lepage was rather surprised. However,
the laws did not allow this. The relationship was taking another turn with Libois who
was teaching “Géométrie projective” for second year students. It is relevant here to
mention that Libois was an important communist leader. When the university closed
in November 1941, he started to live clandestinely, in various tiny hiding places pro-
vided by friends. At some point, the Nazi authority put a prize on his head due to
his direct connection with the Kremlin and the transmission of orders to the Resis-
tance in some part of Belgium. Hours before the closure of the university, he went
to the library where he borrowed two major geometric works: “Conics”5 by Apollo-
nius (around 262 BC–190 BC), and “Geometrie der Lage” (Geometry of position)
from 1847 by Karl von Staudt (1798–1867). These works became part of his small
luggage. They were intensively studied for two and a half years. Before the war,
Libois had realized from analytical geometry that there was a gap in the foundations
of projective geometry. Indeed, homogeneous coordinates apply perfectly in order
to describe a projective line as a projective space of dimension one. However, the
theory of projective spaces as presented in Veblen and Young’s “Projective Geome-
try” (1910), does not allow for a non-trivial space of dimension one. Thanks to von
Staudt, Libois came up with a new idea. In a projective plane over a field, central
mappings from line to line in all possible ways provides every line with an intrinsic
group acting 3-transitively on its points and the action is sharp: the stabilizer of three
points is reduced to the identity. This is a key result achieved by von Staudt in the
real plane. It is a combination of mobility and rigidity that characterizes the work
of Tits and its developments till now. The idea of Libois was that progress in one-
dimensional projective geometry required the study of a set equipped with a sharply
3-transitive permutation group. Also, with respect to affine geometry, he wanted the
study of sharply 2-transitive permutation groups. He had no other references. These
ideas were in his course on Projective Geometry in 1945–1946 for the class of Tits.
Libois raised one of the right questions: does there exist a sharply 2-transitive per-
mutation group on six points? Why six? Because there is no field of order six! He
did not have the answer. Tits did not yet study it. Tits had two more years before
he could obtain his first degree. Every year he was passing the examinations with
“la plus grande distinction.” For the years 1946–1948 he became a student-assistant,
supervising students in mathematics and physics during one afternoon every week.

5In the famous translation to French by the Belgian engineer and historian of mathematics, Paul
Ver Eecke (1867–1959).
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2.4 Research

In 1946–1947, Libois further developed the subject in his course “Géométrie Supéri-
eure” for the third-year students including Tits. This time, Tits responded forcefully.
For six weeks in a row, he devoted most of his time to research about the subject.
His family and friends feared for his health. Libois had a conversation with the
young man of 16, and discovered with stupefaction the results accumulated by his
student. Tits produced a complete classification of the finite sharply n-transitive
groups for all n ≥ 2. His theory did not limit itself to the finite case. In addition to
this, he had started a theory which applied to the affine and projective groups in any
dimension. Libois calmed the volcano by a proposal: the first part of Tits’s results
could constitute the “Mémoire de Licence” required as the student’s main work in
1948. The rest of his work could be the subject of his “Thèse de doctorat” to be
completed in 1949 (actually defended early in 1950). In those days, it usually took
five or six years in order to get a PhD after the first degree.

2.5 First Degree in 1948

The Dissertation was conceived along the proposal made by Libois. Writing a text
was a hard task for the young man. He needed to write the Dissertation five times on
his typewriter in order to obtain Libois’s approval. This was his first mathematical
writing. Actually, it was also his first writing in French. Indeed, he had skipped the
final year and most of the fifth year at the Athénée. Libois was training him on this
matter. There was no time for research.

2.6 Paris and Emil Artin

Tits became a “Boursier” (1948–1956) of the Belgian F.N.R.S. This gave him total
freedom to travel, study and do research. The results were immense. In 1949, Libois
took his student to a conference in Paris. It was the “Colloque d’Algèbre et Théorie
des Nombres.” At first glance, Tits did not observe any significant differences be-
tween Brussels and Paris. He was going to change his mind completely. He gave a
lecture and provided a paper for the proceedings entitled “Groupes triplement tran-
sitifs et généralisations.” Among those present were Claude Chevalley (1909–1984)
and Emil Artin (1898–1962). The latter was a Professor at Princeton University
from 1946 to 1958. He was impressed by Tits. He explained to Tits that some of his
results had been obtained already in 1936 by Hans Zassenhaus, who was one of his
students. Tits included a footnote in his paper to mention the work of Zassenhaus.
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3 1950–1963

3.1 Docteur ès Sciences Mathématiques

His thesis concluded his work in 1947. A gem among several others was: a sharply
4-transitive permutation group cannot be infinite! Fifty years later, Tits was still a bit
angry about the fact that Marshall Hall Jr. had overlooked this result in his famous
“Theory of Groups” of 1959. Indeed, Hall mentioned the work of Camille Jordan
(1872) classifying the finite sharply 4-transitive groups and he proved a stronger
result of his own superseding Tits’s result.

3.2 To Heinz Hopf in Zürich in 1950, 1951, and 1953

The visits of three months to Zürich were made upon the initial advice of Paul Li-
bois in order to go and listen to Heinz Hopf and to study Lie groups. This was
highly fruitful! Hopf told Tits about the famous Helmholtz–Lie problem, which
roughly asked for all “spaces” equipped with a “convenient” group of motions. Kol-
mogorov had provided a major contribution in 1930. He gave a system of axioms
and provided the classification. He did not provide the proof. Hopf suggested that
Tits might work it out. He definitely did! One of Kolmogorov’s axioms was ask-
ing a property Mn indexed by a natural number n. Tits showed that M2 sufficed to
get a classification, and he wrote down the proof in May 1954. It appeared in his
Thèse d’Agrégation (1955). This work may be considered as a final solution to the
Riemann–Helmholtz–Lie space problem, namely the search for “all possible” non-
Euclidean spaces, for example. It was also under the influence of Hopf that Tits got
interested in the projective plane over the octonions, and he started to work with the
exceptional groups G2, E6 and F4 in papers of 1953 and 1954. He got to know the
work of Freudenthal (1951) on the geometry of the exceptional groups. Freuden-
thal was active in Utrecht which was only some 150 kilometers from Brussels, and
there was a direct train connection. During the next years, Tits went regularly to
visit Freudenthal. The latter was one of the few who understood the work of Tits.
They worked independently on the same subjects. Freudenthal did much to pub-
licize the mathematics of Tits. This is how Tits got the famous “Magic Square”
concept in 1954, without calling it that. This is a symmetric 4 × 4 matrix whose
rows and columns are indexed by the division algebras of finite dimension over the
reals, namely the real field, the complex field, the quaternions and the octonions. As
to the entries, there are different versions: Lie algebras, Lie groups, geometries. The
exceptional Lie groups E6, E7, E8 occupy some of the entries.
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3.3 Institute for Advanced Study, Princeton and H.C. Wang
(1951–1952)

After the “Colloque” in Paris (see Sect. 2.6), Artin had written to Herman Weyl in
order to recommend that Tits be invited by the Institute for Advanced Study. Heinz
Hopf wrote to Weyl with the same purpose: “a star is born.” Tits got invited for a
year and received a scholarship from the Institute for Advanced Study. In Princeton,
Tits shared an office with H.C. Wang (1918–1978), and they became good friends.
Wang taught Tits a lot on Lie groups, but nothing specific on the exceptional groups
as Tits recalls in the Interview with Tits (loc. sit.).

3.4 The Cremona Plane

Paul Libois had been working in the context of Italian algebraic geometry. He spent
a year in Rome in the early thirties. He worked under the daily supervision of
Federigo Enriques, and he became friends with Guido Castelnuovo and his daugh-
ter Emma. Furthermore, he met Oscar Zariski. When Libois defended his Thèse
d’Agrégation (1934) in Brussels, Enriques was a member of the jury. Libois became
a full professor at the Université libre de Bruxelles in 1937. Libois advised several
students in algebraic geometry over the next 30 years. Among other subjects, he pur-
sued the following problem: Consider the complex Cremona plane equipped with
the group of birational transformations in three homogeneous coordinates. Such a
transformation maps a point to a point with exceptions related to a “blow up.” In
other words, a point is not a Cremonian invariant. The problem was to look for a
Cremonian invariant and to build a Cremonian foundation for the plane. Progress
was made by Pierre Defrise who wrote his “Thèse d’Agrégation” on the subject
(1949). Jacques Tits closely followed this work. In 1950, he found a stunning solu-
tion for Libois’ problem. He wrote down a system of geometric axioms for the Cre-
mona plane over any algebraically closed field. However, his manuscript remained
unpublished. He came back to the subject in 1999, for a Collège de France course
taught at the Université libre de Bruxelles. Notes were taken, and the resulting paper
will be part of the Collected Works of Jacques Tits.6

3.5 The Thèse d’Agrégation (1955)

In May 1954, Tits completed the manuscript of his monumental Thèse d’Agré-
gation: “Sur certaines classes d’espaces homogènes de groupes de Lie” (268 pages).
The purpose of the jury was to ask for a publication in the Memoirs of the Académie

6“The Collected Works of Jacques Tits” (loc.sit.).
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Royale de Belgique and to solicit advice on the work from reputed mathematicians.
The chairman of the jury would take the manuscript to the Academy. After some
months without news, some anxiety developed. It turned out that nobody knew
where to locate the manuscript. Some day in 1955, Tits visited the Perpetual Secre-
tary of the Academy, the astronomer Jacques Cox, for some other purpose. At some
point he saw his manuscript there on the shelves in some pile among other piles of
papers. Eventually, the Academy decided to publish the work in May 1955. The Ex-
amination Jury included Heinz Hopf (Zürich) and Deane Montgomery (Princeton).
The report written by Hopf to Lepage on July 27, 1955 stated7

“Dear colleague, It is already close to one year since you asked me to give
my advice on Mister Tits and his work, and more particularly on his thesis
“Sur certaines classes d’espaces homogènes de groupes de Lie.” I do not want
to excuse my long silence, but I insistently beg you not to interpret my silence
as indifference with respect to Mister Tits and his work. All to the contrary,
among the young mathematicians known to me, there are few indeed who I
do appreciate as much as Mister Tits and on whom I have great expectations.
His spirit, acuteness, his scientific training, his sane and natural manner to
choose and attack problems, his working capacity still keep me under a strong
impression. The conversations I remember to have had with him on mathe-
matical subjects were always interesting and stimulating. His works rest on a
deep synthesis of algebraic and geometrical methods and they bring testimony
of an acute sense of essentials. His results range from elementary geometry to
the difficult domain of present mathematics as the theory of the exceptional
Lie groups in which he has made an important contribution and—to take but
one example, the results of Tits (Thèse, 4è partie, E) are completing and end-
ing in a most satisfactory way the set of theorems of Kolmogorov and Wang.
The thesis is imposing, not only by the abundance of its original ideas, but
also because it offers a masterly broad view on a great deal of modern geom-
etry and I believe that its author may be counted among the best geometers of
our time.”

In the report by Montgomery from August 19, 1954, on his way to the International
Congress in Amsterdam, he stated

“. . . I am writing to say that I have very high regard for this paper by Tits
as well as a great respect for all the work he has produced. He seems to me to
be an unusually brilliant and well-informed young man who has made a great
many valuable contributions especially for one so young. The present paper
on homogeneous spaces is certainly the best work he has done so far.”

A year later Montgomery confirmed: “. . . it is a first-rate piece of work. My opinion
of Tits is very high in all ways.” The Thesis was defended on December 19, 1955.
The event included a public lecture entitled: “Mathematical Foundations of General
Relativity.” He was 25 years old.

7Translated from German by Ms. Charlotte Bouckaert.
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3.6 Memoir for the Prix Louis Empain (1955)

Tits received the “Prix scientifique interfacultaire Louis Empain.” He submitted the
original memoir “Les espaces doublement homogènes et les espaces homogènes et
isotropes” (124 pages, completed on December 31, 1954): The memoir remained
unpublished,8 yet it contained brand new geometry, and constituted the best gen-
uine realization of Klein’s Erlangen Program. Here, there are difficult questions
dealt with for every simple Lie group, in particular, the exceptional group E8. All
available resources on Lie groups were used.

3.7 Prehistory of Buildings (1955–1961)

In his Thèse, Tits had a uniform construction of a geometry attached to every simple
Lie group G. Eventually, these would be buildings. The geometry was constructed
from subgroups of G now called parabolic subgroups. The geometry was closely
related to the Dynkin diagram underlying G. Tits studied these geometries sys-
tematically. They were called “R-espaces” in different papers from 1954 on. The
Chevalley groups were readily integrated in Tits’s theories and observations. They
provided “R-espaces” right away. In 1961, the birth of buildings, apartments, Tits
systems and abstract regular polytopes was announced publicly during a conference
in Florence. Tits had the idea in the Metro of Paris on his way to the Séminaire
Chevalley. Tits wanted to grasp the Bruhat BNB property from a geometric view-
point. His terminology did not use the words building, apartment, etc., rather he used
“generalized polyhedron,” “skeleton,” group with a BN-pair, and “regular polyhe-
dron.”

3.8 Birth of the General Theory of Coxeter Groups (1961)

In his unpublished paper “Groupes et géométries de Coxeter,”9 Tits founded a great
theory, which he named after Coxeter in respectful generosity to the great pioneer.
These notes were written to serve Bourbaki, via Tits’s friend François Bruhat, for
the volume “Groupes et Algèbres de Lie.” In my opinion, this was Bourbaki’s best
volume (1968) ever, but I did not read all of them. By the way, a person who has read
every volume and solved all the exercises is Pierre Deligne. In this volume, Bourbaki
made plain use of Tits’s work, acknowledging his contributions in a footnote: “Pour
la rédaction de ces trois chapitres, de nombreuses conversations avec J. Tits nous
ont apporté une aide précieuse. Nous l’en remercions très amicalement.” The paper

8It will be included in “The Collected Works of Jacques Tits” (loc.sit.).
9To appear in “The Collected Works of Jacques Tits” (loc.sit.).
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V. Georges, M. Lazard, J. and M. Tits (from left to right) in 1957 (Archives of the
Mathematisches Forschungsinstitut Oberwolfach)

by Tits was not mentioned by Bourbaki, and it remained unpublished until 2001,
when it appeared in a volume devoted to the Wolf Prizes.10 The editors quote

“Part II is the reproduction ne varietur of mimeographed notes [attributed
to Tits] entitled Groupes et Géométries de Coxeter . . . which never appeared
in print. This is the first paper ever written on arbitrary Coxeter groups (the
terminology was coined there); it played a rather important, though somewhat
hidden role in the early history of those groups. Indeed, the most commonly
used reference concerning them is Chap. 4 of Bourbaki, Groupes et Algèbres
de Lie, and the mimeographed notes in question were precisely written to
serve Bourbaki’s work on that volume. But while Bourbaki’s book, and in
particular its “Note historique,” fully acknowledges Tits’s contributions to the
subject, it does not explicitly mention the preprint reproduced here, which is
the original source for those contributions.”

In this book, buildings were revealed in the exercises. Here, the word “immeuble”
appeared for the first time. The concept had been made public by Tits in 1961 at a
conference in Florence and in his paper for the proceedings.

3.9 Denied Access to the US from 1953 to 1963

Every year from 1953 on, Tits was invited to visit Princeton or other important
places in the US. His visa was refused every year. In 1963 he went to the US Em-

10S.S. Chern and F. Hirzebruch (editors), “Wolf Prize in Mathematics”, vol. 2, 2001, World Scien-
tific, Singapore.
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bassy in Brussels and inquired about the reasons why he was denied visa. Even-
tually he heard that he was suspected of being a communist, which he forcefully
denied. Then, after some activity at the embassy, he heard that he was suspected of
being a member of the “Amitiés Belgo–Soviétiques.” Again, he forcefully denied
the allegations. His sister may have attended a conference organized by that asso-
ciation. However, at this time, the witch hunt period had come to an end, and he
obtained his visa in a matter of days. During that year 1963, he was invited for long
stays in Chicago and Berkeley. In 1964, he was back at the Institute for Advanced
Study.

3.10 International Congress of Mathematicians (1954–1994)

In 1962 Tits was an invited plenary speaker at the International Congress of Mathe-
maticians (ICM) in Stockholm. He was also an invited speaker at the ICM in 1970 in
Nice, and again a plenary speaker at the ICM in 1974 in Vancouver. He was a mem-
ber of the jury awarding the Fields Medals in 1978 (Helsinki) and in 1994 (Zürich).
In 1978, he read the laudatio for the Fields Medalist Grigori Margulis. The Soviet
authorities had not allowed Margulis to attend the Congress. A similar situation had
occurred already in Nice in 1970 and in Vancouver in 1974.

Tits’s speech on Margulis included a courageous political conclusion:

“I wish to conclude this report by a nonmathematical comment. This is
probably neither the time nor the place to start a polemic. However, I can-
not but express my deep disappointment—no doubt shared by many people
here—in the absence of Margulis from this ceremony. In view of the symbolic
meaning of this city of Helsinki, I had indeed grounds to hope that I would
have a chance at last to meet a mathematician whom I know only through his
work and for whom I have the greatest respect and admiration.”

A footnote recalled that “The address was delivered in Finlandia Hall, where the
1975 Helsinki Agreements were concluded.” The Helsinki Agreements dealt with
security and cooperation in Europe. One of its priorities was the respect of human
rights and of fundamental liberties. The absence of invited Soviet mathematicians at
the International Congresses was explained repeatedly by Lev Semenovich Pontrya-
gin who expressed the profound dissatisfaction of the National Committee of Math-
ematics of the USSR concerning the choice of Soviet mathematicians who were
invited to deliver a talk and to receive a Fields Medal. The first visit of Margulis to
the West was in 1979 when he stayed at the University of Bonn for three months.
A little ceremony was organized and Tits could give his medal to Margulis. Tits was
already present at the ICM in 1954 in Amsterdam with a short (contributed) lecture
and abstract. Hans Freudenthal devoted his invited lecture to the mathematics of
Tits.
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4 1964–1975

4.1 Professor at the Universität Bonn (1964–1974)

Jacques and Marie-Jeanne Tits moved from Brussels to Bonn. Here Tits was recog-
nized in all respects at last, as a great mathematician and great professor.

4.2 Buildings Coming of Age (1974)

The fantastic theory of buildings appeared in the Springer Lecture Notes.11 It dealt
with a totally new geometry already foreseen in 1961. There had been a preliminary
preprint on Chap. 7 devoted to polar spaces, circulated in 1968. The book also dealt
with his theory of finite groups with a BN-pair (or Tits’s systems).

4.3 Collège de France (1975)

Jacques and Marie-Jeanne Tits moved to an apartment near Place d’Italie in Paris.
Jacques became an Associate Professor at the Collège de France (1973–1975). He
acquired French citizenship in order to conform to law when he applied for a full
professorship. He was a professor at the Collège de France (1975–2000) in the
Chaire de Théorie des Groupes. He delivered his inaugural lecture in 1975, from
which we quote: “It has to be expected that, in my lectures, geometry will often take
its revenge from the Erlangen program, the theory of groups serving as a pretext this
time.”

5 1976–2000

5.1 Professor at the Collège de France (1973–2000)

A course was taught every year on an entirely new subject or new developments for
a former subject. The course was followed by a most interesting text called “Résumé
de cours.” These texts were published by Collège de France.

11“Buildings of spherical type and finite BN-pairs.” Springer Lecture Notes, vol. 386, 1974.
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Jacques Tits at Oberwolfach in 1980 (Peter van Emde Boas, Archives of the Mathe-
matisches Forschungsinstitut Oberwolfach)

5.2 No Pension in Belgium (1994)

Every person who has worked in Belgium is entitled to a pension. Jacques Tits had
been working for the Université libre de Bruxelles from 1957 to 1962. However,
he was unable to get recognition for his rights to pension. The question was not a
material one. He got a pension from Germany and from France. The question was a
matter of justice. Tits did all he could. Friends and colleagues such as Franz Bingen
and Joseph Thas tried to help Tits. However, they remained unsuccessful.

A letter from Tits to the Minister of Pensions, Frank Vandenbroucke in June
2002, reveals interesting details on his career. After an explanation about his po-
sition at the Université libre de Bruxelles where he was full professor in 1962, he
continues:

“Les enseignements qui m’étaient confiés par cette université . . . étaient
d’un niveau très élémentaire. Des discussions que j’ai eues à plusieurs reprises
avec les autorités académiques, m’ont fait comprendre qu’il n’était pas possi-
ble, même à moyen terme, d’améliorer cette situation, à la longue très défavor-
able à mon développement scientifique. Or, à partir de 1957, j’avais reçu di-
verses offres d’universités étrangères: allemandes, américaines, suisses. Cela
m’a finalement conduit à accepter, en 1964, une chaire de mathématique à
l’Université de Bonn. En 1974, j’ai été élu au Collège de France, à une chaire
de Théorie des Groupes créée à mon intention. Accepter cette chaire im-
pliquait que je me fasse naturaliser français, ce que j’ai fait (je me suis, à
l’époque, renseigné auprès de l’Ambassade de Belgique à Paris sur la possi-
bilité de conserver également la nationalité belge, mais il s’est avéré qu’une
telle possibilité était exclue).”
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Marie-Jeanne and Jacques Tits in 2007 (Archives of the Mathematisches For-
schungsinstitut Oberwolfach)

6 2001–2012

6.1 The Book with Weiss

A major mathematical feat is the book “Moufang polytopes” (2002) by Tits with
Richard Weiss in 2002. It is a masterpiece of 535 pages! Richard Weiss had an
immense courage and love for the master. He came over from Boston to Paris a
great number of times to record their conversations and write from them. I note in
passing that Tits never did use email, but he did use a fax.

6.2 Editor of Mathematical Journals

Tits served as an editor for several journals. We can mention here that he served as
Chief Editor of the premier journal ‘Publications Mathématiques de l’Institut des
Hautes Études Scientifiques (IHES)” from 1980 to 1999. Furthermore, he was a
founder of “Inventiones Mathematicae” and served as an editor during the period
1966–1975.

7 Postscript

As a preparation for writing this biographical sketch, my wife Monique and I visited
Jacques and Marie-Jeanne Tits in their apartment in Paris near Place d’Italie on June
30, 2011. During our visit, Jacques was stuck in his armchair. He kept smiling and
joking as he always did.
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Jacques Tits in Oslo in 2008 (Photo Harald Hanche-Olsen)



The Work of John Griggs Thompson: A Survey

Richard Lyons and Robert M. Guralnick

Up to the early 1960’s, really nothing of real interest was known about general simple
groups of finite order . . . Since he [John Thompson] first appeared at the International
Congress in Stockholm eight years ago, finite group theory simply is not the same any more.

Richard Brauer, 1970
ICM Nice

1 Thompson’s Thesis, and Local Analysis

In 1954, Richard Brauer, the leading finite group theorist of the time, wrote on the
occasion of the International Congress of Mathematicians in Amsterdam [18]

The theory of finite groups has been rather in a state of stagnation in recent
years. This has certainly not been due to a lack of unsolved problems.

In rather short order, however, waves of exciting new results washed away such
pessimism. By the end of the decade Claude Chevalley, Robert Steinberg, Michio
Suzuki and Rimhak Ree had discovered and constructed all the finite simple groups
of Lie type; Philip Hall and Graham Higman had published an influential study of
the structure of solvable and p-solvable groups; and Suzuki had proved the solvabil-

Electronic supplementary material Supplementary material is available in the online version
of this chapter at http://dx.doi.org/10.1007/978-3-642-39449-2_4. Videos can also be accessed
at http://www.springerimages.com/videos/978-3-642-39449-2.

R. Lyons (B)
Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854,
USA
e-mail: lyons@math.rutgers.edu

R.M. Guralnick
Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532,
USA
e-mail: guralnic@usc.edu

H. Holden, R. Piene (eds.), The Abel Prize 2008-2012,
DOI 10.1007/978-3-642-39449-2_4, © Springer-Verlag Berlin Heidelberg 2014

55

http://dx.doi.org/10.1007/978-3-642-39449-2_4
http://www.springerimages.com/videos/978-3-642-39449-2
mailto:lyons@math.rutgers.edu
mailto:guralnic@usc.edu
http://dx.doi.org/10.1007/978-3-642-39449-2_4


56 R. Lyons and R.M. Guralnick

ity of groups of odd order of a certain kind (so-called CA-groups, in which com-
muting is assumed to be a transitive relation on the set of all nonidentity elements).
In 1959, John Griggs Thompson received his doctorate, having been supervised by
Saunders Mac Lane at the University of Chicago.

Thompson’s thesis [93] was the first of three seminal papers of ever-widening
scope. Next came the Feit-Thompson Odd Order Paper [27], which appeared in
1963, and the third was the so-calledN -Group Paper [110, 115, 117, 120], on which
Thompson lectured during the 1960’s and which appeared in installments between
1968 and 1974. These three articles led finite group theory into a new world, rich in
new structures, new problems, new vocabulary, and new tools. Certain sections of
these papers—much of the first eight sections of the Odd Order Paper, and Sect. 5
of the N -Group Paper—were the new essential text for students of the subject. One
could not find much of this material anywhere else.

In his thesis, Thompson proved a celebrated conjecture about Frobenius groups.
A Frobenius group G is a subgroup of a finite symmetric group Sym(n), that is,
a permutation group on n letters, which is transitive and has the properties that
each non-identity element fixes at most one letter, while some non-identity element
fixes some letter. Familiar examples are the dihedral group acting on the vertex
set of a regular n-gon, n odd; the alternating group on 4 letters; and for any finite
field, the group of all affine transformations of the affine line. Now in a transitive
permutation group, an elementary count shows that on average, each group element
fixes one letter; it then follows that there must be precisely n − 1 elements of G
fixing no letter. Frobenius proved that these elements, together with the identity,
form a normal transitive subgroup K of G, now called the “Frobenius kernel” of G.
The main difficulty in Frobenius’ theorem is to show that K is actually a subgroup
of G; this is overcome by using the theory of group characters.

If we let H be the stabilizer of some arbitrarily chosen letter, then G=HK and
H ∩K = 1, so that the structure of G is determined by the structures of H and K
and the action of H by conjugation on K . This action turns out to be necessarily
“fixed-point-free,” which is to say that the centralizer CK(h)= 1 for every h ∈H .
Consequences of this for the structure of H (which with essentially one exceptional
isomorphism type must be solvable) were understood by the middle of the twentieth
century—see for instance [54]—but in the 1950’s it was an open question whether
the kernel K must always be nilpotent. (A finite group is nilpotent if and only if any
two elements whose orders are relatively prime must commute, or equivalently if
the group is the direct product of its Sylow subgroups. In the examples of Frobenius
groups cited above, the kernel is actually more than nilpotent in each case—it is
Abelian.) In his thesis [93] Thompson settled the matter.

Theorem 1 [93, 94] The Frobenius kernel of any Frobenius group is nilpotent.

At least as significant as the theorem itself were the revolutionary tools Thomp-
son created—the beginning of a series of robust inventions and insights to analyze
the architectural structure of a finite group. Let us digress briefly to examine the
goals of such an analysis.
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By Sylow’s Theorem a group G of order

|G| =
n∏

i=1

p
ai
i ,

where the pi are distinct primes, possesses Sylow subgroups—subgroups of order
p
ai
i —for each i. “Local analysis,” which had its beginnings around the turn of the

twentieth century in the work of Frobenius and William Burnside, aims to under-
stand how these subgroups fit together insideG. For example, a theorem of Burnside
and Philip Hall asserts that G is solvable if and only if n = 1 or G possesses sub-
groups Pi of order paii , i = 1, . . . , n, such that for any i �= j , the subgroup 〈Pi,Pj 〉
of G generated by Pi and Pj has order paii p

aj
j . Burnside’s part in this was to deal

with the rock-bottom case |G| = pa1
1 p

a2
2 . In honor of Hall’s contribution, 〈Pi,Pj 〉

is now called a “Hall {pi,pj }-subgroup of G.”
Nowadays, with the classification of finite simple groups (CFSG) in hand, we

know by inspection of all examples that the “local” structure of a nonabelian finite
simple group is highly restricted. For one thing, its Sylow subgroups have one of
a handful of structures, related to wreath products, complex reflection groups, or
crystallographic root systems. Most striking of all, the simple group must contain
elements of order 2—this is the Odd Order Theorem published by Feit and Thomp-
son a few years after Thompson’s thesis.

To what extent can one show from the axioms of group theory that such restric-
tions are necessary consequences of simplicity? Even without knowledge of the full
list of finite simple groups, and indeed with some not even yet discovered, this is the
question that fascinated Thompson and drove his work for nearly two decades.

Proving theorems about a simple group G, one has at first glance a negative
hypothesis to use: there are no normal subgroups other than 1 or G, i.e., no proper
normal subgroups. Indeed, until the 1950’s, theorems about simple groups were typ-
ically proved indirectly, with the eventual contradiction arising from the existence
of a representation or other homomorphism with a proper kernel. With Thompson’s
work, and others’ before him in the 1950’s, notably Richard Brauer and Michio
Suzuki [18, 68], a positive spin on simplicity took hold as well: for every proper
subgroupH of a simple groupG, the normalizerNG(H) is again a proper subgroup.
So perhaps one can find a rich enough inductive setting in which to analyze G.

Suppose, for example, that one wishes to prove that if in a finite group G ev-
ery two elements generate a solvable group, then G is solvable. This hypothesis is
inherited by subgroups and quotients, so one immediately is reduced by induction
to the case in which G is simple and nonabelian, and all its proper subgroups are
solvable. In particular NG(H) is solvable for every proper subgroup H of G, and
from this one must prove that G is generated by 2 elements, hence solvable. In fact
Thompson does this and more in his N -Group Paper (q.v.): he deduces the possible
isomorphism types of G and then observes in each case that G is generated by 2
elements.

Most important among the various normalizers NG(H) are those for which H
is a p-group, that is, a group whose order is an integral power of a prime p. Such
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normalizers are called local, or p-local, subgroups of G. The goal of local analysis
is then to deduce “global” properties—properties of G itself—from properties of
the local subgroups of G. More specifically, when G is simple, one then hopes to
deduce properties of the local subgroups from the simplicity of G.

The technical result behind the proof of Theorem 1 is just such a local-global
theorem. It is a criterion for a Sylow p-subgroup P of a finite group G to have a
normal complement, i.e., for G to have a normal subgroup of order |G|/|P |. Equiv-
alently it is a criterion for a Sylow p-subgroup P of G to be a homomorphic image
of G. What was new was that the criterion only mentions normalizers of those sub-
groups of P that are normal in P and invariant under automorphisms of G leaving
P invariant.

Theorem 2 [94, Theorem A] Let K be a finite group with a p-Sylow subgroup P ,
p an odd prime, and let A be a group of automorphisms of K which leaves P
invariant. Suppose that for every A-invariant normal subgroupQ of P , all elements
of order prime to p which normalize Q also centralize Q. Then K possesses a
normal p-complement.

This generalized—at least for odd primes p—a theorem of Frobenius: if for all
subgroupsQ≤ P , all elements of order prime to p normalizingQ actually central-
ize Q, then K possesses a normal p-complement. The restriction of the hypothesis
to A-invariant normal subgroups of P enabled Thompson to prove Theorem 1 by
induction, taking K to be the Frobenius kernel K above, and A to be the point sta-
bilizer H—or some conjugate of H . Theorem 2 and induction imply that K has an
H -invariant normal subgroup N other than K and the trivial subgroup. Then with
an appeal to induction, K/N and N must be solvable, so K is solvable; and rou-
tine arguments then imply that K is nilpotent. The key all along was to prove the
solvability of K .

2 The Thompson J -Subgroup and Weak Closure Arguments

In Thompson’s proof of Theorem 2, and in the Feit-Thompson Odd Order Paper
[27], a technique was introduced and developed that over the years acquired the
tag “weak closure arguments”. This technique, heavily reliant on the representation
theory of subquotients of G in finite characteristic, was refined and generalized by
Thompson and others, in many steps, all the way through the final general theo-
rems of the CFSG. For the “quasi-thin” books of Michael Aschbacher and Stephen
D. Smith [10, 11], and the “uniqueness case theorem” of Aschbacher [7–9], for
example, the authors needed to develop elaborate “weak closure machinery”.

Thompson was aware of ground-breaking work of Philip Hall and Graham Hig-
man dating to 1956 [39], in which they studied the representations of solvable
groups in characteristic p > 0 and applied their results to the Burnside problem.
This famous problem aside, their striking Theorem B was of wider interest. It as-
serts that for an irreducible solvable subgroup G≤GL(n,p), any element x ∈G of
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order pn must have minimal polynomial equal to (t − 1)p
n

or (t − 1)p
n−1, and even

the latter case can only occur if p is a Fermat prime or 2.
The Hall-Higman Theorem B plays a critical role in Thompson’s arguments in

his thesis, and later in his refinements and extension of those arguments.
An early refinement was the introduction by Thompson of what is now called the

Thompson subgroup of a p-group P . It is defined [100] as

J (P ) := 〈A≤ P |A is Abelian of maximal order among all subgroups of P 〉.

(Walter Feit tried calling this T(P ) in his Characters of Finite Groups [22], but the
notation did not stick.) It is obvious that J (P ) is invariant under all automorphisms
of P . In [100] Thompson strengthened Theorem 2 as follows. Here Z(P ) is the
center of P .

Theorem 3 Suppose that p is an odd prime and P is a Sylow p-subgroup of
the finite group G. If the subgroups NG(J (P )) and CG(Z(P )) have normal p-
complements, then G has a normal p-complement.

Thompson saw that the Hall–Higman theorem would provide the punch line to
the proof. Through an original kind of reduction involving a new ordering on the
set of p-local subgroups of G, he reduced for all practical purposes to the follow-
ing (admittedly oversimplified) case: G = SQR, S 
 G, S is the direct product
of copies of Zp , and S = CG(S). Moreover R has order p, R acts nontrivially on
Q, Q acts nontrivially on S, and |Q| is a power of a prime q �= p. The subgroup
P = SR is then a Sylow p-subgroup of G. Moreover, S can be regarded as a vec-
tor space over the field of p elements, and by the conjugation action we can regard
QR ∼=G/S ≤Aut(S)∼=GL(n,p).

Here we have a kind of configuration that one sees frequently in local analysis: if
we have information about the action of R onQ and the action ofQ on S, what can
we deduce about the action of R on S? In this case we know that |Q| is relatively
prime to both |R| = p and |S|. Then Theorem B provides an answer: the fixed
subspace of S under the action of R has codimension at least p − 2. With a little
extra argument when p = 3, S is then seen to be the unique Abelian subgroup of its
order in the Sylow p-subgroup SR ofG. So S = J (SR). But thenG=NG(J (SR))
has a normal p-complement by assumption, which finishes the proof.

The proof of Theorem 3 just squeaks through for p = 3, and the punch line utterly
fails for p = 2. This is for good reason. Indeed G= SQR could be the symmetric
group Sym(4) on four letters, which is a counterexample to the assertion of the the-
orem for p = 2. Looking ahead to the Odd Order Theorem and the N -Group The-
orem, Thompson’s next grand projects, we can say that the normal p-complement
theorem boded well for studying groups of odd order, but not necessarily for study-
ing simple N -groups, which of course have even order. However, in both cases the
J -subgroup, and variations of it, would play a critical part.
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3 Groups of Odd Order Are Solvable

William Burnside, in his classic treatise The Theory of Groups of Finite Order, re-
marked [20, Note M] that “the contrast . . . between groups of odd and of even
order suggests inevitably that [nonabelian] simple groups of odd order do not exist.”
Sixty-odd years later, in his Laudatio for Thompson at the 1970 Fields Medal cere-
monies, Richard Brauer commented of the years leading up to the 1950’s that “while
it [Burnside’s remark] was usually mentioned in courses on algebra, it is only fair
to say that nobody ever did anything about it, simply because nobody had any idea
how to get even started.” One could say of course that a minimal counterexample
to Burnside’s suggestion would be a minimal simple group of odd order—i.e, all its
proper subgroups would be solvable—but one stalled almost immediately.

In 1963 Walter Feit and Thompson published their answer to this question [27],
the proof occupying an entire issue of the Pacific Journal of Mathematics, dubbed
the “Odd Order Paper.”

Theorem 4 Every finite group of odd order is solvable.

Equivalently, the only simple groups of odd order are the cyclic groups of prime
order. The proof is carefully laid out in six chapters, of which the first three are
introductory in nature. Although these contain much original material, we focus on
Chap. IV of the Odd Order Paper for most of our remarks.

In this chapter the proof hits its stride, facing and analyzing a minimal simple
group G of odd order. The eventual aim, achieved in some 98 pages, is a taxonomy
of the maximal subgroups of G, together with an analysis of their possible inter-
sections. This information then feeds into character-theoretic analysis in Chap. V.
The taxonomy is too technical to include here, but a key intermediate result is the
following Maximal Subgroup Theorem:

Theorem 5 (Maximal Subgroup Theorem) Let G be a minimal simple group of
odd order and p a prime. Then every elementary Abelian p-subgroup of G of rank
at least 3 (i.e. every direct product of at least three copies of Zp) lies in a unique
maximal subgroup of G.

Thus, the configuration of maximal subgroups ofG, which a priori is an arbitrary
tangle of solvable groups, is much closer to a partition than one might have expected:
the intersection of distinct maximal subgroups contains no Zp×Zp×Zp-subgroup
for any prime p.

(It should be remarked that it was known that if for every prime p,G has no Zp×
Zp×Zp subgroup, then a contradiction to the existence ofG could be reached using
1-dimensional representations and the transfer map—methods known to Frobenius
and Burnside.)

A maximal subgroup theorem similar to Theorem 5 had been established in sim-
ilar contexts in two previous attacks on groups of odd order, both with very strong
extra hypotheses. Suzuki [68] had proved the nonexistence of simple CA-groups of
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odd order, in which all centralizer subgroups CG(x), x ∈G, x �= 1, were assumed
to be Abelian; and Feit and Thompson, together with Marshall Hall, Jr. [23] had
generalized from “abelian” to “nilpotent.” (In both cases, once the maximal sub-
group theorem had been established in a minimal counterexample, character theory
provided a final contradiction.) The passage from [23] to the maximal subgroup
theorem of the Odd Order Paper was the long jump from “nilpotent” to “solvable.”

Feit and Thompson introduce a dichotomy with implications far beyond groups
of odd order, as it turned out. The set π0 = π0(G) of prime divisors p of |G| for
which G possesses a subgroup isomorphic to Zp × Zp × Zp is introduced and
then partitioned into subsets π3 = π3(G) and π4 = π4(G). A prime p lies in π3

if and only if some Sylow p-subgroup lies in the normalizer of some nonidentity
q-subgroup for some prime q �= p. Otherwise p ∈ π4. (This is not actually their
definition but a consequence of their definition.) Such a partition makes sense in
any finite group containing Zp ×Zp × Zp , and it approximates the distinction be-
tween unipotent and semisimple subgroups in a connected linear algebraic group. In
fact, in any finite simple group G descended from a linear algebraic group in char-
acteristic p, such as the projective special linear groups PSL(n,pa), it is the case
that p ∈ π4(G), as long as G is not tiny—if, say, a(n− 1)≥ 3. On the other hand it
is rather unusual for π4(G) to contain any other prime, and it seems only to happen
in connection with number-theoretic coincidences.

The case p ∈ π4 Feit and Thompson’s analysis of subgroups containing a Sy-
low p-subgroup P of G for some p ∈ π4 is an archetype of what Thompson called
“the successful translation of the theory of solvable groups to the theory of simple
groups” [110, p. 383]. He was talking about the N -Group Paper but his characteri-
zation fits Chap. IV of the Odd Order Paper as well. Among other things they want
to prove that P lies in only one maximal subgroup of G. Here is the relevant theory
of solvable groups of odd order revealed in their paper, slightly updated to include
later simplifications. The subgroup J1(P ) in the theorem is only a slight variant of
J (P ), including more Abelian subgroups; we omit the precise definition (cf. [27,
Lemma 24.4], [101]).

Theorem 6 (“3 Against 2 Theorem”) Let M be a solvable group of odd order.
Let P be a Sylow p-subgroup of M for some prime p ≥ 5, and assume that P
normalizes no nonidentity subgroup ofM of order relatively prime to p.

DefineM1 =NM(J (P )),M2 = CM(Z(P )) andM3 =NM(Z(J1(P ))). Then

M =M1M2 =M1M3 =M2M3.

In particular if we define G1 = NG(J (P )), G2 = CG(Z(P )) and G3 =
NG(Z(J1(P ))), these three Gi ’s are solvable groups of odd order and so by the
theorem each of the three is the product of its intersections with the other two. From
this comes the elegant conclusion that the product of any two of the Gi is a proper
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subgroup of G:

G1G2 = (G1 ∩G2)(G1 ∩G3)(G2 ∩G3)(G2 ∩G1)

⊆G2G3G1 =G2(G3 ∩G2)(G3 ∩G1)G1 =G2G1,

whence G1G2 = G2G1 by symmetry, and so G1G2 is a subgroup of G. Another
application of the theorem, to any maximal subgroup M of G containing P , yields
M =G1G2 =G1G3 =G2G3. In particularM is unique.

In the original, the J and J1 subgroups were not yet introduced, but their place
was taken by similar objects, namely weak closures of certain Abelian subgroups
of P , whence the term “weak closure arguments.” (The weak closure of a sub-
group A of P in P with respect to G is the subgroup of P generated by all those
G-conjugates of A that happen to be subgroups of P .)

Theorem 6 was later strengthened by Glauberman [30] to conclude that
Z(J (P )) 
 M , i.e., M = NM(Z(J (P ))), enabling the case p ∈ π4 to be stream-
lined.

The case p ∈ π3 As we noted earlier, solvability would follow from the existence
of a “Sylow system”, which is a set of Sylow subgroups P1, . . . ,Pn, one for each
prime dividing |G|, such that the group Pij generated by any Pi and Pj , i �= j , has
order precisely |Pi ||Pj |—no extraneous primes entering into its group order. One
possible point of entry here was the question of when a Sylow p-subgroup P can
normalize a Sylow q-subgroup Q, as Thompson described in his Colloquium Lec-
tures at the American Mathematical Society annual meeting in 1983. More gener-
ally, since the hoped-for group Pij has order paqb for some primes p �= q , it would
have a nontrivial normal subgroup N of prime power order, an easy consequence of
solvability. IfN were, say, a q-group, then a Sylow p-subgroup ofG would normal-
ize N , and so p ∈ π3 as long asG contains a Zp×Zp×Zp subgroup. Moreover, as
this heuristic applies for any pair (Pi,Pj ), the set π3 should be a substantial subset
of π0.

Looking for ways to establish that primes are in π3, Feit and Thompson turned
the traditional point of view of local analysis upside-down. Instead of asking, given
a proper subgroup X of G, what can be said of its normalizer NG(X), they asked:
given P , a Sylow p-subgroup of G, what are all the P -invariant q-subgroups of G?
The set of all such subgroups is obviously permuted by the normalizerNG(P ) under
conjugation.

There is advantage as well in asking the question for p-subgroups A of G other
than Sylow p-subgroups. Feit and Thompson write

IG(A;q)
for the set of all A-invariant q-subgroups of G, and

I∗G(A;q)
for the set of all maximal members of IG(A;q) with respect to inclusion. NG(A)
permutes both IG(A;q) and I∗G(A;q) by conjugation, but what is the nature of
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this action? The relevance and accessibility of the question depends on the choice
of A. If A is chosen, for example, to be normal in some Sylow p-subgroup P , then
P ≤ NG(A) and the answer to the question may reveal useful information about
the set of P -invariant q-subgroups of G. If A is chosen to be Abelian, then the
subgroups CG(B), B ≤ A, are all P -invariant, and one may be able to compare
pieces of two elements of IG(A;q) inside the solvable subgroup CG(B). Indeed if
A is Abelian of exponent p then for any W ∈IG(A;q), the groups CW(B), for B
maximal in A (of “codimension 1”), generateW . If, moreover, A∼= Zp ×Zp ×Zp
then any two such B’s have a common element b �= 1. Thus for any two nontrivial
subgroups W,W ′ ∈IG(P ;q), there is some b such that CW(b) �= 1 �= CW ′(b), by
which some relationship between W and W ′ might be deduced.

The rank m(A) of an Abelian group A is the minimum number of factors in the
decompositions of A into a direct product of cyclic groups. The Odd Order Paper
brought to the fore the condition m(A)≥ 3 for Abelian p-subgroups A, in the anal-
ysis of a simple group. The condition became the standard dividing point between
“large” and “small” simple groups in the classification of finite simple groups.

The ideas above culminated in what is commonly called now a “transitivity”
theorem, and a powerful corollary:

Theorem 7 (14.1, [27]) Let G be a minimal simple group of odd order. Suppose
that p and q are distinct odd primes, P is a Sylow p-subgroup of G, and A is a
normal Abelian subgroup of P of rank at least 3 and such that CP (A) = A. Then
CG(A) permutes I∗G(A;q) transitively by conjugation.

Corollary 3.1 Suppose that p, q , P and A are as in the above theorem. Then P
normalizes some element of I∗G(A;q).

And so if IG(A;q) �= 1, then p ∈ π3 and a good start has been made to finding
a Hall {p,q}-subgroup of G.

The Odd Order Paper is famous for its length. Part of the reason for its length,
and the length of theN -Group Paper as well, is that their early sections contain what
amounts to textbooks for the new methods that they introduce. And of course it was
a first proof, presumably to be condensed and streamlined with time—as it has been.
The basic conception, however, has not been improved; rather, in deep studies by
Helmut Bender, George Glauberman, Thomas Peterfalvi and others [12, 55, 56], the
tools have continued to be sharpened.

Feit and Thompson lead the reader on a long journey studying objects—minimal
simple groups G of odd order—which in the end turn out not to exist. After the
maximal subgroups of G are brought into focus, finely detailed character-theoretic
arguments are used in Chap. V to reduce the local structure of G to a single strange
but resistant configuration. With character theory apparently exhausted, they resort
to manipulating generators and relations for G in the final Chap. VI until eventually
a contradiction is found.
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With the object of study thus further and further removed from the “reality” of
the structure of familiar simple groups, one might expect Feit and Thompson’s ar-
guments to be of limited value in characterizations of the extant simple groups. But
in fact, an imprint of the overall structure of their proof can be seen in much of the
subsequent work toward the CFSG.

4 N -Groups and Minimal Simple Groups

Thompson’s N -Group Paper [110, 115, 117, 120] classifies the minimal simple
groups as well as a somewhat larger class of groups which he calls N -groups.

A group G is a minimal simple group if and only if

• G is simple but not cyclic of prime order, and
• For any proper subgroup H of G (i.e., H �= G) and any simple quotient Q =
H/K of H , Q is cyclic of prime order.

The second condition in this definition may be replaced by the equivalent condi-
tion that

• Any proper subgroup of G is solvable.

Theorem 8 (Minimal Simple Group Theorem) Let G be a minimal simple finite
group. Then G is isomorphic to one of the following minimal simple groups:

1. PSL2(2p) or PSL2(3p), p any prime;
2. PSL2(p), p any prime exceeding 3 such that p ≡±2 (mod 5);
3. Sz(2p), p any odd prime; or
4. PSL3(3).

Here PSLn(q), for q a prime power and n ≥ 2, is the projective special linear
group corresponding to a vector space of dimension n over the finite field with q el-
ements. The groups Sz(2n), n odd, form a family of noncyclic simple groups named
for its discoverer, Michio Suzuki. (Sz(2n) is a subgroup of the four-dimensional
symplectic group Sp4(2

n), and is the group of fixed points of a special involutory
automorphism of this symplectic group.)

A finite group G is an N -group if and only if every local subgroup of G is solv-
able, i.e., for every nonidentity subgroupR ≤G of prime power order, its normalizer
NG(R) is solvable. It is an elementary observation that every minimal simple group
is a simple N -group; and Thompson classifies the latter:

Theorem 9 (N -Group Theorem) Let G be a noncyclic simple N -group. Then G is
isomorphic to one of the following simple N -groups:

• PSL2(q), q any prime power exceeding 3;
• Sz(2n), n odd and at least 3;
• PSL3(3);
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• A7, the alternating group of degree 7;
• M11, the Mathieu group of degree 11 and order 11.10.9.8;
• PSU3(3), the projective special unitary group corresponding to a nondegenerate

sesquilinear form on a 3-dimensional vector space over the field of 32 elements;
or

• The Tits simple group [2F4(2), 2F4(2)] of order 211.33.52.13.

Besides the Minimal Simple Group Theorem, the N -Group Theorem had other
corollaries that had seemed completely untouchable at the time. Here are two of
them:

Corollary 4.1 Let G be a finite group. If 〈g,h〉 is solvable for every g,h ∈G, then
G is solvable.

Corollary 4.2 Let G be a finite group. Then G is nonsolvable if and only if there
exist nonidentity elements a, b, c ∈ G whose orders are pairwise relatively prime
and such that abc= 1.

In the case of both corollaries, the proof reduces to checking the assertion in the
case that G is a minimal simple group, so that G is one of the handful of groups in
Theorem 8.

The N -Group Paper established a model of a broad framework for solving gen-
eral classification problems. The same framework has stood since then as the chief
strategy for attacking such problems; it is clearly visible in the actual CFSG proof,
including the in-progress second and third generation efforts. At the same time the
paper built its own tools, some quite well-developed, others in a form which was
later improved and strengthened, both by Thompson himself and by others.

One sees again the three-stage structure, as in the Odd Order Paper, consisting
of (a) analysis of the structures and mutual relationships among the maximal local
subgroups of a minimal counterexample; (b) a refining stage for the structure of
these maximal subgroups, whether by representation theory or other means; and (c)
identification of the target simple groups of the theorems (or a contradiction, as in
the Odd Order Paper, when the set of target groups is empty), by geometric means
or by generator-and-relation arguments.

In theN -Group Paper one sees this pattern in more than one context, correspond-
ing to the overarching subdivision of the proof into cases.

Thompson begins as usual with a minimal counterexample to the theorem, a
simple group G in which all local subgroups are solvable, but such that G is not
isomorphic to one of the target groups of the N -Group Theorem.

As was done in the Odd Order Paper, Thompson introduces a partition of the
set of all prime divisors of |G|, into sets π1,π2,π3,π4; the main case division is
according to which of these sets contains the prime 2. One of the four cases is easy.
If we let T be any Sylow 2-subgroup of G, then the condition 2 ∈ π1 means that T
is cyclic. A theorem going back to Frobenius and Burnside implies that G cannot
be simple unless it is cyclic of order 2.
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Thompson’s analysis of each of the other three cases turned out to be a prototype,
in whole or in part, for the analysis of an analogous case in the classification of all
finite simple groups. For a remarkable number of key ideas in the classification of
finite simple groups, one can point to their origins in some section or other of the
N -Group Paper.

For example, the condition 2 ∈ π2 means that T , a Sylow 2-subgroup of G, is
noncyclic but has no normal subgroup isomorphic to Z2 ×Z2 ×Z2; again the main
divide is drawn between rank at most 2 and rank at least 3. Later Daniel Gorenstein
and Koichiro Harada [33] were able to classify all finite simple groups satisfying
this condition.

The condition 2 ∈ π3 means that a Sylow 2-subgroup T of G has a normal
Abelian subgroup of rank at least 3, and furthermore that the set IG(T ;2′) of sub-
groups of G of odd order normalized by T is nontrivial, i.e., does not consist only
of the trivial subgroup 1. Thompson’s idea in Sect. 12 was to prove that the group
〈IG(T ;2′)〉 generated by all such “2-signalizers” again had odd order. This fore-
shadowed the later development of signalizer functor theory by Gorenstein and John
Walter and others [32, 34], a vital tool for understanding the array of subgroups of
odd order in a simple group.

The condition 2 ∈ π4, whose analysis occupies the last 8 sections and 200-odd
pages of the N -Group Paper, is a precursor of the important notion [31] of a simple
group’s having “characteristic 2-type.” (G is of characteristic 2-type if and only if
for every nonidentity 2-subgroup U ≤G, the normalizerNG(U) possesses a normal
2-subgroupW such that the centralizer order |CG(W)| is a power of 2. A theorem of
Borel and Tits implies that PSLn(2m) is of characteristic 2-type, as is more generally
any simple group of Lie type over a field of characteristic 2.)

To sort out this rather unwieldy case, Thompson defines a new invariant e(G),
measuring the complexity of the 2-local subgroups of G. The subdivisions of the fi-
nal sections correspond neatly to major steps of the classification of all finite simple
groups in the characteristic 2-type case. Section 13 argues the case e(G) ≥ 3, the
wide case, to a contradiction, corresponding to the “uniqueness case” of the general
classification treated by Aschbacher [8, 9]; Sect. 14 manages the case e(G)= 2, the
“quasi-thin case”, corresponding to the quasi-thin case of the general classification,
treated by Aschbacher and Smith [10, 11], and the remaining sections deal with
the case e(G) = 1, the “thin” case, corresponding to the thin case of the general
classification, treated by Aschbacher [6].

5 The B-Conjecture and the Grand Conjecture

From early on, Thompson called attention to the strong influence of 2-signalizers
on the structure of a finite simple group. For example in an early note [97], he con-
jectures that in a finite simple group, any subgroup of odd order invariant under a
Sylow 2-subgroup is Abelian, and he calls such subgroups “2-signalizers.” In the
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late 1960’s, Daniel Gorenstein and John Walter began a systematic study of the em-
bedding of 2-signalizers (in a broader sense of the word) in finite groups. A linchpin
of their analysis is the following theorem of Thompson:

Theorem 10 (Thompson A×B Lemma) Suppose that the group A×B acts on the
group P , with B and P being p-groups for the same prime p, and A having order
relatively prime to p. If A acts trivially on CP (B), then A acts trivially on P .

In 1973, Thompson defined the “bad” subgroup B(G) of a finite group G and
formulated the crucial B-Conjecture. This conjecture is roughly analogous to the
theorem about linear algebraic groups that in a simply connected reductive group,
the centralizer of any semisimple element x is connected and reductive. The con-
jecture was established in the mid-to-late 1970’s for finite groups and involutions
x by the combined work of a number of authors, providing a critical step in the
classification of finite simple groups.

To state the B-Conjecture we need some notation. First, O(X) is defined as
the largest normal subgroup of X of odd order. (The notation O(X) is due to
Richard Brauer, with “O” standing for “odd.”) Next, as defined by Helmut Ben-
der, E(X) is the largest normal subgroup of X which is the commuting product of
quasisimple groups (with “E” for “einfach,” perhaps). Of those quasisimple fac-
tors in E(X/O(X)), certain ones—the “good” ones—are images of the quasisim-
ple factors of E(X), modulo O(X); the others are the “bad” ones, and generate
B(X)O(X)/O(X). In particular if O(X)= 1 then B(X)= 1. The subgroup B(X)
is the natural obstruction to the condition that all quasisimple factors ofE(X/O(X))
be good, i.e. to the condition

E
(
X/O(X)

)=E(X)O(X)/O(X),
and B(X) is characterized by the four conditions

B(X) 
 X, [
B(X),E(X)

]= 1, B(X)= [B(X),B(X)], and

E
(
X/O(X)

)= B(X)E(X)O(X)/O(X).

The B-Conjecture For any involution z in any finite group G, B(CG(z))≤ B(G).

For simple groups G, we have G = E(G) so B(G) = 1, and the B-Conjecture
thus becomes B(CG(z))= 1 in this special case, that is,

E
(
CG(z)/O

(
CG(z)

))=E(CG(z)
)
O
(
CG(z)

)
/O
(
CG(z)

)
.

In the early 1970’s, Aschbacher proceeded from this starting point to develop
deeper consequences of the B-conjecture [5]. The first of these was that in a simple
group G in which E(CG(z)) �= 1 for some involution z ∈G, there exists an involu-
tion z′ such that E(CG(z′)) has a “large” normal subgroup L which is quasisimple
(or—a small exception—which is isomorphic to a 4-dimensional orthogonal group),
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and which is normal in CG(t) for all involutions t ∈ CG(L). Aschbacher would go
on, partly in collaboration with Gary Seitz and using work of John Walter, to finish
the classification of such groups when L is a group of Lie type in odd character-
istic, except for one of the smallest such groups, that is, PSL2(q) for some odd q .
The result was a characterization of all the groups of Lie type in odd characteristic
except for the “rank 1” groups—PSL2(q) and a rather bizarre family of groups, the
Ree groups 2G2(32n+1), n≥ 1, in characteristic 3.

A proof of the B-conjecture would therefore lead to a local and natural character-
ization of this large family of groups. Although Thompson could essentially reduce
the proof of the B-conjecture to considering a simple counterexample G in which
O(B(CG(z))) is a p-group for some odd prime p, he and others stalled there.

On the other hand, it was well-known that the B-Conjecture held for all groups
G whose composition factors were simple groups known to exist at that time.

In 1975 Thompson announced on a visit to Rutgers that the B-conjecture ap-
peared to have been “busted”—a favorite expression of his—by his proof, with
critical contributions from Nick Burgoyne, of the most general case of a stronger
conjecture, which Thompson called “The Grand Conjecture.” (It also came to be
known as the “U -Conjecture”.)

Conjecture 5.1 (Grand Conjecture) Let G be a group with a normal simple
subgroup N such that CG(N) = 1. Let z be any involution of G. Then either
O(CG(z)) = 1 or N is isomorphic to a known simple group, specifically to one
of the following:

1. An alternating group An;
2. PSL2(q) for some odd q;
3. PSL3(4) or the sporadic Held group He; or
4. A group of Lie type over a field of odd characteristic, but not PSL2(q) for any q .

By that time the theory of signalizer functors had been sufficiently developed that
one knew that in a minimal counterexampleG to the Grand Conjecture, there would
exist an involution z and a subnormal subgroupL ofCG(z) such thatL/O(L)would
be isomorphic to a central extension of one of the groups listed in the conjecture. In a
paper of Burgoyne [19] the fourth and most general of these possibilities is shown to
lead to a contradiction. Eventually the other three possibilities were likewise shown
by various authors to lead to a contradiction, establishing both the Grand Conjecture
and the B-Conjecture.

6 Factorizations, Quadratic Action, and Quadratic Pairs

Factorization theorems such as Theorem 6, or a partial analogue for p = 2 at
the heart of the N -group paper [110, 5.53, 5.54], were so powerful in the anal-
ysis of simple groups that an industry developed to study the most general con-
ditions under which such theorems could be proved. More precisely, the indus-
try aimed for a complete list of obstructions. In a couple of very short papers
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[101, 112] Thompson clarified the terms of this study, for the most basic factor-
ization G = NG(J (P ))CG(Z(P )) of a finite group G with Sylow p-subgroup P .
The first paper essentially showed that obstructions arise from (and only from) a
quotient H of G with no nontrivial normal p-subgroup and a faithful H -moduleM
over the field of p elements such that for some elementary Abelian p-subgroup A
of H ,

|M| ≤ |A|∣∣CM(A)
∣∣,

where CM(A) denotes the set of fixed points of A on M . Such a module has come
to be known as an “F -module,” and A is called an “offender.” The second paper
showed, in this terminology, that for any F -moduleM there is an offender A that is
“quadratic” in the sense that

M(a − 1)(b− 1)= 0 for all a, b ∈A.
In particularM(a − 1)2 = 0 for all a ∈A.

Thompson followed up with a lovely theorem determining the possible groups
H in the above terminology, when p ≥ 5. He defined a quadratic pair to consist of
a finite group G �= 1 and a faithful G-module M over the field of p-elements for
some prime p, such that G is generated by the set Q of all its elements x such that
M(x − 1)2 = 0.

The elements of Q are said to be “quadratic on M .” Any element x of order p
satisfies

M(x − 1)p =M(xp − 1
)= 0,

so the minimal polynomial of x, considered as a linear transformation ofM , has the
form (x − 1)n, n≤ p; x is quadratic on M if and only if n= 2. On the other hand
any element x that is quadratic onM satisfies the above equations, so x has order p
by the faithfulness of the moduleM .

Thus for example, if p = 2 then every involution ofG is quadratic onM , and the
hypothesis is only thatG is generated by its involutions. Even for p = 3 the hypoth-
esis is considerably stronger, but stability does not occur until p ≥ 5. Thompson
classified quadratic pairs in this stable case [69]:

Theorem 11 If (G,M) is a quadratic pair for p and p ≥ 5, then

1. For some n ≥ 1 there exist quadratic pairs (Gi,Mi) for p, for each i =
1,2, . . . , n, such that G = G1G2 · · ·Gn, [Gi,Gj ] = 1 for all i �= j , and M ∼=
M1 ⊗ · · · ⊗Mn as FpG-modules.

2. For each i, Gi = [Gi,Gi] and Gi/Z(Gi) is isomorphic to one of the following
groups of Lie type:

An(qi), Bn(qi), Cn(qi), Dn(qi), G2(qi), F4(qi), E6(qi), E7(qi),

2An(qi),
2Dn(qi),

3D4(qi),
2E6(qi).

Here qi is the order of the center of a Sylow p-subgroup of Gi .
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Substantial progress on a companion result for p = 3 was made by Ho [40].
There is a longer list of examples, including among other groups the Conway group
Co0 =Aut(Λ), where Λ is the Leech lattice, as well as the unitary groups PSUn(2)
over the field of 2 elements and the double covers 2An of the alternating groups.

7 The Ree Groups

During the 1950’s the finite groups of Lie type, those long known to exist as well as
some newcomers, were constructed systematically by Chevalley, Steinberg, Suzuki
and Ree. Chevalley constructed the “untwisted” groups L (q) with L a simple Lie
algebra over C and q a prime power; Steinberg constructed twisted variations of
those Chevalley groups whose Dynkin diagram has only single bonds and possesses
a nontrivial symmetry; Suzuki discovered the Suzuki groups, rediscovered by Ree
as 2B2(22n+1); and Ree constructed the new groups 2F4(22n+1) and 2G2(32n+1),
n ≥ 0. It is to the centralizer-of-involution characterization of these last groups of
type 2G2 that Thompson devoted considerable effort over a ten-year period [43,
107, 118, 123].

In 1954 Richard Brauer had suggested centralizers of involutions as providing an
effective avenue for characterizing finite simple groups. By the mid-1960’s his sug-
gestion had been vindicated in practice by a number of successful characterizations,
as well as in principle by the fundamental Brauer-Fowler theorem that for a simple
groupG, the order |G| is bounded by a function of |CG(z)| for any involution z ∈G.
(The Brauer-Fowler bound, however, is astronomically larger than the actual bounds
coming from specific theorems in which the isomorphism type of CG(z) was also
assumed.)

In G = 2G2(q), q an odd power of 3, the centralizer of every involution
is isomorphic to Z2 × PSL2(q), and G has Sylow 2-subgroups isomorphic to
Z2 ×Z2 ×Z2.

Janko independently was investigating the same question and in the process
discovered his first sporadic group J1, fitting the centralizer of involution Z2 ×
PSL2(5). In the end they jointly published an article [43] whose main thrust is the
following theorem.

Theorem 12 (Janko and Thompson) Let G be a finite simple group and z an invo-
lution inG. Assume that Sylow 2-subgroups ofG are Abelian and CG(z)= 〈z〉×K
with K ∼= PSL2(q) for some prime power q > 5. Then q is an odd power of 3.

This is only a first step toward the desired conclusion that G ∼= G∗, where we
define G∗ := 2G2(q). The work of H.N. Ward, who also addressed this problem,
shows among other things that G is a doubly transitive group on the cosets of B :=
NG(P ), where P is a Sylow 3-subgroup ofG, and P has order q3. These properties
of course also hold in G∗ with respect to the corresponding subgroups P ∗ and B∗.
Thompson begins by partially settling the isomorphism type of B . He defines for
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each odd power q of 3, and for each automorphism σ of the field of q elements, a
certain group N(q,σ ). It is clear from his definition that

B∗ ∼=N(q,σ0),

where σ0 is the (unique!) automorphism of the field of q elements such that

σ 2
0 = 3,

the Frobenius. Thompson proves that

B ∼=N(q,σ ) for some σ.

The definition of N(q,σ ) gives some idea of the complexity of the problem:
N(q,σ ) consists of all quadruples (κ,α,β, γ ) of elements of the field of q elements
and with κ �= 0. The multiplication is

(κ,α,β, γ )(λ, ξ, η, ζ )= (κλ,αλ+ ξ,βλ1+σ + η+ αλξσ − ασλσ ξ,
ζ + γ λ2+σ + ξβλ1+σ + ασλσ ξ2 + αλξ1+σ − α3λ2ξσ

)

The subgroup H := {(κ,0,0,0) |0 �= κ ∈ Fq} of B is the stabilizer of two points,
and its normalizer is N := NG(H) = H 〈τ 〉, with τ 2 = 1. Also B = HU where U
is the subgroup of B defined by κ = 1. The “structure functions” f : U − {1}→ B

and g :U − {1}→U are defined by the equation

τuτ = f (u)τg(u), 1 �= u ∈U,

and they determine the isomorphism type of G. In [118] Thompson studies the
structure functions, and he proves eventually in [123] that

if σ = σ0, then G∼=G∗.

In addition this last paper derives some restrictions on σ , but falls short of proving
that σ = σ0. Later Bombieri, Hunt, and Odlyzko [14] were able to use Thompson’s
properties to prove that σ = σ0. With this combined work of Thompson, Ward,
Bombieri, Hunt and Odlyzko, and Janko’s work on the case q = 5 [42], this chapter
of the classification of finite simple groups was closed.

Theorem 13 Let G be a finite simple group and z an involution in G. Assume that
Sylow 2-subgroups of G are Abelian and CG(z) = 〈z〉 ×K with K ∼= PSL2(q) for
some prime power q . Then either G∼= J1, Janko’s first sporadic simple group, with
q = 5, or G∼= 2G2(q) for some odd power q > 3 of 3.
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8 The Finite Sporadic Simple Thompson Group Th, also Known
as F3

In a lovely but not widely circulated article in the proceedings of a 1974 conference
in Sapporo [122], Thompson narrates his discovery of the sporadic simple group
that bears his name, of order

|Th| = 215.310.53.72.13.19.31.

Because this paper is not widely available—in particular it was not reviewed in
Mathematical Reviews—we describe it in some detail.

At about the same time as this discovery, which took “several months” according
to Thompson, parallel investigations of the Monster simple group by Thompson’s
student Robert Griess, Bernd Fischer, and John Conway were proceeding apace. It
was known that the MonsterM , if it existed, would possess an element x of order 3
such that CM(x)= 〈x〉 × Th, where Th is simple of the above order. Griess would
not construct M for another several years, but Thompson was able to construct Th
as a subgroup of GL(248,Z), and prove that modulo 3 this representation gives an
embedding Th ≤ E8(3). Thompson’s hypotheses were taken from properties of Th
that would have to hold if the Monster existed.

Theorem 14 Up to isomorphism there exists a unique finite simple group Th with
the properties

• For some involution z ∈ Th, CTh(z) is an extension of an extraspecial group of
order 29 by the alternating group A9;

• All involutions of Th are conjugate.

Furthermore, the following conditions hold.

• The order of Th is as above.
• Th acts irreducibly on the complex Lie algebra E8, preserving the Killing form

and a lattice Λ, but not preserving the Lie multiplication in E8.
• Let M = Z[ 1

2 ]Λ. Then [MM] ⊆M , and Th preserves the Lie multiplication on
M/3M .

Thompson describes the “clear” strategy: assuming that Th is a finite simple
group satisfying the two conditions above, determine the fusion in a Sylow 2-
subgroup, and then all the conjugacy classes of Th meeting C := CTh(z). Then use
exceptional characters and counting to determine |Th|. Finally, build the character
table and “hope for the best” in proving existence and uniqueness. And the strategy
produces a unique irreducible complex character θ of Th of degree 248. Moreover,
the analysis of fusion of involutions shows that Th must contain a subgroupD which
is a nonsplit extension of GL(5,F2) by its natural module, a subgroup of order 25

and exponent 2 containing z.
The existence and uniqueness proofs both hinge on an analysis of the subgroups

D, C := CTh(z), and the intersection C0 := C ∩D. They also depend on machine
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calculations, for which Thompson collaborated with Peter Smith. First, D is shown
to have a unique nonprincipal irreducible complex character θ0 of minimal degree,
this degree being 248. Using this character, he shows that D exists as a subgroup
of the Chevalley group E8(C). (A sidelight is that D is the stabilizer in E8(C) of
a “Dempwolff decomposition” of E8, a decomposition of the Lie algebra E8 as the
direct sum of a set of 31 Cartan subalgebras, the bracket of any two of which again
lies in the set.) Then there are exactly two subgroups Ci , i = 1,2 of GL(248,C)
such that Ci ∼= C and Ci ∩D = C0. One checks that subscripts can be chosen so
that 〈D,C1〉 is an infinite subgroup of E8(C), while 〈D,C2〉 is finite. This proves
existence and uniqueness. Finally, C1 and C2 stabilize Z[ 1

2 ]Λ for some lattice Λ,
and C1 and C2 have the same character modulo 3, whence C2 ≤E8(3).

9 “Elementary” Group-Theoretic Results

Among the tools that Thompson has created are several gems, such as the A× B-
Lemma mentioned earlier, whose proofs are short but which have had significant
consequences for the classification of finite simple groups. We mention four here.

Theorem 15 (Thompson Order Formula) Let G be a group of even order and let
t, u ∈ G be involutions that are not G-conjugate. For every involution z ∈ G let
nz be the number of ordered pairs (t ′, u′) of elements of CG(z) such that t ′ is G-
conjugate to t , u′ is G-conjugate to u, and z is a power of t ′u′. Let {z1, . . . , zm} be
a set of representatives for the conjugacy classes of involutions in G. Then

|G| = ∣∣CG(t)
∣∣∣∣CG(u)

∣∣
m∑

i=1

nzi

|CG(zi)| .

When m= 2 the formula is prettiest:

|G| = nt
∣∣CG(u)

∣∣+ nu
∣∣CG(t)

∣∣.

The group order is thus determined exactly by information all of which is ob-
servable in local subgroups. Indeed, nz depends only on information contained in
CG(z), together with a determination of the sets tG∩CG(z) and uG∩CG(z), where
tG := {tg |g ∈ G}. The latter sets, in turn, are determined by conjugations taking
place in certain 2-local subgroups of G, by Alperin’s Fusion Theorem.

The Thompson Order Formula has been used in the discovery and characteriza-
tion of a number of the sporadic simple groups.

Theorem 16 (Thompson Transfer Lemma [110, 5.38]) Let S be a Sylow 2-
subgroup of the finite group G, and let T be a subgroup of S of index 2. Let τ ∈ S
be an involution. If τg �∈ T for all g ∈G, then G has a subgroup G0 of index 2 such
that G=G0〈τ 〉.
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When applied to a nonabelian simple groupG, this result implies that τg ∈ T for
some g ∈G. In other words τ has a fixed point in the action ofG on the coset space
G/T . Since the cardinality of this coset space is twice an odd number, the only
alternative would be that τ acts as the product of an odd number of transpositions,
i.e., as an odd permutation. The set of all elements ofG inducing even permutations
would serve as the subgroup G0 of the lemma. Though very elementary, and well-
known in particular cases, this fact may have been first observed in its full generality
by Thompson. In any case it has been sharpened by various authors and has played
a crucial role in the analysis of 2-fusion throughout the classification of finite simple
groups.

The last two lemmas are of frequent use in the classification of finite simple
groups of characteristic 2-type.

Theorem 17 (Thompson Dihedral Lemma [110, 5.34]) Let the elementary Abelian
2-groupE ∼= (Z2)

n act faithfully on the p-group P of odd order. Then the semidirect
product EP contains the direct product of n copies of the dihedral group of order
2p (the symmetry group of the regular p-gon).

The final lemma was discovered independently by Bender.

Theorem 18 (Bender-Thompson Signalizer Lemma [99]) Let p be an odd prime
and let X be a p-constrained group. Let E be an elementary Abelian p-subgroup
of X, that is, E ∼= (Zp)n for some n. Suppose that every element of CX(E) of order
p already lies in E. Then any E-invariant p′-subgroup of X lies in Op′(X), the
largest normal subgroup of X whose order is not divisible by p.

10 The Inverse Galois Problem

The major conjecture in Galois theory has been the inverse Galois problem: is every
finite group G the Galois group of K/Q for some number field K? It was proved
using more number-theoretic methods that Abelian groups, then nilpotent groups
and finally solvable groups are all Galois groups of number fields. Hilbert observed
that symmetric (and alternating) groups occur as well.

More recently, the approach has been to consider what is called the Regular In-
verse Galois Problem (RIGP): is every finite group G the Galois group of some
Galois extension K/Q(t) with Q algebraically closed in K? Thus, K will be the
function of field of some curve over Q. Using the fact that Q is Hilbertian, an affir-
mative answer will imply that there are infinitely many number fields over Q with
Galois group isomorphic to G.

It is well known that this can be done with Q(t) replaced by C(t). This is because
C(t) is the function field of the Riemann sphere and the fundamental group of the
Riemann sphere with r points removed is a free group of rank r−1. Thus, the whole
problem is to consider such covers over C and try to descend to Q.
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Using the description of the fundamental group of the Riemann sphere with r
points removed, one is led to consider a finite group G with conjugacy classes
C1, . . . ,Cr such that the following set is nonempty.

Let

Ni(G;C1, . . . ,Cr) :=
{
(g1, . . . , gr ) ∈ C1×· · ·×Cr

∣∣∣G= 〈g1, . . . , gr〉,
r∏

i=1

gi = 1

}
.

A necessary condition that one can descend to Q(t) is that the set of conjugacy
classes Ci is rational—i.e. as a multiset {C1, . . . ,Cr} = {Ce1, . . . ,Cer } for all e prime
to |G|. This does not seem to be close to being sufficient though. There is a moduli
space (called the Hurwitz space) parametrizing such G-covers where the inertia
groups of points over the branch points of the cover are generated by elements in
C1, . . . ,Cr . The rationality condition above guarantees that the variety is defined
over Q. There has been a lot of progress in producing examples where the variety
is irreducible. However, it seems quite difficult to decide when the variety has a
rational point (which gives a cover over Q(t)). This method has led to showing that
groups occur as Galois groups over “big” Hilbertian fields.

One criterion that has proved extraordinarily productive is the notion of rigidity.
This was a concept that seemed to be independently discovered by many authors
including Belyi, Fried, Matzat and Thompson. We say that C1, . . . ,Cr is rigid if G
acts transitively on Ni(G;C1, . . . ,Cr). The rigidity criterion says that if C1, . . . ,Cr
is rational and rigid and Z(G)= 1, thenG occurs as a Galois group of a regular Ga-
lois extension of Q(t). In his initial paper on rigidity, Thompson [125] showed that
the Monster (the largest sporadic group) has a rationally rigid triple of conjugacy
classes (consisting of elements of orders 2,3 and 71) and so the Monster is a Galois
group over Q.

Numerous authors have used this to prove that many simple groups (and related
groups) are Galois groups over Q. This method seems especially fruitful for the fi-
nite groups of Lie type defined over prime fields. There are typically two parts to
proving that a family of conjugacy classes is rigid. The first part is to count the num-
ber of r-tuples in C1×· · ·×Cr with product 1. This can be done by a basic formula
involving the irreducible characters of the group—although this can often be quite
difficult. In particular, for the case of the finite groups of Lie type, this involves
using the Deligne-Lusztig theory of characters. It can also involve working with
the corresponding algebraic group and showing the system is rigid for the algebraic
group. The second part is to show that there are such r-tuples which generate the
group. This often requires detailed knowledge about maximal subgroups. Indeed,
one wants to count the r-tuples that do not generate and then show that what is left
over is a single G-orbit.

In joint work with Völklein [92], Thompson introduced what are now called
Thompson tuples. These were large numbers of tuples of conjugacy classes in clas-
sical groups that were shown to be rationally rigid for finite fields, including non-
prime order fields. In [92], Thompson and Völklein considered another family that
was not rigid. Still they could show that the corresponding variety parametrizing
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covers corresponding to that family was unirational, irreducible and defined over Q
whence it has Q points. The results are still not at all comprehensive over Q. Most of
the finite simple groups have been shown to be Galois groups over some cyclotomic
field. This approach has interesting connections with algebraic geometry and other
areas (for example, see the book of Katz [45]). We refer the reader to the books
[50, 141] for more details and for many examples of how this idea has been used.

11 The Genus of a Permutation Group

Because of his interest in Galois groups, Thompson asked the following natural
question:

Let f :Xg→ P1 be a nonconstant rational map from a curve Xg of genus g. Let
G be the monodromy group of f—i.e. the Galois group of the Galois closure of
C(Xg)/C(P

1). Given g, what are the possible G that can occur? Thompson asked
some algebraic geometers if he thought that fixing g imposed any restrictions on the
possibilities for G. The consensus was that the geometry seemed to impose no such
restrictions. However, considering this as a problem about transitive permutation
groups (which one can), it is clear that there are serious restrictions. In particular,
Guralnick and Thompson [38] conjectured that the set of nonabelian composition
factors of monodromy groups of maps from genus g curves to the Riemann sphere
was finite aside from the alternating groups.

It is easy to see that if g = 0 and f is a generic map of degree n, then the mon-
odromy group will be Sn. The map x → xp shows that cyclic groups occurs as
monodromy groups of maps from the Riemann sphere to itself. In [38], a reduction
theorem was proved (to the case of minimal covers and so primitive permutation
groups) and the conjecture was proved in many cases. Moreover, an outline for a
possible complete proof was laid out. Indeed, this is a template for various kinds
of problems using permutation groups. Reduce to the case of primitive permutation
groups and then further reduce to properties of simple groups.

In a series of papers by various authors (including Aschbacher, Guralnick,
Neubauer, Liebeck, Saxl, Shalev), this problem was attacked. The final step in the
proof of the conjecture was provided by Frohardt and Magaard [28]. Indeed, it now
seems possible that one can classify all indecomposable covers of degree n of the
Riemann sphere by curves of small genus (say at most 2) where the monodromy
group is not the alternating group or the symmetric group.

This conjecture also led to quite a lot of interesting related work. For example,
this led to a vast generalization of a result of Zariski’s thesis (which answered a
question of Enrique). Zariski proved that there is no solvable map from the generic
Riemann surface of genus g > 6 to the Riemann sphere (note that every curve of
genus 6 admits a degree 4 cover to the Riemann sphere and in particular a solvable
map). Interestingly, Zariski’s proof was essentially done by translating the problem
to group theory and using facts about solvable primitive permutation groups. In a
series of papers (see [37]), it is shown that for g ≥ 4, if f : X→ P1 is an inde-
composable map of degree n from the generic Riemann surface of genus g, then
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the monodromy group of f is either Sn, n > (g + 2)/2 or An, n > 2g. It was well
known that Sn could occur but it was only recently shown [49] that An could occur.

The Guralnick–Thompson conjecture also led to a resurgence into the study of
the number of fixed points of permutations in primitive permutation groups. The
idea is that aside from some special cases, most elements in primitive permutation
groups have very few fixed points. This had been studied extensively as early as
the late 1800’s. Using the classification of finite simple groups, all primitive per-
mutation groups containing an element fixing at least 1/2 the points were classified
[36].

The Riemann–Hurwitz formula implies that in most cases the genus grows lin-
early with the degree of the map. Kleidman [46] used these ideas to prove a conjec-
ture of Kegel and Wielandt characterizing subnormal subgroups of finite groups: a
subgroup H of a finite group G is subnormal if and only if for every prime p and
every Sylow p-subgroup P of G, P ∩H is a Sylow p-subgroup of H .

12 Representation Theory

Thompson did quite a lot of outstanding work in representation and character theory
of finite groups. In particular, the Odd Order Paper developed a substantial amount
of character theory. Thompson also write a number of relatively short and incredibly
clever papers that solved various interesting questions and are still of considerable
interest today.

For example, in [126], Thompson proved a result about Frobenius–Schur indi-
cators for modular representations. Recall that if k is algebraically closed field of
characteristic p �= 2, G is a group and V is an irreducible finite dimensional kG-
module, then the Frobenius–Schur indicator is 0,±1. It is+1 ifG leaves invariant a
symmetric bilinear form on V , −1 if G leaves invariant an alternating bilinear form
and 0 otherwise (i.e. if V is not self-dual). If G is finite, then an indicator of +1 is
equivalent to the representation being defined over R. If p = 0, there is a very nice
character formula to compute the indicator. This is not available in positive charac-
teristic. Thompson showed that if p > 0 and V has indicator ±1, then there is an
irreducible CG-moduleW such that V occurs with odd multiplicity in the reduction
of W modulo p and that W and V must have the same indicator. In particular, this
furnishes a quick proof that all irreducible representations of Sn in characteristic
p �= 2 admit an invariant quadratic form. Thompson’s result has very recently been
extended to certain families of Hopf algebras [51].

The paper [108] makes an important contribution to block theory. Brauer’s theory
of blocks relative to a fixed prime p partitions the set of irreducible complex char-
acters of a finite group G in a way reflecting how the corresponding representations
reduce modulo p. (Any complex representation of G is similar to one in which the
entries of the representing matrices all lie in a ring R that is a finite extension of the
p-adic integers, enabling reduction modulo p. However, in the case of interest, when
p is a divisor of |G|, the reduction of an irreducible complex representation modulo
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p is in general not irreducible.) Each subset in the partition—i.e., each “block”—
has an associated “defect group” according to Brauer’s theory. The defect group is
a p-subgroup of G defined up to conjugacy in G, and it is a basic theme of block
theory that the defect group governs much about the structure of the corresponding
block. For instance if the defect group is trivial, then the block consists of a single
representation that stays irreducible and projective modulo p. Brauer [17] obtained
thorough results about blocks whose defect group has order p, for example show-
ing that the reduction mod p of a complex irreducible representation in the block
is multiplicity-free, i.e., has no repeated composition factors. An evident question
was whether the multiplicity-free conclusion would still hold for representations in
blocks with cyclic defect group. Thompson writes that he undertook the work in
[108] to try to understand Brauer’s results. He succeeds in establishing this gener-
alization under the assumption that a Sylow p-subgroup P of G is cyclic, equal
to its own centralizer in G, and disjoint from its distinct conjugates. The methods
involve the “Green Correspondence” between indecomposable modules for G and
indecomposable modules for the normalizer NG(P ), in both cases over an alge-
braically closed field of characteristic p. (The paper includes an elegant proof of
part of the famous Hall-Higman Theorem B, using the same techniques.)

With the help of the methods of this paper, E.C. Dade [21] was able to analyze
decisively the structure of blocks with arbitrary cyclic defect groups.

In [24] with Feit, it is shown that if p is a prime and G has a faithful irre-
ducible complex representation of dimension n with p > 2n + 1, then the Sylow
p-subgroup of G is normal and Abelian. This elegant paper generalized some re-
sults of Blichfeldt and Brauer. Note that SL2(p) has irreducible representations of
dimension (p− 1)/2 (Weil representations) and so the result is best possible.

In [79], Thompson proves that ifG is a finite subgroup of GLn(C)=GL(V ), then
for somem≤ 4n2,G has an invariant 1-dimensional subspace on themth symmetric
power. The proof is quite clever. First note that GLn(F) has a 1-dimensional com-
position factor in the (p − 1)nth symmetric power (for F of characteristic p > 0).
Thus if p does not divide |G|, by reducing modulo p and lifting the invariant sub-
space, G will have a 1-dimensional invariant subspace in the (p− 1)nth symmetric
power of V . He then picks a prime p > 2n+ 1 and uses the result just discussed to
show that the Sylow p-subgroup of G is central (after reducing to the case that G
is irreducible) and so one may assume that p does not divide |G|. He conjectures
that there might be a bound of the form cn for some constant c. This is still an open
problem and of considerable interest to algebraic geometers.

In [139], Thompson studies the problem of the possible composition factors of
rational finite groups. A finite groupG is called rational if all characters onG are ra-
tional valued (equivalently g and ge are conjugate inG for any e prime to |G|). Feit
and Seitz, using the classification of finite simple groups, determined all possible
nonabelian composition factors (aside from alternating groups, only four others are
possible). The question is, what cyclic groups of prime order p can be composition
factors of such groups? It is conjectured that p ≤ 5. In an elegant proof, Thomp-
son shows that p ≤ 11. The proof uses the Feit-Seitz result and reduces to the case
where G has a minimal normal elementary Abelian p-subgroup and analyzes the
possible module structure of this subgroup.
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In [78], Thompson studies finite dimensional representations of amalgamated
free products of cyclic groups and uses this in the study of the Monster and the
sporadic group J4.

Brauer made an important conjecture about blocks which was only recently
proved, called the k(B) conjecture. This conjecture is about the number k(B) of
irreducible complex characters of a finite group in a block B with defect group D.
The conjecture is that k(B)≤ |D|.

The key idea to prove it was to show that if G is a finite group and V an irre-
ducible module over Fp with p prime to |G|, then the number of conjugacy classes
in the semidirect product VG is at most |V |. In joint work with Robinson [61], this
inequality is proved under the assumption that the stabilizer H of a nonzero vec-
tor v has the property that V has a faithful self-dual H -submodule—in particular,
this holds in the case G has a regular orbit. This is used to show the inequality for
p large enough. It was a crucial ingredient in the eventual solution of the problem.

13 Projective Planes

Thompson wrote several interesting papers on projective planes (the main questions
in the area are still wide open).

In [48], MacWilliams, Sloane and Thompson proved various results about a pro-
jective plane of order 10 (assuming one exists).

In [131], Thompson observed that if c is any characteristic root of the incidence
matrix of a projective plane of order n, then either c = 1+ n or c has all its conju-
gates on the circle |z| = n.

In [137], the minimal polynomial of an incidence matrix was studied and some
interesting results reported. Indeed, this led Thompson to an interesting question in
linear algebra.

14 Cosets

In [106], Thompson answered a 1954 question of Paige proving that there exist
finite groups G such that some coset of a Sylow 2-subgroup consists of elements of
even order. It is easy to see that this cannot occur for solvable groups. The example
Thompson gives is the group G= PSL2(53). In fact, with some extra work, one can
show that there are infinitely many such groups G (namely any PSL2(q) such that
16 does not divide q2−1 and q ≥ 53 and odd). Until recently, this was thought to be
a curiosity. Indeed, in the math review written by Paige, there was no mention of any
consequences. It turns out that Thompson’s method can be used to prove a similar
result for all primes p and this has been used to answer a question of Richard Taylor
regarding Galois representations. The idea of Thompson’s proof was to define a
certain variety and show that for certain values of q if the variety had points over Fq ,
then the coset with the desired property exists (and indeed there should be many
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such cosets). Thompson observed that for q = 53, this variety did have points. Using
various estimates for the number of points on varieties over finite fields, the result
holds for any sufficiently large q (satisfying the appropriate congruence conditions).
For odd p, there is a different variety but the idea is quite similar.

Interestingly, Ho and Völklein proved a result which leads to a related prob-
lem: do there exist nontrivial cosets of a Sylow p-subgroup consisting of only p-
elements? There are also some intriguing connections with Gowers’ theory of pseu-
dorandom properties.

15 Divisor Matrix

LetA be the infinite integral matrix where the rows and columns are indexed by pos-
itive integers and the (i, j) entry is 1 if i divides j and 0 otherwise. This is called
the divisor matrix. In [65], Sin and Thompson produce a representation of SL2(Z)

where A corresponds to one of the natural unipotent generators. Moreover, this rep-
resentation preserves, in a natural way, the ring of Dirichlet series that converge at
some nonzero complex number.

In particular, if ζ(s) is the Riemann zeta function, they show that there exists a
Dirichlet series φ(s) such that the orbit of ζ(s) is contained in the C-span of ζm(s)
and φ(s)ζm(s) where m is a natural number. While there is no explicit formula
given for φ(s), it does satisfy

(
ζ(s)− 1

)
φ2(s)+ ζ(s)φ(s)+ ζ(s)(ζ(s)− 1

)= 0.

While this work is still in its preliminary stages, the connection between the
Riemann zeta function and the divisor matrix seems mysterious and may lead to
unexpected results.

16 Other Work

Thompson also studied a myriad of other areas including problems in number the-
ory, modular forms, Kleinian groups, coding theory and combinatorics. He also was
involved in some of the early aspects of monstrous moonshine and the connections
of the largest sporadic group (the Monster) and modular forms. See [74, 75].
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A Report on the Scientific Contributions
of Jacques Tits

Francis Buekenhout

1 Introduction

In 1975, the Collège de France in Paris, created a Chair in Group Theory for Jacques
Tits. He gave an inaugural lecture [T102]1 and, in his application for the Chair he
wrote a detailed survey of his work: “Titres et travaux scientifiques de Jacques Tits”
(32 pages, 1972). In both of these texts he gave his definition of group theory:

“. . . theory resulting from the mathematical development of the neighbour-
ing ideas of homogeneity, of symmetry and of indistinguishability or, in more
philosophical terms, of the synthesis of same and of different”.

The contributions of Jacques Tits belong to a broad and difficult range of math-
ematics whose leitmotiv is groups, homogeneity, geometry, topology, and algebra.
He belongs to the tradition of Felix Klein, Federigo Enriques, Sophus Lie, Elie Car-
tan, Herman Weyl, among other great men. In a deep way, his work often represents
a revenge of geometry on group theory, with respect to Klein’s Erlanger Program,
as he said in 1975 during his inaugural lecture at the Collège de France.

According to MathSciNet the number of publications of Tits is 153. Some of
his papers have escaped this remarkable undertaking of the American Mathematical
Society. One of these is:

• “Géométries polyédriques et groupes simples.” Atti della Seconda Riunione del
Groupement des Mathématiciens d’Expression Latine 1963 [T52]. This is no
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less than the founding paper of the theory of buildings and of Tits systems. See
Sect. 11.

Quite a number of great works remained unpublished. Here are some of them.

• “Travaux sur le plan Crémonien.” 1950–1952. Typewritten manuscript. Not quite
recovered yet. An important paper. Completed by “The Cremona plane” 1999
[T198]. See Sect. 3.

• Empain Prize Memoir 1954. Typewritten manuscript entitled “Espaces Ho-
mogènes et Isotropes et Espaces Doublement Homogènes” (retyped, 124 pages)
[T22]. Again an important paper. See Sect. 5.

• “Remarks on Griess’ construction of the Griess–Fischer sporadic group (I), (II),
(III), (IV).” 35 pages, 1983 [T143]. See Sect. 7.

The European Mathematical Society has taken on a project in order to publish
the “Oeuvres de Jaques Tits” in four volumes (about 3800 pages) in 2013 [T209].
The editorial team comprises Hendrik Van Maldeghem, Jean-Pierre Tignol, Bern-
hard Mühlherr, and Francis Buekenhout. With the help of Jacques Tits, they have
established an official list of publications: it includes 203 documents. Here we shall
discuss only a sample of these, leaving true gems untouched.

2 The Projective Line

Tits started research at age 16 in 1946 in the context of a course taught by Paul Libois
on projective geometry the year before and pursued in his course on “Géométrie
Supérieure”. Tits was a third year undergraduate student. He got impressive insights
on sharply multiply transitive permutation groups, inspired by affine and projective
geometry. On the basis of this work, he achieved at once international recognition,
in particular from Emil Artin, as early as 1949, at the Colloque d’Algèbre et Théorie
des Nombres in Paris. His numerous results cover the publications [T1] to [T4] and
[T10]. The latter, his PhD thesis, includes a novel geometry of projective and affine
spaces (over a field) in terms of a transformation group from which the geometry is
extracted.2

Let us state one of Tits’s results. Let G be a permutation group which is triply
transitive on a set S. Let p,q be distinct elements of S. Assume that theG-stabilizer
of p and q is Abelian. ThenG is isomorphic to some PGL(2,K), K a commutative
field, in its natural action on the projective line P(1,K).

This work by a youngster should not be underrated. The projective lines belong to
the rank one buildings whose invention came 15 years later when Tits was 31 years
old. The projective lines are a class of Moufang sets whose classification started with

2Note also the paper [12] by Libois. In the introduction he says: “Cette communication, élaborée
en étroite collaboration avec MM. P. Defrise et J. Tits, a pour but d’indiquer une conception de
cette synthèse, de souligner les éléments déjà obtenus et qui nous paraissent les plus importants,
d’apporter des résultats nouveaux.”
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Tits and remains a major open problem. Another related open problem is to decide
whether a classification of infinite sharply 2-transitive groups can be accomplished.
The open problems in the thesis have remained untouched: this should be a potential
for development.

3 The Cremona Plane Made Invariant Under the Cremona
Group

Tits’s advisor, Paul Libois, drew his attention to a gap in birational geometry of
the complex plane. Here, the concept of a projective point is not invariant under
the Cremona group, which ought to be a group of automorphisms for some struc-
ture. Actually, in view of the phenomenon of blow-up, a projective point is not an
invariant. Tits solved the problem.

In his words for one of the papers [T23] he presented in 1955: “The introduc-
tion of an adequate notion of point allows the elaboration of a purely geometric
axiomatic of the Cremona plane”.

In 1950–1951, Tits found a system of axioms for the Cremona plane over an al-
gebraically closed field. His primitive concepts were invariant under the Cremona
group. This remarkable piece of work remains unpublished. About four copies of
the typewritten manuscript were circulated. One copy was saved at the library of the
Université libre de Bruxelles—I do not know where the other are. I have my hand-
written copy of most of it made in the early 1960’s. Tits told me (1999) that Libois
was not entirely happy with the paper. He found it too formal and not philosophical
enough. This is why the paper was not published.

In 1999, Tits gave eight hours of lectures on the subject. It was a course of the
Collège de France given at the Université libre de Bruxelles—an innovation. The
notes were written by Hendrik Van Maldeghem and myself. Tits wrote a summary
which can be found in [T198].

The basic idea in 1950 was to start with a partially ordered group whose positive
elements are called figures. Additional structure consists of figures that are called
points. These are the only primitive elements. In his axioms, Tits made the require-
ment that for every point p, the stabilizer of p acts as a sharply triply transitive
group on the set of points covered by p. This was his way of getting his hands on a
ground field.

The fact that a point may contain another point, expresses the old view of in-
finitely near points that gave rise to so much polemical discussions in former times.
This is the philosophical component advocated by Libois. In Tits’s view, it collapsed
without words.

4 Lie Groups and the Riemann–Helmholtz–Lie Problem

The years 1951–1954 were devoted to the study of Lie groups, a subject in which
Tits became rapidly a leading expert. A great achievement was an impressive solu-
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tion of the Helmholtz–Lie problem that actually goes back to Riemann. The question
is to provide a common characterization of Euclidean and non-Euclidean geometries
on the basis of a “free mobility” property of their motion group. In other words, de-
scribe the set of all spaces in which non-Euclidean geometry may be developed.

In 1930, Kolmogorov gave an accurate answer, in terms of a system of axioms
based on a group of homeomorphisms acting on a metrizable, connected, locally
compact topological space. He had a recurrent set of axioms (Mn), n a natural num-
ber, and he stated that his spaces were either Euclidean or non-Euclidean. He did
not publish the proof. Very surprisingly Tits classified all spaces satisfying (M1).
From his list, he checked that (M1) + (M2) implies (Mn) for every natural num-
ber n, with a few exceptions. Moreover, he provided the missing proof. His meth-
ods gave a series of other classifications. They gave, in particular, all models of
a universe of general relativity satisfying a mild homogeneity condition. Tits also
obtained a new way to classify the simply connected homogeneous compact com-
plex manifolds, a result obtained earlier by H.C. Wang. We are dealing here with
[T23], which is the Thèse d’agrégation or Habilitation (1955), and the remark-
able survey [T29]. The latter was written for a conference on 14 October 1954,
at the Riemann Tagung in Berlin, which was held to commemorate the lecture
given by Riemann on June 10 1854, “Über die Hypothesen welche die Geome-
trie zu Grunde liegen”.3 Riemann’s memorable memoir which founded Riemannian
geometry, was published by R. Dedekind in 1867. We follow [T29] in a loose trans-
lation:

Speaking of the spaces of constant curvature, Riemann indicates that “the
common characteristic of these varieties may also be expressed by saying that
the figures may be translated and rotated arbitrarily”.

Later on, dealing again with constant curvature, he says that “bodies have an exis-
tence independent of their position”. Tits continues:

“Later on, the characterization of spaces of constant curvature by an axiom
of free mobility, was pushed further by Helmholtz (1868), then Lie (1893),
who considers the group of motions. At this stage, Riemann’s free mobility of
bounded solid bodies is replaced by a new idea which is the free mobility of
spaces.”

Let us express the results of Tits, based on purely topological axioms due to
A. Kolmogorov (1930).

Consider a pair (E,G) where:

(1) E is a connected locally compact topological space and G is a group of home-
omorphisms acting transitively on E.

(2) For any two points p,q and a neighborhood U of q , there exists a neighborhood
V of p and a neighborhood W of q such that every element of G mapping p
into W , maps V into W .

3On the hypotheses which underlie geometry.
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(3) For any distinct points p,q, r such that q and r have distinct Gp4-orbitsQ and
R, either Q separates p from R or R separates p from Q.

This is the axiom (M1) mentioned at the beginning of this section.
As we said, Kolmogorov has an axiom (Mn), n a natural number, namely: For

all points p1, . . . , pn such that for every i ≤ n, pi is contained in the orbit of pi−1
under the G-stabilizer of p1, . . . , pi−2, the condition (3) holds if E is replaced by
the orbit of pn under the G-stabilizer of p1, . . . , pn−1, and G is replaced by the
G-stabilizer of p1, . . . , pn−1.

Theorem If the conditions (1), (2), (3) and the axiom (M2) hold, then E may be
identified with a Riemann space of constant curvature by a homeomorphism which
is unique up to isometry, or up to similarity in the Euclidean case, in such a way
that G is a group of isometries of that space.

This conclusion means that (Mn) for every n≥ 1, follows from (M1)+ (M2).
Tits’s way of proof is to establish a much stronger result, namely to classify

the pairs (E,G) satisfying (1), (2), (3), and a mild condition (4). He obtains a list
including affine spaces over R,C,H, the affine plane over O (octonions), a spinorial
space, a semi-spinorial space, a conformal space and a few more . . . In each case,
G is given as well. Condition (4) is used only in the final step of the theory. On
page 221 of [T23], Tits states a conjecture which would provide the classification
also when (4) does not hold. I must confess that I don’t know the status of this
conjecture.

A detailed, deep and broad study of the views explained here can be found in
Freudenthal’s article [8].

Freudenthal received frequent visits by Tits in Utrecht. He understood Tits im-
mediately, and he worked with him. He contributed himself to the final solution of
the Riemann–Helmholtz–Lie Problem. He writes:

“The question was finally settled by Tits in 1952”. See [T13, T16].

5 Doubly Homogeneous Spaces, and Homogeneous and Isotropic
Spaces

Let me quote a report on this work written by Tits in 1954 (there exists a typewritten
manuscript from 31 December 1954).

“The spaces that are considered are homogeneous Klein spaces, namely
ordered pairs (E,G) where E is a set (possibly equipped with a topological,
differentiable, or analytic structure) and G is a transitive group of automor-
phisms of E. The space (E,G) is called doubly homogeneous if G is doubly

4Gp denotes the stabilizer of p in G.
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transitive on E; it is called homogeneous and isotropic if G is transitive on
the tangent directions (elements of contact) of E.”

The main result of the memoir is the determination of

(i) all locally compact doubly homogeneous spaces
(ii) all homogeneous and isotropic spaces in the case where G is a Lie group, and

where E =G/H is a connected homogeneous space for that group.

Tits did not provide a full proof, but he took care of the most difficult parts, like
homogeneous spaces of the exceptional Lie groups in order to convince the readers.

6 Geometric Interpretation of the Five Exceptional Simple Lie
Groups and the Magic Square

All simple Lie groups of classical type An, Bn, Cn, Dn have a geometric inter-
pretation in terms of projective geometry, projective quadrics and symplectic po-
larities. A geometric interpretation for the exceptional groups G2, F4, E6, E7 and
E8 represented an open question that had been pending since the time of S. Lie,
W. Killing and E. Cartan. In 1954, Tits obtained an epoch making solution, and
he made a major step in the direction of buildings. The geometry is constructed in
group theoretical terms from the group and the maximal subgroups containing a
Borel subgroup, namely a maximal connected solvable subgroup. The construction
fits perfectly with projective spaces, projective quadrics, and symplectic polarities
of the classical groups, and it provides a new view on them. Very soon, the con-
struction applied to all Chevalley groups revealed in 1955, also to all semi-simple
isotropic algebraic groups, and more would come until the late 1980’s (Kac–Moody
groups). A major paper switching from algebraic constructions to geometric axioms
is [T30].

7 A World of Incidence Geometries

Tits had created a “world out of nothing” in the phrasing of Jeremy Gray [10]. It
was a world of incidence geometries. A geometry can be seen as a multipartite
graph in which the elements of a given component are called points (resp. lines,
planes, quads, etc.). These geometries ought to be called Tits geometries.

Tits was axiomatizing his fantastic universe of geometries at various levels of
generality. While doing this he obtained geometric constructions and existence
proofs of various simple groups. His construction for a group of type E6 over any
field was superseded by Chevalley’s uniform algebraic construction including the
classical groups as well as G2, F4, E6, E7 and E8 over any field. The exceptional
groups were becoming classical too.

Tits’s many different methods applied further through the years to provide several
new classes of finite simple groups of “twisted” Lie–Chevalley type. He found the
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surprising “Tits group”, namely the simple group of index 2 in 2F4(2). This group
is sometimes considered as the 27th sporadic group, which is probably what it will
be called in the future.

Tits greatly contributed to the sporadic groups. He provided the first computer
free existence proof of the Hall–Janko group in a most elegant geometric way from
an extension of the generalized hexagon of order 2.

In 1982–1984 he got a deeper understanding and nontrivial simplifications of
Griess’s construction of the Monster group. The reference is given in Sect. 1. It will
appear in the “Oeuvres” [T209].

8 Generalized Polygons

Paper [T34], published in 1959, is a great one indeed. It provides a complete clas-
sification for the trialities of the Tits diagram geometries of type D4. This parallels
the classification of polarities in projective spaces which is, algebraically speaking,
the theory of sesquilinear forms.

Here Tits discovers the class of twisted Chevalley groups 3D4(F ), F a field,
independently of Steinberg. His approach is similar to the derivation of classical
groups from forms. Provided with a triality T in theD4-geometry, and a point p, the
latter is called isotropic, if it is incident to T (p). In that case, T (p) is incident with
T 2(p), and the latter is incident to p. A line L is called isotropic if T (L)= L. Then,
every point of L is isotropic. Provided there exists an isotropic line, Tits obtains a
geometry G of isotropic points and lines that he starts comparing to a projective
plane and to a quadric of Witt index 2. He gets a totally new concept that he calls a
generalized hexagon.

By further abstraction he gets a fantastic new concept called generalized n-gon,
n a natural number ≥ 1, or n=∞. The case n= 3 consists of the projective planes,
the case n= 4 is modeled after the quadrics of Witt index 2, and its general member
is called a generalized quadrangle, the case n = 6 is modeled after G and called
a generalized hexagon. The case n =∞ consists of all trees without elements of
valency 1. A geometric world sprang out of this concept. It is still growing. Two
years later, the generalized n-gons became the buildings of rank two, those relying
on points and lines. A superb self-contained and deep survey is the book by Hendrik
Van Maldeghem [15]

9 Moufang Polygons

In 1964, W. Feit and G. Higman showed that a finite thick generalized n-gon can
exist only for n= 2,3,4,6,8 [7]. This was based on eigenvalue techniques for the
incidence graph of a generalized polygon. Such a result was hopeless in the infinite
case in view of the free constructions due to Tits (see Sect. 16). However, Tits de-
tected an analogy with the projective Moufang planes that are related to the Graves–
Cayley–Dickson octonions. Indeed, all models of generalized n-gons derived from
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simple groups, gave Tits a property he called the Moufang condition (1973) in honor
of Ruth Moufang who had studied the projective planes over an octonion division
algebra in the early 1930’s. The property is expressed by the existence of partic-
ular automorphisms called elations. Assuming his Moufang condition, Tits proved
that n = 2, 3, 4, 6, or 8. Moreover, Tits was expecting a complete classification
of those Moufang polygons. That classification existed already for n = 3 (due to
R.H. Bruck in 1951 and E. Kleinfeld in 1951). The case n= 2 is uninteresting from
a purely geometric viewpoint. A generalized 2-gon is any complete bipartite graph.
Tits obtained a complete classification for n= 8 and n= 6. He started on the case
n = 4. The latter case would stimulate efforts towards completion over 30 years.
(See Sect. 19.)

This may be a good opportunity to mention, that unlike most other mathemati-
cians, Tits was constructing all of his mathematics in his head, without using paper
and pen, including the proofs of difficult results. Years later, he could reconstruct
them. The task became really hard for Moufang quadrangles.

10 General Theory of Coxeter Groups

In 1961, Tits had developed the general theory of Coxeter groups for which he is
not well enough recognized. He wrote it down in a document that was fairly well
distributed, but not published at the time, “Groupes et Géométries de Coxeter”. This
deep theory generalized fundamental results of Coxeter obtained in the 1930’s. Tits
paid a tribute to the great man by the creation of a “Coxeter language” to which
many researchers in science adhere nowadays.

This task was necessary for Tits himself in view of his theory of buildings, which
was born the very same year. It was also intended for Bourbaki, who used it in his
book [4], published in 1968. Bourbaki writes

“Pour la rédaction de ces trois chapitres, de nombreuses conversations avec
J. Tits nous ont apporté une aide précieuse. Nous l’en remercions trés amicale-
ment”.

However, there is no trace in the book of the fact that Tits wrote down the general
theory of Coxeter groups published by Bourbaki. Much later, in 2001, the paper
was finally published by S.S. Chern and F. Hirzebruch in the Wolf Prize Volume
[T204]. A lot of confusion prevails about the general theory of Coxeter groups.
Some persons claim that it is due to Coxeter. Some others claim that it is due to
Bourbaki. It is due to Tits!

11 Theory of Buildings: Birth 1961

The birth of buildings as well as Tits systems occurred in 1961, and Tits was lectur-
ing on it at a conference held in Firenze and Bologna during the autumn. His paper
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[T52] appeared in the proceedings of that conference in 1963. He did not use the
words “building”, “apartment”, “Tits system”, but rather “generalized polyhedron”,
“skeleton”, “group with a BN-pair”.

Tits gave a plenary lecture on the subject at the International Congress of Math-
ematicians in Stockholm 1962 (see [T53]).

Bourbaki, whose philosophy was to write only on theories whose permanent im-
portance is well established and whose presentation has been reaching an optimal
and concise shape, took up immediately a great deal of Tits’s theories. The Tits
systems are there, in the title of Chap. IV. The buildings (immeubles) are in the
exercises! [4].

In 1954, Bruhat had discovered that for a classical simple group, there exists a
decomposition G = WBW where B is a Borel subgroup and W the Weyl group
of the related root system. A moment of thought is required in order to explain
WB , since W is not a subgroup of G. The result was extended to all real and com-
plex semi-simple Lie groups by Harish Chandra (1956). Tits wanted to understand
this in geometric terms. It was one of the roads to buildings. The concept of a Tits
system is particularly handy and simple. It requires only the group structure. Pro-
viding a group G with a Tits system and a few additional group theoretical con-
ditions, Tits proved the simplicity of G. The proof supersedes former proofs of
simplicity for particular classes of groups. This is a major result presented in Bour-
baki.

Every building comes with a Coxeter group and the corresponding Weyl group
of a root system. It also has a Coxeter diagram. The buildings whose Weyl group is
finite, are called spherical. This amounts to saying that all apartments are finite.

Tits started to classify all spherical buildings of rank r > 2, following the model
of the classification of projective spaces of rank 3, whose principle is due to Veblen
and Young (1910). They introduced the concept of a division ring (they called it a
“number system”) and showed that every projective space is isomorphic to a space
constructed over a division ring.

In many respects, the most difficult part in the theory is to classify the buildings
of type Bn that are also called “polar spaces”. In order to get through this, Tits had to
develop, among other things, a theory of pseudo-quadratic forms, pseudo-quadratic
groups, and pseudo-quadratic polar spaces.

His book, actually a complete research paper, appeared in the Springer Lecture
Notes series in 1974 [T98]. It allows the reader to profit from the author’s imag-
ination and insight. It is another testimony of Tits’s total honesty with respect to
references. He knows that every definition requires a reference if it has been bor-
rowed! The book is written in a clear style, and it provides inspiration for a long
time.

Nowadays buildings can be defined and studied in quite different ways. Sec-
tions 15 and 19 provide such views. A particularly attractive theory in terms of
graphs appears in the book by Weiss [16]. There is a book which provides a new
conceptual approach to spherical buildings [6].
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12 Applications of Buildings

The theory of buildings has many applications, far beyond the initial purpose which
was a geometric interpretation of the exceptional groups. Already in 1974, Tits men-
tioned applications to the study of p-adic simple groups, the cohomology of arith-
metic groups, the representation theory of and the harmonic analysis on finite and
p-adic simple groups, etc. [T98].

Around 1990, it had become an impossible task to keep track of all applications.
Let me mention some. In his book of 1974 [T98] Tits used his classification of
spherical buildings in order to derive a classification of the finite Tits systems. This
became a major tool in the classification programme of all finite simple groups
(see [9]). The role of Tits systems is crucial in the recognition of groups of Lie–
Chevalley type, and as such it contributed to the sudden acceleration of Gorenstein’s
programme in the work of Aschbacher after 1976.

Let me also mention outstanding results of M. Gromov, in particular about the
rigidity of locally symmetric spaces in the class of all manifolds of nonpositive
curvature. Here too, a crucial role is played by the underlying buildings. Gromov
emphasizes the use of a Tits metric as a promising tool for further investigations
(see [2]). Another reference is the chapter “Applications of Buildings” by J. Rohlfs
and T.A. Springer in [5] which discusses works by A. Borel, P. Cartier, J.P. Serre,
G.A. Margulis, V.P. Platonov to mention but a few names.

The theory of buildings has gradually been brought to the attention of most math-
ematicians. This is due to the simplicity of its axioms that allows for a rather handy
use in applications. It is also due to its fundamental depth, as well as its relationship
to as many domains as the theory of Lie groups. There has been a growing inter-
est in this theory. Textbooks have appeared. See Sect. 11. Let us add some more
references: [1, 3, 13, 14].

13 Affine Buildings

Consider a Chevalley group over a local field. It carries a spherical building as does
every Chevalley group. However, it carries a second Tits system whose Weyl group
is no longer finite, but of affine type, or just affine in the present terminology.

François Bruhat and Jacques Tits developed a general theory of affine Tits sys-
tems leading in particular to the classification of the maximal compact subgroups
of the p-adic groups and to a p-adic analog of Cartan’s symmetric spaces (see
[T155, T162, T163]). Tits obtained a remarkable theory and classification of the
affine buildings of rank r ≥ 4 (1985) together with developments on the rank 3 case
(1990).

A remarkable property: every affine building has a spherical building at infinity.
A path to the classification of affine buildings is to start with the classification of
spherical buildings.

A beautiful book on this subject is one by Weiss, [17].
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14 Diagram Geometries and Sporadic Groups

Another application of the incidence geometry developed by Tits from 1954 on, oc-
curs in extensions of buildings, namely incidence geometries that contain buildings
among their “residual” geometries. Every sporadic group acts on such geometries.
See [T126], also a survey by Buekenhout–Pasini in [5] (see Sect. 12) and major
work with MAGMA by Leemans [11].

The combinatorial, geometric and group theoretical work of Tits from 1956 to
1974, lead several people from 1975 on to consider more general diagrams and
geometries inspired by and applicable to the sporadic groups. This point of view was
strongly developed by various authors, in particular Ronan–Smith (1980), Ronan–
Stroth (1984), etc. Tits paid much interest to this as we see from his paper [T126].
See also [6].

15 The Local Approach to Buildings

The developments of diagram geometry lead Tits to totally new and deep views on
geometries and buildings. This became his “local approach”, presented in a lecture
at the Santa Cruz Conference on Finite Groups organized in 1979 by the American
Mathematical Society and published in the Coxeter Festschrift in 1981 [T133]. Here
he introduced chamber systems. Briefly, a chamber system consists of a graph in
which every edge bears an index (a name) in such a way that for every index, all
edges with that index partition the set of vertices. This had an immediate influence
on various works, including the revision of the classification of finite simple groups.

Here, the “amalgam” method aims at the control over an unknown group G gen-
erated by two known subgroups whose intersection is also known. A concept of
universal cover G is available.

16 Free Constructions

On the model of free projective planes which had been discovered by Marshall
Hall (1943) with inspiration from free groups, Tits made various observations in
the direction of free constructions for buildings and for Tits systems. Together with
Mark Ronan (1987) he gave a short and simple construction procedure of a purely
combinatorial nature, for many classes of buildings and groups along the ideas ex-
pressed in the local approach [T133]. They used the local approach (see Sect. 15).
This included for instance, the buildings and groups of type E6, E7 and E8. It pro-
vided a satisfactory and tempting alternative to the algebraic construction starting
with Chevalley’s construction of Lie algebras, then groups. The construction by Tits
starts with a Chevalley group G and a Borel subgroup B of G. The subgroups of G
containing B constitute a boolean lattice providing a building whose elements are
the left cosets of those subgroups. However, the new approach did not apply to all
spherical buildings.
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17 Algebraic Groups

Tits was a major expert of algebraic groups together with Armand Borel [T62]
(1965) when they extended the theory over any base field, for reductive groups,
in particular simple groups. See also [T83, T86, T93] for work by Borel–Tits on
algebraic groups.

Tits extended likewise the theory of linear representations of complex semi-
simple groups due to Elie Cartan and Herman Weyl in the complex case and to
Claude Chevalley for groups over an algebraically closed field.

A gigantic theory of reductive groups over local fields was gradually built by
François Bruhat and Jacques Tits from 1966 to 1987 (see [T71, T72, T73, T74, T75,
T77, T92, T141, T146, T162, T163]).

In 1987, William M. Kantor, Robert Liebler, and Tits classified the discrete
chamber-transitive automorphism groups of affine buildings. They provided a char-
acterization of the discrete subgroups acting on the affine building of a simple ad-
joint algebraic group of relative rank r ≥ 2 over a locally compact field [T160].

18 Kac–Moody Groups and Twin Buildings

During the 1980’s, Tits was involved to a large extent in a profound unification and
generalization of earlier work of himself and others, concerning the Kac–Moody
groups over fields. His paper [T161] in 1987 is an important landmark, as can be
seen in particular from the unusual length of the report on it written for Mathemati-
cal Reviews by James Hurley. The Kac–Moody algebras have many applications in
mathematics and in physics. The Kac–Moody groups appear as natural companions
for the algebras. However, the “right” definition was not immediately clear to Tits.
As it should, a geometric interpretation was looked for. This was started in joint
work of Ronan and Tits around 1986. Tits published [T175] in 1988 and [T182] in
1992. The main idea is a new concept of twin building. It consists of a pair of spher-
ical buildings together with a relation of “opposition” on their chambers. It extends
the potential of applications of spherical buildings.

That work also provided joint papers with Ronan [T185, T197] devoted to twin
trees.

19 Moufang Polygons: Thirty Years Later

Finally, to end this survey, let us quote from the introduction to the great book by
Tits and Weiss [T205]:

“Spherical buildings are certain combinatorial simplicial complexes intro-
duced, at first in the language of “incidence geometries”, to provide a system-
atic geometric interpretation of the exceptional complex Lie groups . . . Via
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the notion of a BN-pair [Tits system], the theory turned out to apply to simple
algebraic groups over an arbitrary field. More precisely, to any absolutely sim-
ple algebraic group of positive relative rank k is associated a thick irreducible
spherical building of the same rank . . . and the main result of Buildings of
Spherical type [T98] is that the converse, for l� 3, is almost true:

Theorem Every thick irreducible spherical building of rank at least three is
classical, exceptional or mixed.

Classical buildings are those defined in terms of the geometry of a classi-
cal group (e.g. unitary, orthogonal, etc. of finite Witt index or linear of finite
dimension) over an arbitrary field or skew-field . . . Mixed buildings are more
exotic; they are related to groups which are in some sense algebraic groups
defined over a pair of fields k and K of characteristic p, where Kp ⊂ k ⊂K
and p is two or (in one case) three.

Irreducible spherical buildings of rank two are called generalized polygons.
Generalized polygons themselves are too numerous to classify . . . but in the
addenda of [T98], the Moufang condition for spherical buildings was intro-
duced, and it was observed that . . . every thick irreducible spherical building
of rank at least three as well as every irreducible residue of such a building
satisfies the Moufang condition. In particular, all generalized polygons which
are the irreducible rank two residues of thick irreducible spherical buildings
of higher rank are Moufang. As a consequence, every thick irreducible spher-
ical building of higher rank is a kind of amalgam of Moufang (generalized)
polygons.

In this book, we classify Moufang polygons and use this classification . . . to
simplify the classification of thick irreducible spherical buildings of higher
rank. These are the two main projects proposed in the addenda of [T98]. It
is probably more appropriate, however, to regard this book as a “prequel”
to [T98] rather than a subsequent volume. Moufang polygons are a class of
graphs which can be studied without any reference to the theory of buildings
(or as an introduction to the theory of buildings) and, in fact, the classification
of Moufang polygons which we give in . . . this book is entirely elementary
and self-contained”.
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A Few Recollections

Mikhail Gromov

After a few frustratingly unsuccessful attempts to write my biography, I have arrived
at the inevitable conclusion that this is a logically impossible task.

Mind you, there are many counterexamples to this “non-existence conjecture”.
I enjoyed a lot reading the autobiographies in the first Abel’s volume. Yet, I think
the conjecture is true in a narrow sense, if you separate “mathematician—a human
being” from “mathematician—mathematician”.

Our non-mathematical lives are, mathematically speaking, not that interesting,
unless somebody had a misfortune to live through interesting times or undergo “in-
teresting” personal experiences.

The life of a mathematician is reflected in the ideas we expound in our papers,
what else can we add to this? Is there any non-trivial “else” to our lives?

Being trivial is our most dreaded pitfall: you say stupid things, not original things,
outrageously wrong things—all will be forgotten when the dust settles down. But if
you pompously call a+b= c “Theorem” in your paper, you will be forever remem-
bered as “this a + b guy”, no matter you prove bloody good theorems afterwards.
(Caution: 2+ 2=3 4 is something quite non-trivial, or at least, not quite trivial.)

I was introduced to the idea on September 1st 1960 at the then Leningrad Uni-
versity when our analysis professor Boris Mikhailovich Makarov said to me after
our first calculus class—he expressed this in somewhat metaphorical terms—that I
should’ve kept my mouth shut unless I had something non-trivial to say.
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Further encouraged by my teachers and fellow students, I tried to follow his ad-
vice and, apparently, have succeeded—I hear nothing disrespectful about my mouth
for the last 10–20 years. Strangely, this does not make me feel a lot happier.

“Trivial” is relative. Anything grasped as long as two minutes ago seems trivial
to a working mathematician. But it may be amusing, looking from afar, to recall
personal eureka transition points. (According to Terry Pratchett’s Revised Ancient
Greek Dictionary, “eureka” translates as “give me a towel”.)

Another concept you learn at some point is that of “unsolved problem”. David
Ruelle has once put it that he sees a problem when he feels annoyed by non-
understanding something. Children, like scientists, are good at non-understanding,
except that the annoyed ones are their parents bombarded with endless What and
Why and When And How and Where and Who.

As your adult personality properly matures without being sidetracked by your
scientific or artistic inclinations, you resolve these WWW problems with a single:
“This is the stupidest question I have ever heard”—said to a child. (Lipman Bers
once boasted to me that he had received this response when he had asked his high
school mathematics teacher if there could be two different infinities.)

My parents, were medical doctors rather than mathematicians, actually patholo-
gists; they often discussed the problems they were encountering during autopsies,
with their friends—also pathologists.

One story, I recall, was very funny, at least everybody laughed. My father spent
several hours carefully checking and rechecking everything inside a body on the
dissecting table but was unable to find the cause of death. When he was ready to
surrender and shamefully write it off to “the heart failure”, the man responsible
for moving and cleaning the bodies, said: “Hey, doctor, isn’t it funny, the man did
not wash his left foot, look at the black marks over there”. At a glance my father
realized that the course of death was electrocution, apparently, the poor stepped on
a high-voltage wire.

A few comments are in order. By the book, one starts an autopsy with a careful
external examination of the body before performing dissection. My father, experi-
enced as he was, probably was absent-minded at the moment: neglecting external
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inspection strikes as funny to a pathologist as dx/dy = x/y to a mathematician.
(Maynard Smith—a great theoretical biologist, complained that editors of biology
journals had sometimes “simplified” dx/dy→ x/y in his papers.)

Autopsies have been routinely performed in Russian hospitals. Treating physi-
cians were in a constant dread of the final word by a pathologist like students wait-
ing for results of an examination. Eventually, physicians revolted—the autopsy in
most countries if performed, then only rarely and usually on decade-old exhumed
corpses—deaths of patients can be safely attributed to “heart failures”.

There is an obvious moral to this story for pathologists and mathematicians alike.
But the “stupid question” might have escaped you: “What, How and Why is the heart
failure when you die?”

It is not that the heart just stops—this is what the so called “common sense”
would tell you. Actually, stopping and “resetting” the heart is what defibrillators
are for—you see them at the airports—they save lives, if used promptly—the brain
survives a couple of minutes after the oxygen delivery by the blood stops.

What happens to the heart at the critical transition moment before it goes to
the final rest is a change in the dynamics of electric/chemical currents in the heart
muscular tissue—a switch to a non-quasiperiodic “chaotic” regime. (A high external
voltage can provoke this, but it may also “disperse the chaos”.)

Isn’t it a “New application of the chaos theory to living systems?!” a bright math-
ematician may exclaim. Indeed, this is not a bad idea. I bet there are several articles
in Nature with this title. The catch is that biological chaotic systems do not live
long, their life spans are even shorter than the half-life of such articles—there is no
accepted theory of arrhythmia in general and of the ventricular fibrillation (this is
what we all will end up with) in particular. The physiology of the heart and math-
ematics at the bottom of it are not that trivial. And, probably, the true “stupid child
question” has not been asked yet.

Biology in general and medicine in particular are full of annoying nearly mathe-
matical puzzles. At 5 you ask:

Can four elephants beat a whale in a fight?



132 M. Gromov

Twenty years later you come up with:
How, in principle, a humble bacterium, a tiny virus, e.g. HIV whose all “know-

ledge of the world” is written down in four letters on a 9749-long string of RNA,
outsmart all of humanity with terabytes (1012) of “information” stored in our indi-
vidual synaptic memories and as much in our libraries?

What is it that the virus know that we don’t? How many bits do we have to add
to (to erase from?) our knowledge banks to beat 9749?

My second story needs a little preamble. There are several innocuous reactions
turning water-like solutions into red ones looking like blood.

Something more amusing you get of a mixture of potassium permanganate with
concentrated sulfuric acid,

6KMnO4 + 9H2SO4 → 6MnSO4 + 3K2SO4 + 9H2O+ 5O3.

The O3 (ozone) vapor will ignite paper soaked with alcohol; with some luck, an
explosion throws sulfuric acid into your eyes.

According to the basic chemistry safety rule, you first produce artificial blood,
place a large bowl B with it in front of you and only then proceed with mixing
KMnO4 and H2SO4 in a test-tube T making sure that B is strictly on the line be-
tween T and your eyes.

When T explodes, the bowl in between protects your eyes from the sulfuric acid,
while the bloody contents of B picturesquely splash all over your face.

This happened to me at a demonstration of “miracles of chemistry” at our high
school when I was about 13. The audience was duly impressed, especially our chem-
istry professor. But myself, I missed the best of the show as I could not see my face
all in “blood” with no mirror near at hand.

I had no idea, of course, why the damn thing had exploded (some readers might
have already guessed what was wrong in the above protocol), but afterwards, our
chemistry teacher—Ivan Ivanovich Taranenko—said to me that it was he who had
made the mistake: accidentally, when I started, I was about to mix KMnO4 and
H2SO4 in a flat dish, but Ivan Ivanovich suggested to use a test-tube instead. The
heat escape as well as the escape of the gaseous product were limited in the relatively
narrow test-tube and the explosion followed.

At the time, I was not much impressed by my teacher’s honesty, I assumed this
was an ordinary human behaviour.

Then I found out how psychologically difficult it was to emulate even a minor
version of this, e.g. by properly acknowledging an influence of somebody’s remark
on your own theorem. For example, writing my early paper on the Banach con-
jecture, I convincingly persuaded myself, that the advice by Dima Fuks to look at
the homotopy groups of the classical groups for evaluating dimensions of their k-
classifying spaces, was too trivial to deserve being mentioned.

I am afraid I accumulated a score of such “unmentionable” remarks and many
of my colleagues told me of similar painful fights with themselves they have had
while resolving the “acknowledgement problem”. But others could not see there
any problem at all. Probably, honesty comes naturally to certain people and some
see no difficulty because they have never tried to be honest.
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When I lived in Russia, the main output of the Soviet radio transmitters was the
white (it always felt grayish to me) noise. (2–7 years in prison was an alternative to
the official point of view that no such thing as “white noise” existed. But undaunted
Soviet admirers in the West admitted its existence and suggested plausible expla-
nations for it, where the most convincing one was preventing flying sauces from
landing on Soviet agricultural fields with little green men hungry for the tasty green
crops.)

This “white noise” did not cover the FM (40–50 MHz) and television (around
70 MHz) frequencies being unneeded for an obvious reason. But one evening TV-
jamming began. People in the apartment house where we lived were opening doors
and worriedly looking at each other. They did not dare to ask aloud what they
thought was happening but “yes, it is” was transparent in everybody’s eyes.

Of course, there were no secrets in the family and my mother hurried to tell me
the news. I was triumphant: the first (and the last) time in my life something made
by my hands worked! This “something”—a small radio transmitter I assembled—
was supposed to generate 42 MHz. But who cares for 40 % error, the very fact it
functioned made me bubble with pride.

My involvement into make-it-yourself-radio-something was influenced by my
close friend, Lev Slutsman, with whom we went through the high school and the
math department at the University together. The mathematics of the electricity laws
was for him something real, something he felt with his fingers, devices made by him
worked. His was a quite special and rare facet of mathematical gift—mathematics
in the bones as much as in the head. (Lev now works in US and authors a multitude
of patents on algorithms for testing large communication networks and something
else of this kind.)

There was another boy, Dima Smirnov, in our high school class with a similar,
albeit not with apparently mathematically colored, ability. Dima was the worst, the
laziest student in the class, he hardly managed to graduate.

Once, we were supposed to do something at home and to bring it to the class.
Many boys, myself included, brought up models of gliders, which we had assembled
from standard pieces bought in a store along with an instruction of how to make it.

The teachers evaluated our creations according to how pretty they looked. Mine
was the second dirtiest, Dima’s was four times as dirty and fully asymmetrical.
Obviously, he was too lazy even to read the instruction. His was the only glider that
glided.

Neither the teachers nor the fellow students were impressed by Dima’s glider.
We felt embarrassed. It looked unjust, incongruous, completely absurd, that this ugly
thing soaked with oil and covered by smudges of dirty glue could so gracefully glide
a dozen of meters in the air, while all beautifully assembled clean ones were heading
straight down to the ground despite all efforts to propel them horizontally. (After
graduation, Dima entered the physics department at the University and became a
very successful experimental physicist.)

I met later on two experimental physicists in US and in France (whose names I
forgot since it was not so long ago). One of them was working on quantum com-
puters and the second one was making nano-devices, if I recall correctly, with the
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atomic force microscope—a device for “touching atoms” rather than for “looking”
at them. All mathematics of quantum mechanics, at least all I have ever heard of,
including representation of C∗-algebras, for instance, was at their fingertips.

What level of mathematics do you need to sustain in a scientific community that
so much would percolate to somebody’s fingers?!

Learning and understanding mathematics is difficult, both by reading articles
and/or by talking to people. (Actually, not so much by talking but by listening—
“You can not learn much with your mouth open”—Dennis Sullivan used to say to
me.)

Rarely, something you read will inspire you right on the spot, but I remember an
exception—Tony Phillips’ 1966-paper in Topology on the existence of submersions.

We studied earlier, at the students’ seminar run by our professor Vladimir
Abramovich Rokhlin, the immersion theory of Smale and Hirsch. I thought I had
a fair idea of what was going on.

The fact that submersions, something quite opposite to immersions, had, how-
ever, followed in steps of Smale–Hirsch was a revelation to me. It took me about a
year to understand what was on the bottom of this similarity.

Something else written by Tony, a private letter to me, also kept me puzzled for
quite awhile. This letter contained a couple of pages of incomprehensible mathe-
matics, starting with something like:

. . . an involutive gromomorphismG→ SU →US of admissible type . . . T trans-
formsMG→ SB . . .

I could not understand a single sentence in it. But when I showed this to my
friend, an analyst Volodia Eidlin, he asked me: “What is a gromomorphism?”

“You mean homomorphism”—I replied—“There is no such thing as gromomor-
phism”. (“Homomorphism” is spelled and pronounced as “gomomorphism” in Rus-
sian.)

“Do you ever read anything as it is written?”—he was annoyed— “This is ‘gro-
momorphism’, black on white.”
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“Must be a misspell. . . ”—I mumbled, but then it dawned on me. Tony’s was an
encoded message. He was suggesting I would immigrate from the Soviet Union to
US and invited me to SUNY at Stony Brook where he worked. (We met with Tony
when he visited Russia a year earlier. His visit was brief, but long enough to learn
the basic conspiracy survival rules in Soviet Russia.)

Several years later I followed his suggestion. When I arrived at Stony Brook,
I enjoyed Tony’s hospitality as well as that of the whole mathematics department at
SUNY.

The only problem I had with people was “culture shock”. Everybody was very
kind to me and offering their help in overcoming this mysterious “culture shock”. As
I could not figure out what this shock was all about and not wanting to disappoint
anybody I had to invent a few shocking stories about how I missed white bears
skating on the streets of Leningrad in the darkness of polar nights and a cozy family
iceberg in our cellar where we kept perishable foods.

When you read a book or an article you may come across something that the
author had no idea of putting in there. When you listen to a mathematician you often
learn something he/she might expect you knew beforehand, something obvious from
his/her perspective, something one would not dare to put on paper.

One of such “obvious” things I learned from Dima Kazhdan who remarked to
me at a visit from Moscow, that Kurosh subgroup freedom theorem follows from
the fact that the covering of a graph is again a graph: dimension is invariant under
coverings.

Until that moment the group theory was to me a slippery formalism impossible
to hold steady in my hand. But with this remark everything started slowly falling
into place; very slowly—it took me about 20 years afterwords to express some other
fragments of the group theory in the geometric language.
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I am certain there are lots of “omitted in view of their triviality” remarks nobody
ever said to me, something basic and simple I’ve never understood.

This equally applies to non-mathematics, you can not learn everything from the
books. Only rare authors—I recall seeing this in writings by Richard Feynman
(QED), Charles Cantor (The Science and Technology Behind the Human Genome
Project) and Maxim Frank-Kamenetskii (Unraveling DNA)—have the clarity of
mind as well as the courage to pinpoint something essential that is obvious to the
initiated and with no way to guess by an outsider.

A particular frustrating instance of this happened to me with learning the French
language, rather than math or science. Armed with several textbooks, tapes, etc.,
I dutifully followed the phonetic rules and trained myself to read aloud ent’s at the
ends of the verbs as in ils parlent. Much later, after I’ve lived for ten years in Paris
and have already acquired a full automatism speaking “French”, I came across a
textbook published in 1972 in Quebec where the author—Gilbert Taggart explained,
along with lots of other things which were too late for me to learn, that this ent was
not meant for reading.

I kept asking myself why this was kept secret in most other textbooks and even-
tually realized how stupid the question was: everybody knew this, no single person
apart from myself have ever uttered “ils parlent” no matter how much I tried to find
one in Paris (Wouldn’t it be different in Quebec?)

As I mentioned, what you learn from a mathematics paper may, especially after
some time, diverge from what the author had in mind. But something opposite—
kind of convergence may also occur. This once happened to me . . . with a help by a
burglar.

When I started studying Nash’s 1956 and 1966 papers (it was at Rokhlin’s semi-
nar ≈1968), his proofs has stricken me as convincing as lifting oneself by the hair.
Under a pressure by Rokhlin, I plodded on, and, eventually, got the gist of it: It was
a seemingly circular “fixed point by iteration” argument, where the iterated maps
were forced to contraction by adjusting the norms in the spaces involved at each
step of the iteration process. The final result popped up at the end of a lengthy but a
straightforward computation, which, miraculously, did lift you in the air by the hair.

I wrote an abstract version of Nash’s theorem in a 1972 paper where I isolated
the iteration process in the space of norms and where a part of Nash’s argument was
absorbed by definitions.

But when I tried to reproduce this in my book on partial differential relations,
I found out that the price for the “correct formalization” was non-readability—I had
to write everything anew.

It was a hard job, I was relieved when it was over and I gave the manuscript to
our typist at SUNY, it was about 1979, when I still was at Stony Brook.

Next week, the secretary office was burglarized and my manuscript disappeared
along with a couple of typewriters. I had to write everything again for the third time.

Trying to reconstruct the proof and being unable to do this, I found out that
my “formalization by definitions” was incomplete and my argument, as stated in
1972 was invalid (for non-compact manifolds). When I simplified everything up
and wrote down the proof with a meticulous care, I realized that it was almost line
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for line the same as in the 1956 paper by Nash—his reasoning turned out to be
a stable fixed point in the “space of ideas”! (I was neither the first nor the last to
generalize/simplify/improve Nash, but his proof remains unrivaled.)

What are our ideas—“From creation to decay; Like the bubbles on a river;
Sparkling, bursting, borne away” (Shelley).

Is mathematics invented or discovered?
Even if we had ever learned the answers we would be as dissatisfied as an ancient

geographer if his straightforward question: —“Does the Earth rest on a whale or on
the backs of four elephants?”—were befuddled by:

“Nothing exists except atoms in the void; everything else is opinion”. (Leucip-
pus? Democritus? Lucretius?)

We, mathematicians, are an equally long way from asking the right questions.
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This collection is the result of a collaborative work of a number of mathemati-
cians: M. Bestvina, D. Burago, Y. Eliashberg, F. Forstnerič, L. Guth, A. Nabu-
tovsky, A. Phillips, J. Roe and A. Vershik, coordinated and edited by D. Burago
and Y. Eliashberg. Each contribution is however a single-authored paper. The pa-
pers are not unified by a common style or approach, they are indeed just snap-shots
reflecting individual perception of their authors.

1 Introduction. Conceptual Thinking (by Dima Burago)

There is no particular reason why this is me who writes this introduction: there are
other mathematicians who would be more appropriate for this role. It just happened
that Yasha Eliashberg and myself were coordinating the effort to make this collec-
tion of papers about Misha Gromov and his work. Similarly, the collection is not
nearly comprehensive in at least two respects: many more people could have made
substantial contributions, and many areas of Misha’s work are not discussed or even
touched here. Misha wrote hundreds of pages of math, and every page needs a dozen
of pages of comments and explanations. Hence making a summary of Misha’s work
is a silly idea. In particular, we left Misha’s search for new insight in biology and
algorithmics completely outside the scope of this collection. Misha himself has di-
vided his papers into 16 topics on his personal webpage,1 and an interested reader
can see that only a small part is even mentioned here. Furthermore, there are many
essays about Misha as a mathematician and his mathematics. Perhaps we should es-
pecially mention a wonderful paper by Marcel Berger “Encounter with a Geometer
I, II” [13]. The only thing we could try to achieve here was to collect some personal
perceptions of a small part of Misha’s work, and perhaps how his thoughts influ-
enced future development of math—this is probably the key point in this strange
writing. There is no common style of these write-ups: We only wanted to avoid this
collection of notes become boring and finding no readers. Some papers are mostly
mathematical and some are rather informal, personal and impressionistic. This one
is an example of the latter. Perhaps I would not risk to write in this manner if Misha
had not written his autobiography, opening me the road.

I certainly met Misha many times when I was a kid and he would come to my
parents’ place. I have almost no memories from that time, and then he left the Soviet
Union and my parents decided to stay. So I knew of Misha only as a hero from

1http://www.ihes.fr/~gromov/.
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legends or myths narrated to me by my dad. Already a high school boy, I would
jog with my dad and he would tell me fairy tails about metrics on finitely generated
groups and such. At that time, simply putting together two so seemingly far-away
areas—Algebra and Geometry—had enormous influence on my naive perception of
mathematics.

By the way, dates of publication of some early papers of Misha do not reflect
the actual time when the results were obtained. Misha refrained from publishing
papers in the Soviet Union after he had decided to leave. The manuscripts were not
allowed to be taken by people who were leaving (which explains the importance
of sneaking Misha’s thesis to the West by Tony Phillips). So Misha had to recover
everything from his memory. I think this is the case with “Almost flat manifolds”.
Also people leaving USSR at that time were deprived of the citizenship (against
even the laws of USSR). After Perestroika, Russian citizenship had been returned to
Misha, and he traveled to Russia to receive the Lobachevsky Medal (funny enough,
in the nomination “for Foreign Geometers”) with a Russian Passport.

As a young adult, I first met Misha in about 1989, at a conference in Muenster.
This was a shock for me. I had known quite a few of excellent mathematicians,
of course most of them were more mature than me and had more knowledge, but
never before had I a feeling that I would never be able to achieve the same level
of understanding. I am trying to figure out now what is so special about Misha.
Enormous breadth of math knowledge—of course, but perhaps the key is conceptual
thinking. Thinking by huge blocks—this is what differs great minds from just good
scientists. Categorical thinking. I will try to illustrate this by several recollections of
conversations with Misha. Disclaimer: even when I use quotation marks, everything
comes from my memory, and furthermore we mostly spoke in Russian, so these
cannot be precise quotations. Still, I hope they are reasonably accurate.

Some say Misha’s thinking is paradoxical. I would not agree. Sometimes he says
or writes something that seems totally unexpected. However, we see only the tip
of the iceberg. We see only a concluding thought of a very long process of very
effective thinking, and this is why it seems paradoxical. My dad told me that once
he had asked Misha: “How did the idea of “Diameter, Curvature and Betty Numbers
occur to you?” “I have been thinking about this for ten years” was Misha’s response.

We recently met at a conference in Lyon. We spoke about Boltzmann and Dar-
win. “Theories” of both had huge flaws, they were not really scientific theories.
They could not answer basic objections. Some difficulties are explained now, but
many remain absolutely unanswered. Misha got very excited. We first spoke about
Boltzmann, Darwin came later as another example. “This was not a scientific the-
ory, this was much more, a way of thinking, a conceptual, a categorical approach”
(I have a feeling that Misha used the two words as synonyms), “Those who objected
were fools, they did not understand that these were not theorems but a method of
thinking, even nowadays almost nobody understands Boltzmann. It took me years
to partially understand what he meant”. The same about Darwin. . .

I recall asking Misha about a few problems I had suggested (this was about 20
years ago). They sounded quite cute to me. He said “They lack a structure behind
them, your formulations are motivated more by linguistics than mathematics”. My
dad recalls that Misha told him several times “All I do in mathematics is looking for
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rich structures”. Actually, Misha said this more than two decades before his recent
paper “In a Search for a Structure”.

And indeed, what he has done is perhaps more about structures than individ-
ual theorems. Here are just a few examples. It was not his primary goal to get an
improved version of embedding theorems by Nash; he apparently wanted to un-
derstand what was the structure behind them. Hence the h-principle, including the
open, more topological one, and the whole new (geometric) approach to differential
relations. In Riemannian geometry, it does not seem that Misha was so much after a
particular theorem. But he changed our view, we can now think not about individual
Riemannian manifolds but rather of a space of manifolds, with its rich structure, and
metric structures in what used to be more differential geometry became a way more
prominent. In symplectic topology, symplectic structure is locally totally flexible
(Darboux’s theorem; hence “topology”), however Misha has found global rigidity,
which is the main starting point of a huge area now known as hard symplectic topol-
ogy. There are many more examples, some of which are discussed in articles in this
collection.

During my lecture, a quarter of a century ago, Misha interrupted me: “Are you
sure that this conjecture is true?”. “Yes, but I cannot prove it!” “If you are sure
it is true, why are you wasting time on proving? Formulate it and someone will
eventually prove it.” The problem is still open. The question was basically if the
geodesic flow on a surface of non-negative curvature could have positive metric
entropy. (I have presented a very concrete example, but even analyzing it is still out
of reach.) By the way, once I wanted to tell Misha about a result in dynamics. Misha
had no idea what that was about, but his first reaction was: “Do you assume any
hyperbolicity in advance? If so, I am not so much interested.” He probably meant
that dynamics with hyperbolicity is a structure which is relatively well understood,
so he expected to hear only something incremental (and he was right), whereas
dynamics without any hyperbolicity assumptions remains a rather obscure area.

Once my dad told Misha about a result of mine. Misha at first did not believe (as
usual, later he said it was next to obvious). My dad suggested to explain a proof.
Misha reacted: “No, one can prove anything! I want you to explain to me why this
must be true”!

Actually, talking with Misha is never easy. After my first talk at IHES, also about
20 years ago, Misha said: “It was good”. “What???” (During my lecture, he would
object to every sentence I said!) “You resisted very well to me doing everything to
ruin your talk. . . ”

From about the same time. “Atiyah–Singer? It surprises you so much just because
there is an algebraic component which you do not understand.”

Almost nothing serious happening in math would nonetheless pass unnoticed by
Misha. Apparently he spends a lot of time not only reading math papers but also
looking for deeper understanding. So in his block thinking, he has a lot of blocks
to operate with. Misha also easily gets excited about new directions, from a metric
approach to P vs. NP to looking for hyperbolic structures in the inside wall of a
human heart.

Not so long ago Misha sent me his paper with a comment: “You may find this ren-
dition of your results amusing (annoying?)” I have to confess that now, after some
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attempts to read Misha’s work I do not quite understand the ideological meaning of
my own results.

When one thinks by large blocks, he certainly does not care too much about fleas.
Once I asked Misha about strange enumeration of sections (such as 3 3

4 ) in his ear-
lier papers. The explanation was remarkably simple: “When I decide to write a new
section, do you think I am going to change numbers of all others?” Apparently, the
density of rationals does help. Similarly, but more striking: “Misha, you formulate
a conjecture in the introduction, but it is proven further in the paper and in more
generality?” “Right, but when I was writing the introduction, I did not know how to
prove it!” Also from a phone call. “Misha, this theorem of yours is wrong”. “Non-
sense, all theorems of mine are correct!” “Here is a counter example. . . ” “Are you a
fool? This is not what I had in mind! Just add a condition to rule this idiotic exam-
ple out!” Also, this is not an anecdote, I indeed had a conversation with a colleague:
“What are you up to nowadays?” “I am proving a theorem of Gromov” (compare
with Perelman. . . ) Remarkably, up to dull technicalities, as far as I know all Misha’s
theorems whose proofs were only sketched proved to be true.

Yasha Eliashberg tried to push me to write about something concrete, such as
GH-convergence, collapsing, almost flat manifolds, Betty numbers and so on. But
after all, with my dad and Sergei Ivanov, we wrote a 450 page textbook [29], and
one of the main goals of the textbook was to serve as a bridge between researchers
who are non-experts in metric geometry and Misha’s “Metric structures for Rieman-
nian and non-Riemannian spaces”, [103]. A large part of the textbook is devoted to
Misha’s ideas. So I decided to write this eclectic essay instead.

2 Gromov’s Geometry2 (by Anatoly Vershik)

1. In the middle of the XXth century geometry and topology in Leningrad were
represented by two extraordinary schools: the ones of A.D. Alexandrov and V.A.
Rokhlin. Needless to say, A.D. Alexandrov—a student of B.N. Delone—obviously
engaged in a geometric way of thinking. Sometimes his school was referred to as a
school of visual geometry. It is certainly not quite precise. The geometric philoso-
phy of the topologist Rokhlin is known only to those who were closely acquainted
with him and his research. I remember very well a conversation I had with him in
the early 60s. He stated, very emotionally (which is not typical of him), that depth
and beauty of geometry cannot be compared with those of any other field of math-
ematics. His geometric way of thinking is clearly seen in both his topological and
metric works. It may look like the triumph of algebraic topology in the 50s and 60s
moved the geometric and combinatorial topology to the background, and an entirely
new insight emerged. However, in reality, this triumph just shifted geometric ideas
to a new level. Whereas V.A. Rokhlin promoted algebra and strongly suggested that

2Translated from Russian by Mariya Boyko.
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his students should adopt algebraic philosophy, for him, and I think for Gromov, al-
gebra was only one of the many languages of geometry, not the method of thinking.
It is very difficult to explain this fine difference without going into details. It is eas-
ier to refer to the classic topological work of the algebraist J.P. Serre and algebraic
work of the topologist J. Milnor.

One would engage here into lengthy explanations of the used terms such as ge-
ometry, geometric philosophy, geometric ideas, algebra, etc. However, I do not think
that it is possible to do this in a productive way. It is better to stay at the level of
vague understanding shared by most mathematicians, though with variations. I even
think that clarifying the meaning of these terms is the responsibility not only of
mathematicians but also of philosophers and psychologists. Even a discussion of
geometric motives in modern and classical music, in poetry and, needless to say, in
modern art could be meaningful.

It seems to me that the coexistence of the two schools mentioned above is re-
markable and perhaps unique. Let us recall that it was A.D. Alexandrov (the Rector
of the Leningrad State University in the 50s–60s) who invited V.A. Rokhlin there
(on the initiative of a number of friends). Due to a variety of reasons Rokhlin was
in a hard situation at that time. Taking into account Soviet reality and a unique bi-
ography of V.A. Rokhlin this was not an easy task even for a Rector. M. Gromov
was one of the first topology students of V.A. Rokhlin during his first years of work
in Leningrad. In my opinion Gromov was also a follower of geometric ideas of
Alexandrov.

2. All junior mathematicians, no matter how talented they are, need a certain pe-
riod of time to accumulate a wide supply of knowledge. Perhaps it was difficult to do
that in Leningrad in the 50s and the early 60s. Despite of the presence of numerous
extraordinary mathematicians, Leningrad school of mathematics was suffering from
obvious narrowness (functional analysis, certain areas of algebra, classical theory
of partial differential equations, Alexandrov’s geometry, etc.; but it lacked modern
topology, representation theory, algebraic geometry and many other areas of mathe-
matics). The situation changed after Rokhlin’s arrival. I remember the first topology
course he taught (probably in 1961) which was audited by two or three professors,
two or three freshmen (including Misha), and one or two Ph.D. students (includ-
ing myself). The gist of the matter is not only in Rokhlin’s personal intellectual
investment into the broadening of academic interests of his colleagues and students.
Rokhlin graduated from the Moscow State University before the war and was a stu-
dent of A.N. Kolmogorov, L.S. Pontryagin, P.S. Alexandrov, A.I. Plesner, etc. at the
same time. Due to Rokhlin’s close relations with Moscow mathematical schools,
their representatives became regular visitors of seminars in Leningrad. Rokhlin’s
students, in turn, became popular and were frequently invited to Moscow. Misha
even received the Moscow Mathematics Society Prize, he probably was the only
recipient who was not from Moscow during the entire existence of the prize. Top
Moscow Mathematicians—I.M. Gelfand, V.I. Arnold, and S.P. Novikov were offi-
cial opponents at Misha’s doctoral defense (the latter was substituted by N.N. Uralt-
seva because S.P. Novikov was not able to attend). It would hardly be possible to
organize this without Rokhlin.



A Few Snapshots from the Work of Mikhail Gromov 145

On the other hand, after acquiring certain knowledge of the current state of math-
ematics (at least in one’s “own” area), the main part in the formation of a researcher
is played by his own effort in understanding of what has been done before, and con-
templating on what is not accomplished yet. I think that Misha was very different
from many of his colleagues in that way. His interests and endless curiosity, critical
thinking and even lack of trust that was evident in his conversations and seminars,
were indicating a constant thinking process. He continues displaying the above qual-
ities even now. I.M. Gelfand once roughly explained the following to me: in order
to avoid mistakes in his works, a mathematician must not trust himself too much,
but in order to obtain significant results he must not trust others too much. The ratio
of these two distrusts changes with age, and it seems that Misha finally found the
perfect proportion. I, however, do not know of Misha’s mistakes.

It is not appropriate to mention any personal relations here. Let me just note that
I was always impressed by Misha’s 100 % independence of thoughts and deeds,
which illustrates the strength of his character. The Soviet regime did not favor inde-
pendent and courageous people, so many research talents were not able to develop
fully. However, sometimes life’s circumstances and especially personal qualities of
some turn out to be stronger than the routine, and then the talent obtains the full
freedom of expression to the great benefit of science.

3. We discuss here only a limited circle of Gromov’s ideas which play a modest
role in his huge repertoire. The epigraph to Misha Gromov’s book “Metric Struc-
tures for Riemannian and Non-Riemannian Spaces”, [103], which we discuss below
is remarkable in some respects: “Même ceux qui furent favorables à ma percep-
tion des vérités que je voulais ensuite graver dans le temple, me félicitèrent de les
avoir découvertes au microscope, quand je m’étais au contraire servi d’un télescope
pour apercevoir des choses, trés petites en effet, mais parce qu’elles étaient situées
a une grande distance, et qui étaient chacune un monde.” Marcel Proust, Le temps
retrouvé (Pleiade, Paris, 1954, p. 1041).

In short, slightly roughening ornamental ligature of words by Proust, this reads as
follows: “Even those who commended my perception of the truths which I wanted
eventually to engrave within the temple, congratulated me on having discovered
them with a microscope, when on the contrary it was a telescope that I had used
to observe things which were indeed very small to the naked eye, but only because
they were situated at a great distance, and which were each one of them in itself a
world.” (From “In search of Lost Time” translated by T. Kilmartin, revised by D.J.
Enright.)

Indeed, numerous plots considered and studied by Gromov (not exclusively in
this book) are not focused on the details (possibly even crucial ones) of recognized
theories. They are more about new geometric realms as well as other realms which
cannot be considered totally unknown, but about which we either knew almost noth-
ing or possessed a false knowledge.

I would not undertake studying all Gromov’s work from this perspective, but I
think that this point of view would be useful and even necessary for those who will
study his work in the future.
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Among numerous geometric projects of Gromov, including a few discussed in the
book in question, there is one that was especially interesting to me. However, that
project perhaps was not considered especially important and interesting by mathe-
maticians including the author himself. I am referring to the concept of mm-spaces,
that is measure-metric spaces—(X;μ;ρ). Anyone who worked in analysis on mani-
folds, geometry and dynamical systems has encountered such triples. I would like to
illustrate Proust’s idea of a “telescopic” view by this concrete and important exam-
ple. It is unlikely that it would occur to a traditional analyst or geometer to convert
such a situation into an abstract setup and pose a question of a categorical classi-
fication of such triples where morphisms are measure-preserving isometries. It is
well-known that the classification of metric spaces up to an isometry is impossible
to comprehend (recently A. Kechris gave a precise meaning to this statement) and
not very useful. On the contrary, the classification of standard measure spaces is
trivial (V.A. Rokhlin). So, what can we say about the triples?

Let us consider a triple τ = (X;μ;ρ), where ρ is a metric on X which turns it
into a Polish space and μ a continuous Borel probability measure which is nonde-
generate in the sense that every nonempty open set has a positive measure. Obvi-
ously if we randomly and independently choose n points (x1, x2, . . . , xn) distributed
with probability μ, then the random matrix of distances {ρ(xi, xj )}ni,j=1 generates
a probability measure Mn on the set of distance matrices of order n, that is, in the
space of metrics on n-point sets. It is also obvious that this measure does not change
under isometries that preserve the measure. Gromov posed the following question:
is it true that the combination of all those measures Mn,n= 1,2,3 . . . , fully deter-
mines the triple up to an isomorphism (that is, up to a measure-preserving isometry).
The positive answer is proven (in a rather difficult way; actually by the method of
momenta) by Gromov in his book (p. 120–123). This crucial fact is known as Gro-
mov’s Reconstruction Theorem. Approximately in 1997 or not much earlier M. Gro-
mov asked me what I thought of that theorem and its proof. I conveyed to him my
very simple proof based on passing to infinite sequences of independent random
points. Both proofs are discussed in the book and then the author, not without a
naughty trick, asks a reasonable question if the reader is puzzled by the fact that
complicated analytical constructions can be replaced by a “spineless argument”?
Certainly, the answer is very easy: the spine of the second proof is nontrivial though
widely known. It is the individual Law of Large Numbers, and its fruitful usage
requires passing to infinite sampling in infinite distance matrices. Here is the argu-
ment. For every metric triple τ = (X;μ;ρ), let us define a map

Fτ :XN →MatN

by the formula Ft ({xn})= {ρ(Xi,Xj )}(i, j). By Dτ we denote the Fτ -image of the
Bernoulli measureMn. We call it the matrix distribution of a metric on a space with
measure μ. Obviously, this is an invariant of a triple in the sense of the equivalence
in question. We show that the matrix distribution is a full invariant of the equivalence
of triples and that the assertion becomes a trivial corollary of the individual law of
large numbers. If the two triples τ = (X;μ;ρ), τ ′ = (X′;μ′;ρ′) have the same
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matrix distributions Dτ =Dτ ′ then there is a countable everywhere dense set (since
the measures are non-degenerate) X0 ⊂ X which is isometric to some countable
everywhere dense set X0 ⊂ X. This isometry extends to an isometry X to X. The
fact that this isometry preserves the measure follows from the observation that by
the Law of Large Numbers, the same distance matrix determines both the measure
of balls of all radii centered at points in X0 and all measures in the algebra of sets
generated by the balls. Thus the measures coincide in both spaces, since they are
determined by the same matrix, and therefore the measures μ and μ′ are the same.
As one can see the whole argument is based on the Strong Law of Large Numbers.

This formulation demonstrates, in a somehow unexpected way, that the classifi-
cation of triples is “smooth”, and that the space of invariants is the standard Borel
space, namely, the space of Borel probability measures on a set of metrics on in-
tegers such that the measures are ergodic and invariant under the group of infinite
substitutions. At the same time a close connection with today’s popular theory of
infinite random matrices emerges but the distribution of matrices that arise here are
not the same as the ones that are considered in that theory (GOE [Gaussian or-
thogonal ensemble], GUE [Gaussian unitary ensemble] etc.) This connection will
undoubtedly lead to new interesting results. My work [189] proves a generalization
of this theorem to a more complicated case: the matrix distribution is a complete
invariant of generic measurable functions in two (and more) variables with respect
to the permutation group acting by transformations that preserve measure separately
in each argument.

Let me note that the concept of metric triples (Gromov’s triples or mm-spaces)
restores the symmetry between measure and metrics which is absent in usual anal-
ysis. Traditionally, the metric is defined first, and then one studies the variety of
Borel measures on this metric space. However, independently and almost simul-
taneously the opposite disposition of considering various admissible metrics on a
given measure space was suggested [190]. This subordination is useful in the theory
of dynamical systems where the principle invariants are first defined using both the
measure and metric but at the end it turns out that they are independent of the choice
of the latter (for instance, in defining Kolmogorov’s entropy). This opens the road
for constructing new invariants. However, here it is wise to impose some conditions
of compatibility of the structures of mm-spaces satisfied for the triples discussed
above.

4. Another well-known and productive geometrical initiative of Gromov is the
idea of a space of metric spaces with a metric on it (known as the Gromov-Hausdorff
metric). It is a “nonlinear” generalization of a corresponding notion in Banach ge-
ometry, but it is much more general. It is noteworthy that introducing the concept
of the Uryson universal metric space, to which several statements in the book are
dedicated, allows us to simplify the definition of the Gromov-Housdorff metric. The
recent application of this idea to metric triples proved to be very useful here. The
Master Thesis of M. Gromov was dedicated to Banach geometry, or more precisely
to applications of topological results to it. This work remains of interest even to-
day. For instance, Gromov’s results in the spirit of generalizations of the Dvoretzky
theorem, Levi’s principle, etc. laid a foundation for subsequent work.



148 D. Burago et al.

A gigantic theme of Gromov “Groups as a geometric objects” has no doubt
opened a new chapter in combinatorial group theory. Roughly speaking, the propo-
sition states that the familiar word metric turns groups into metric spaces which
should be approached as purely metric objects. Group properties are deeply rooted
into metric structures of the spaces. This is how the initiative of introducing hyper-
bolic groups arises. Geometric in its nature, it allows us to speak about a reforma-
tion of our understanding of applications of group theory in dynamics, topology and
analysis. Gromov’s celebrated theorem stating that groups of polynomial growth are
virtually nilpotent might be one of the most eminent single theorems in mathematics
of the XXth century; this theorem also originates from this geometric perception of
groups.

Finally, the latest paper “In a Search for a Structure” [101] conveys yet prelim-
inary thoughts of a geometric approach to entropy. This approach is not more con-
nected to the modern but rather quite the opposite: To quite distant in time concepts
of Boltzmann and others. Simultaneously, the latest works on this topic are being
analyzed. For instance, in [20] the definition of entropy is modified in a drastic
and nontrivial way so that it can be applied to non-amenable groups (unlike Kol-
mogorov’s entropy). The concept of randomness, which plays a role in Gromov’s
geometric repertoire, for instance, the prominent idea of random groups, is not fully
supported in further work.

This circle of ideas would be quite enough for the work of one mathematician,
but this is only a small part of Gromov’s accomplishments.

3 The Gromomorphism SU → US (by Tony Phillips)

I first met Misha Gromov in Leningrad, in March of 1969. Sergei Novikov, my men-
tor at the Steklov Institute in Moscow—I was there as part of the Soviet Academy-
National Academy exchange—told me: “You have to meet Gromov.” The Academy
arranged for my trip to Leningrad (on the express train “Krasnaya Strela”) and my
stay at the Bal’tiskaya Hotel. I remember standing in front of a blackboard at LOMI,
the Leningrad branch of the Steklov, with Misha and with Yasha Eliashberg; Misha
was a graduate student and Yasha a last-year undergrad. “What else can we tell
him?” one asked the other. They told me a lot. I remember at one point Misha il-
lustrating the crucial point in the covering-homotopy argument (that I had adapted
from Smale, Thom and Poenaru and that he had enormously generalized) by draw-
ing three points in a line on the board and an arrow dragging the middle one upward
and back down on the right. Misha gave me a (carbon) copy of his thesis, the first
one: Stable mappings of foliations into manifolds; I took it back to the Bal’tiskaya
that night and in half an hour—I knew where to look—understood what he had
accomplished. The next day I wrote a postcard to John Milnor, who had been my
advisor, with the news. At LOMI I also met with Vladimir Rokhlin, Misha’s advisor.
He told me “Er ist ein fähiger Mann.” Gromov is a man given to accomplishment; if
he had not chosen mathematics, he would have made his mark elsewhere. (My Ger-
man was much better than my Russian, and Rokhlin was fluent in German.) Rokhlin
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told me that he had given Misha a copy of my article on submersions, saying: “You
should be able to do something with this.” That night or the next night Misha invited
me home, where I met Misha’s friends with whom we drank. I had been speaking
French with Yasha and some kind of English with Misha; now it was all Russian.
After a while I realized—the only time in my life this has happened—that I did not
know what language I was speaking.

That summer (1969) I spent at the University of Warwick, where a large inter-
national Symposium on Differential Equations and Dynamical Systems was under
way. Along with my own work, I lectured on Misha’s, and mentioned its applica-
tion to André Haefliger’s work on universal foliations. That year or the next André
gave a series of “Lectures on the Theorem of Gromov” at the Liverpool Singular-
ities Symposium; we were able to circumvent, in Misha’s case, the usual delay at
that time in getting mathematical news across the Iron Curtain.

I kept in touch with Misha after my visit. At that time, exchanging reprints
was about all that was possible; communication was tricky. A postcard came from
Novikov: “I met G and we spoke of you.” But in 1973, as I remember, I heard from
Vova Khavkin who told me that he was Misha’s half-brother; he lived in Washington
DC and was a Senior Associate with First Washington Associates—I still have his
business card. He needed to tell me that Misha was planning to emigrate from the
Soviet Union. I spoke with Jim Simons—then the Chair of our Math Department—
who immediately agreed that we should try to attract Misha to Stony Brook. I crafted
a letter to Misha, ostensibly pure mathematics, which could be deciphered as say-
ing that if he could emigrate then he could count on a position at Stony Brook. In
particular I referred to a “gromomorphism” (which could mean a deformation of
Gromov) from SU ( . . . Soviet Union) to US. Vova kept me up to date on the pro-
ceedings; after a few months I learned that Misha had indeed received permission to
leave the Soviet Union and that his travel would be under the auspices of HIAS, the
Hebrew Immigrant Aid Society, with initial destination Rome. When I finally heard
from Misha himself, he was already in Rome; not too long afterwards I had the great
pleasure of meeting Misha and his family at JFK International Arrivals and driving
them to their new home, on Long Island.

4 The h-Principle (by Yasha Eliashberg)

Already as a student Misha Gromov had a number of high profile results, e.g., a
solution of Banach’s geometric conjecture, but the work which made him famous
was his PhD dissertation which laid the ground to what is now known as the h-
principle.

Many problems in Mathematics and its applications deal with partial differential
equations, partial differential inequalities, of more generally with partial differential
relations, i.e., any conditions imposed on partial derivatives of an unknown function.
A solution of such a partial differential relation R is any function which satisfies this
relation.
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Any differential relation has an underlying algebraic relation which one gets by
substituting all the derivatives entering the relation with new independent functions.
A solution of the corresponding algebraic relation, called a formal solution of the
original differential relation R, is a necessary condition for the solvability of R.
Though it seems that this necessary condition should be very far from being suffi-
cient, it was a surprising discovery in the 1950s of geometrically interesting prob-
lems where existence of a formal solution is the only obstruction for the genuine
solvability. One of the first such non-trivial examples were the C1-isometric em-
bedding theorem of J. Nash and N. Kuiper, [124, 148] and the immersion theory of
S. Smale and M. Hirsch, [113, 174]. When Gromov came to the subject, a few other
interesting examples of this phenomena were found by V. Poénaru and A. Phillips
(see [159, 162]).

I remember that once Misha told me that when reading someone’s paper he first
reads the formulation of the main result and then tries to prove it himself. In many
cases he succeeds. If not, then he looks for further hints, trying to uncover the under-
lying reasons why the proof works. When the argument is very tricky and compli-
cated this may mean, in his opinion, that either the proof is wrong, or that the author
did not properly understand his or her own proof. As a result, in several cases when
Gromov uncovered the main moving forces of the proof it allowed him to generalize
and develop the results far beyond the original intention of the authors.

When Gromov studied the work of Nash-Kuiper and Smale–Hirsch–Phillips he
succeeded in both cases in finding the roots. This led him to the discovery of large
classes of problems satisfying the h-principle, where the letter “h” stands for homo-
topy, i.e., for which any formal solution can be deformed through formal solutions
to a genuine one. In his PhD dissertation [87], paper [88] and later in his book
[96], Gromov transformed original authors’ ideas into two powerful general meth-
ods for solving partial differential relations: the method of continuous sheaves and
the method of convex integration. The third method, called removal of singularities,
was first introduced and explored in [90]. We discuss below these methods in some
detail.

The h-principle for solutions of partial differential relations revealed the soft/hard
(or flexible/rigid) dichotomy for problems formulated in terms of derivatives: a par-
ticular analytical problem is “soft” or “abides by the h-principle” if its solvability
is determined by some underlying algebraic or geometric data. It is important to
point out that while Gromov proved several powerful general theorems covering
many geometrically interesting cases of the h-principle, the methods which he in-
vented are even more important. They continue to be used and improved by many
mathematicians to exhibit new unexpected applications in geometry and beyond.

4.1 Holonomic Approximation

The method of holonomic approximation, which is just a slight repackaging (see
[53]) of Gromov’s method of continuous sheaves, [87], is based on the iterative ap-
plication of the following seemingly trivial 1-dimensional observation: any smooth
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function on [0, 1
3 ] ∪ [ 2

3 ,1] with positive derivative can be extended to [0,1] with
exactly two non-degenerate critical points; moreover, this is true parametrically.

We will be using below a convenient Gromov’s notation OpVK for an unspec-
ified neighborhood of a subset K in a manifold V . We drop V from the notation
when it is clear from the context. The neighborhood may change in the process of
a proof. We begin with the following problem. Given a compact set K ⊂ Rn and
for each multiindex J = (j1, . . . , jn), ji ≥ 0, a smooth function fJ : OpK → R,
is it possible to simultaneously C0-approximate all the functions fJ by derivatives
of the same function, i.e., to find for any ε > 0 and an integer s ≥ 0 a function
g : OpK→R such that

∥∥DJg − fJ
∥∥
C0(K)

< ε

for all J = (j1, . . . , jn) with |J | =∑n
1 ji ≤ s? Here we denoted

DJg := ∂J g

(∂x1)j1 . . . (∂xn)jn
.

The answer is obviously negative even for functions of one variable. Surprisingly,
a slightly modified question has a positive answer:

Theorem 1 Denote I k = {xk+1 = · · · = xn = 0, |xj | ≤ 1, j = 1, . . . , k} ⊂ Rn. For
any ε, δ > 0 and an integer s ≥ 0 there exist a smooth function h : I k→[−δ, δ] and
a function g : OpIh→R, where

Ih =
{
xk+1 = h(x1, . . . , xk), xk+2 = · · · = xn = 0

}⊂Rn

is the graph of the function h, such that

∥∥DJg− fJ
∥∥
C0(Ih)

< ε

for all J = (j1, . . . , jn) with |J | =∑n
1 ji ≤ s.

Sketch of the proof If k = 0 the statement is obviously true: just take as the approx-
imating function g the Taylor polynomial at 0 of order s:

g(x)=
s∑

1

fJ (0)

|J |! x
J ,

where we write xJ := xj11 . . . x
jn
n . Passing to the case k = 1 we view the interval I

as a 1-parametric family of points, and construct the Taylor approximation gu in a
neighborhood of each point u ∈ I = I 1. Let us discretize this family, i.e., for a large
N , which will be chosen later on, consider functions g k

N
, k = 1, . . . ,N , defined on

Pk := { k−1
N
≤ x1 ≤ k

N
, 0 ≤ xj ≤ σ, j = 2, . . . , n}, where σ > 0 is independent of

N and much bigger that 1
N

. Note that the functions g k
N

and gk+1
N

disagree on the
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common part of the boundaries of Pk and Pk+1. However, if Nσ is large enough
then we can find g̃ 2

N
on P2 which is Cs -close to g 2

N
, coincides with g 2

N
for xn < σ

3

and with g 1
N

for xn > 2σ
3 . Next, we find a Cs -approximation g̃ 3

N
of g 3

N
which coin-

cides with g 2
N

for xn < σ
3 and with g 3

N
for xn > 2σ

3 , and so on. Consider the func-

tion h(t) = 0.4σ(1 + sinπNt). Then the functions g̃ 1
N
:= g 1

N
, g̃ 2

N
, . . . , g̃ N−1

N
, g̃1

define together the required smooth function g on a neighborhood of the curve
{xn = h(x1), xj = 0,2 ≤ j ≤ n − 1}. The case of a general k can be similarly
deduced by induction from a 1-parametric version of the case k − 1. �

The proof of Theorem 1 also holds in the parametric, as well as in the relative
form, i.e., if the required approximation is already given on Op∂Ik then the function
h can be chosen ≡ 0 near ∂Ik and the function g can be kept unchanged on Op∂Ik .

To discuss applications of this theorem it is useful to introduce the language of
jets, which allows one to talk about solutions of a differential relation in a geometric
language. Given a (smooth) map f : Rn→ Rq , its s-jet at a point x ∈ Rn is the
string of its partial derivatives up to order s

J s(f )(x)= {DIf (x)}|I |≤s ,
or alternatively its Taylor polynomial of sth order.

Thus x �→ (x, J s(f )(x)) can be viewed as a section of the trivial s-jet bundle
Rn × RqN(n,s)→ Rn, where N(n, s) = (n+s)!

n!s! is the total number of derivatives.
A fiber x×RqN(n,s) of this fibration is the space of all a priori possible values of jets
of maps f : Rn→ Rq at the point x ∈ Rn. In this context the space Rn ×RqN(n,s)

is called the space of s-jets of maps Rn→ Rq , or the space of s-jets of sections
Rn→ Rn × Rq of the trivial bundle Rn × Rq → Rn, and denoted by J s(Rn,Rq).
In other words, a section J s(f ) : Rn→ J s(Rn,Rq) is a simultaneous graph of the
map f and all its derivatives up to order s.

The property of two maps f,g to have the same s-jet at a given point is indepen-
dent of the choice of coordinates in the source and target. This allows us to associate
with any fiber bundle p : X→ V its s-jet extension p(s) :X(s)→ V , or the space of
s-jets of sections f : V →X. In the case of a trivial bundle X = V ×Q→ V one
usually uses the notation J s(V,Q) and refers to this space as the space of s-jets of
maps V →Q.

Every section f : V →X has its s-jet extension J s(f ) : V →X(s), but of course
not all sections of the bundle X(s) are s-jet extensions of some sections of X. A sec-
tion Φ : V →X(s) is called holonomic if Φ = J s(f ) for some section f : V →X.
Theorem 1 can be more globally reformulated as follows:

Theorem 2 Let X→ V be a smooth bundle, A ⊂ V a closed stratified subset of
positive codimension and Φ : OpA→ X(s) a section of the s-jet extension bundle
X(s)→ V given over a neighborhood of A. Then there exist

• a C0-small isotopy ht : A→ V , t ∈ [0,1], beginning at h0 = Id, and
• a section ϕ : Oph1(A)→X
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such that J s(ϕ) C0-approximates Φ over h1(A).

A partial differential relation of order s for sections V →X is any subset R ⊂
X(s). Subvarieties of X(s) correspond to (systems of) partial differential equations,
while open subsets correspond to partial differential inequalities.

A solution of a differential relation R is any section f : V → X such that
J s(f )(V ) ⊂ R. A formal solution of R is any section Φ : V → X(s) with
Φ(V ) ⊂ R. Thus (genuine) solutions of a differential relation R can be identi-
fied with its formal holonomic solutions, and the space Sol(R) of solutions can be
viewed as a subspace of the space Solformal(R) of its formal solutions. One says that
a differential relation R satisfies an h-principle if the inclusion

j : Solformal(R) ↪→ Sol(R)

is a homotopy equivalence.
The h-principle has many forms and variations. The above form of the h-

principle is usually called parametric. However, sometimes the parametric version
of the h-principle fails but the inclusion j induces a surjection on π0. In some cases
one needs to add certain additional homotopy conditions on the 0-jet part of the
formal solution, (e.g., see below the discussion of the Haefliger structure obstruc-
tion for foliations). One can also talk about the relative h-principle, C0-dense h-
principle, etc.

For many fibrations X→ V one can define an action of the group Diff(V ) of
diffeomorphisms of V on the space of sections of the fibration X→ V (e.g., when
X is the tangent bundle T V ), which then naturally extends to an action on its s-
jet extension X(s)→ V . Such fibrations are called natural. Theorem 2 implies the
following general h-principle, see [87]:

Theorem 3 Let V be an open manifold and X→ V a natural fibration. Then any
open Diff(V )-invariant differential relation R ⊂ X(r) satisfies all the forms of the
h-principle.

Proof Indeed, for any open n-dimensional manifold V there exists an isotopy which
retracts V to an arbitrary small neighborhood of its (n − 1)-dimensional skeleton
K ⊂ V . Using Theorem 2, any formal solution of R can be approximated by a
holonomic section J s(ϕ) over a slightly deformed (n−1)-skeleton K̃ of V . In view
of the openness of R, the section ϕ is a solution of R over OpK̃ , and in view of
the DiffV -invariance of R the section ϕ remains a solution after we pull it back to
V by an isotopy retracting V to a OpK̃ . �

Among standard corollaries of Theorem 3 there are Smale–Hirsch’s immersion
theory, Phillips’s submersion theory, mappings of open manifolds transversal to foli-
ations, mappings of foliations regular along fibers, as well as k-mersions (i.e., maps
of rank ≥k) and a rich variety of other applications.

Some of the above mentioned applications had either already been known before
Gromov’s theorem appeared, or proven independently by other authors at about the
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same time. Besides the unified viewpoint, essentially new were applications con-
cerning constructions of different basic geometric structures, e.g., symplectic, con-
tact, complex structures or foliations. We briefly discuss some of these applications
below. Gromov’s results became well known in the West thanks to Tony Phillips
who visited Leningrad in 1969 and managed to sneak out Gromov’s dissertation.
I was later told by a mathematician who was working at that time on the h-principle
type questions about almost a shock he had from reading Gromov’s work. He even
decided to switch the subject of his research to avoid competing with Gromov.

Let us recall that a symplectic structure on a 2n-dimensional manifold M is a
closed non-degenerate 2-form, and a contact structure on a (2n + 1)-dimensional
manifold N is a completely non-integrable hyperplane field ξ ⊂ TN . The complete
non-integrability can be expressed by the Frobenius condition: if one defines ξ (lo-
cally) by a Pfaffian equation α = 0, then the 2-form dα|ξ is non-degenerate, see
Sect. 6.1 for more discussion.

A formal solution for the corresponding differential relation is a non-degenerate
(not necessarily closed) 2-form in the symplectic case, and a pair (α, η) of a non-
vanishing 1-form α and a 2-form η such that η|α=0 is non-degenerate, in the contact
case. In turn, existence of these formal solutions is equivalent to existence of an al-
most complex structure J onM in the symplectic case, and existence of a so-called
stable almost complex structure, i.e., an almost complex structure on N ×R in the
contact case. Theorem 3 implies the parametric h-principle for symplectic and con-
tact structures on open manifolds. Moreover, symplectic forms can be constructed
in any given cohomology class. The existence problem for closed manifolds, as well
as the extension problem to top-dimensional balls is much more subtle, both in the
symplectic and contact cases. We discuss it in Sect. 6.3 below.

A codimension k foliation on an n-dimensional manifold M can be thought of
as an integrable (n − k)-dimensional distribution η ⊂ TM . André Haefliger dis-
covered that there exists a homotopical obstruction for a tangent distribution η to
be homotopic to an integrable one. Namely, there exists a classifying space BΓk
which carries a universal codimension k foliation ηuniv. Let πuniv : BΓk → BOk
be the map classifying the normal bundle T BΓk/ηuniv. If a distribution η on M is
homotopic to a foliation, then the map h : M → BOk classifying its normal bun-
dle TM/η lifts to a map h : M → BΓk , so that πuniv ◦ h = h. Any h-principle
type statement should take into account this obstruction. Phillips–Gromov’s theo-
rem about mappings transversal to foliations implied that the modified h-principle
with the added Haefliger’s condition holds for open manifolds. A surprising dis-
covery of W.P. Thurston (see [183, 184], and also [137]) was that the h-principle
also holds for closed manifolds (for codimension 1 foliations only in the absolute
non-parametric case).

The situation is much worse for the problem of existence of another basic geo-
metric structure, the complex one. The h-principle for that case is not known even
for open manifolds. In fact, the best result is a theorem of Gromov–Landweber (see
[88, 126]) which asserts that if M is a 2n-dimensional open manifold which has
homotopy type of an (n + 1)-dimensional CW-complex then any almost complex
structure onM is homotopic to an integrable one. The only known negative result is



A Few Snapshots from the Work of Mikhail Gromov 155

the failure of the extension h-principle to top-dimensional balls from their bound-
aries, see [47].

A modified version of Theorem 3, where the openness condition for the differ-
ential relation R is relaxed to the so-called micro-flexibility, implies a large number
of further applications, such as parametric h-principles for Lagrangian, Legendrian,
iso-symplectic and iso-contact (i.e., inducing the given symplectic and contact struc-
tures) immersions.

Interestingly, Theorem 1 can be also used for constructions of embeddings. The
idea is that given an embedding one can apply Theorem 3 to sections of its small
tubular neighborhood. A typical example of this kind is the problem of directed
embeddings. Let A be a subset of a Grassmannian Gn,k of k-planes in Rn. For
an embedding f : V → Rn of a k-dimensional manifold V we denote by Gf the
corresponding Gaussian map M→Gn,k which associates to each point x ∈ V the
tangent plane to f (V ) at the point f (x). An embedding f : M → Rn is called
A-directed if Gf (V ) ⊂ A. For instance, if A = Al consists of k-planes trivially
intersecting Rl ⊂Rn, l+k ≤ n, then an embedding is Al-directed if it projects as an
immersion to Rn−l = Rn/Rl . Similarly if A= AR ⊂G2n,n is the set of totally real
n-dimensional subspaces in R2n = Cn, then AR-directed embeddings are exactly
totally real ones, i.e., whose tangent spaces contain no complex lines.

The key role in the proof of the corresponding h-principle for A-directed embed-
dings plays the following lemma about approximation of a tangential homotopy.

Lemma 1 Let i : V ↪→ Rn be a k-dimensional, k < n, submanifold in Rn, and
K ⊂ V a stratified subset of positive codimension in V . Suppose that the Gaussian
map Gi : V →Gn,k is extended to OpRnV . Let Gt : OpRnK→Gn,k , t ∈ [0,1], be
any homotopy beginning with G0 =Gi. Then there exists an isotopy ht : OpVK→
Rn starting with the inclusion map h0 = i and such that Ght C0-approximates Gt
over OpVK . The statement also holds in the relative form.

Proof To deduce Lemma 1 from Theorem 1 we choose a sufficiently large integer
N such that for t ∈ [ k−1

N
, k
N
] the planes rotate for no more than π

8 . We inductively
extend the isotopy to these intervals. Denote by τt the plane field Gt(OpK) on
OpK . If an embedding hk−1

N
, k = 1, . . . ,N , is already constructed so that the tan-

gent planes to Vk−1 := hk−1
N
(OpVK) deviate for no more than π

8 from Gk−1
N

then

the distribution τ k
N

is transverse to the fibers of a sufficiently small tubular neigh-

borhood U(Vk−1) of Vk−1. Hence, we can view the distribution τ k
N

along Vk−1 as

a section σ of the 1-jet extension U(Vk−1)
(1) of the bundle U(Vk−1)→ Vk−1. Ap-

plying Theorem 1 we can then construct a section s : Vk−1 →U(Vk−1) such that its
1-jet extension J 1(s) approximates σ . Let st : Vk−1 → U(Vk−1), t ∈ [ k−1

N
, k
N
], be

a family of sections interpolating between the 0-section and the section s. We then
define ht := st ◦ hk−1

N
(V ) for t ∈ [ k−1

N
, k
N
], and continue the process. �

As an example of an application of Lemma 1 let us deduce the h-principle for
Al-directed embeddings: LetM be an n-dimensional manifold and h : M→Rq an
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embedding. Suppose there exists a homotopy Gt : TM → Gq,n, t ∈ [0,1], which
begins at G0 =Gh and such that G1(TM) intersects trivially Rl ⊂ Rq , n+ l < q .
Then there exists a C0-small isotopy ht : M→ Rq, t ∈ [0,1], h0 = h, such that the

compositionM
h1→Rn

π→Rq/Rl =Rq−l , n+ l < q , is an immersion.
Indeed, the embedding h can be extended to an embedding of a bigger open

manifold V ⊃M of dimension q − l for which there exists a homotopy of tangent
planes with the same property (e.g., one can take as V the total space of the normal
bundle to π ◦G1(TM) in Rq−l). Then Lemma 1 provides the required isotopy of a
neighborhood ofM in V , and hence ofM itself.

The h-principle for totally real embeddings can also be deduced from this lemma
with some additional work. Alternatively, it follows from Gromov’s method of con-
vex integration discussed below in Sect. 4.3.

4.2 Removal of Singularities

Let E → M be a vector bundle E over a manifold M . We say that sections
ϕ1, . . . , ϕq : M→E pointwise generate E if for each x ∈M we have

Span
(
ϕ1(x), . . . , ϕq(x)

)=Ex.
We illustrate the method of removal of singularities, see [89, 90], by its applica-
tion to immersions of closed manifolds of dimension n into Rq for q > n. The
h-principle in this case can be formulated as follows:

Theorem 4 (Hirsch, [113]) Let M be a closed n-dimensional manifold. Suppose
that q > n and 1-forms α1, . . . , αq pointwise generate T ∗(M). Then there exist exact
forms df1, . . . , dfq with the same property. Moreover, one can choose the system of
exact forms (df1, . . . , dfq) homotopic to (α1, . . . , αq) through systems of generating
form, as well as to C0-approximate any given map g := (g1, . . . , gq) : M→ Rq by
the map f := (f1, . . . , fq).

Sketch of the proof The proof inductively replaces the forms α1, . . . , αq by exact
forms. We will discuss here only the last step; the intermediate steps differ only
in the notation. Suppose that we already replaced α1, . . . , αq−1 by exact forms
df1, . . . , dfq−1 such that the system of forms (df1, . . . , dfq−1, αq) generate T ∗M .
Then f̃ := (f1, . . . , fq−1) : M→ Rq−1 is a map of corank ≤1, and in view of the
inequality q − 1 ≥ n generically it has only Thom–Boardman–Morin singularities
Σ1...1. In other words, there exists a submanifold M1 = Σ1(f̃ ) of codimension
q − n + 1 such that f̃ |M\M1 is an immersion (i.e., df1, . . . , dfq−1 generate T ∗M
over M \M1); the kernel λ := Ker |df̃ ⊂ TM|M1 is a 1-dimensional bundle which

is transverse to M1 in the complement of a submanifold M2 := Σ11(f̃ ) ⊂M1 of
codimension q − n+ 1 in M1; in turn λ|M2 ⊂ TM1|M2 is transverse to M2 in the
complement of a submanifoldM3 ⊂M2 of codimension q − n+ 1 inM2 etc. Note
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that the bundle λ is trivial: indeed it is trivialized by the non-vanishing vector field
v ∈ λ defined by the equation αq(v)= 1. Our task is to find a function fq : M→R

such that its directional derivative dfq(v) along v is positive. Assume for a moment
that M2 = ∅, i.e., the vector field v is transverse to M1. Given any smooth func-
tion gq : M→ R we can find a function fq such that fq = gq on M1 and outside a
small neighborhood of M1, and which satisfies the equation dfq(v)= 1 along M1.
If M2 �= ∅, but M3 = ∅ then we first find a function fq on OpM2 which is equal
to gq onM2 and satisfies dfq(v)= 1 alongM2. Then dfq(v)|OpM2 > 0, and hence,
we can extend fq with this property first on OpM1 ⊂M , and then further extend
it to the whole M as equal to gq outside a larger neighborhood of M1. In the gen-
eral case we begin with the smallest non-emptyMk and repeating the above process
inductively extend the function fq to neighborhoods of Mk,Mk−1, . . .M1 with the
property that dfq(v) > 0. �

A more detailed analysis of the process shows that under the above genericity
assumptions one can actually solve the equation dfq(v)= 1 alongM1.

There are two advantages of this proof of Hirsch’s theorem compared to the one
discussed in the previous section. First, it provides much better control of the ap-
proximation of a map g by an immersion. Namely, the process gives not just C0 but
an approximation in the Sobolev norm Wl,p with any integer l and real number p
which satisfy one of the two conditions: (1) lp < q − n− 1, or (2) lp = q − n− 1,
p > 1. This approximation, which can be shown to be the optimal one, was used
in [89] to construct immersed isoperimetric films. Second, the method works in
the complex analytic, and even algebraic situation. In particular, in combination
with Gromov’s generalization of Oka–Grauert’s principle which is discussed in
Forstnerič’s essay, see Sect. 5, this method can be used to prove an h-principle for
holomorphic immersions of Stein manifolds into Cq , see [91].

4.3 Convex Integration

While the method of removal of singularities employs an induction over the dimen-
sion of the target space, gradually improving the coordinate functions of a solution,
the convex integration method uses an induction over the dimension of the source
manifold, one by one adjusting partial derivatives of a solution. We discuss here the
method of convex integration in its simplest form, and only for differential relations
of the first order, see [88, 176] for more details.

Convex integration is based on the following geometric interpretation of the in-
tegral of a vector function. For a set A⊂Rn we denote by Â is convex hull.

Lemma 2 Let A ⊂ Rn be a path-connected subset such that Â ⊃ Opb for some
point b ∈ Rn. Then for any point a ∈ A there exists a path Φ : [0,1] → A with
Φ(0)= a such that

∫ 1
0 Φ(t)dt = b.
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Proof Consider points p1, . . . , pk ∈ A such that b = ∑k
1 λjpj , where λi > 0

and
∑k

1 λi = 1. Consider paths γ1, . . . , γk connecting in A the point a ∈ A with
p1, . . . , pk . Choose ε ∈ (0, 1

2k ). Consider a path Φε : [0,1]→A which begins at a,
jumps in the ε time to p1 along γ1, stays there the time λ1 − 2ε, then jumps back
to a in the time ε, immediately again jumps to p2 along γ2, stays there the time
λ2 − 2ε, jumps back to a, etc. Clearly

∫ 1
0 Φε(t) →

ε→0
b. The condition that b is an

interior point of Â allows us when ε is sufficiently small to find the required path Φ
by varying the weights λj . �

Similarly one can prove the following parametric version of the previous lemma.

Lemma 3 Let A ⊂ Rn be a path-connected subset, C is a compact space and
g : C → Rn a continuous map such that Â ⊃ Opg(C). Then any map ϕ : C →
A can be extended to a map Φ : C × [0,1] → A such that Φ(x,0) = ϕ(x) and∫ 1

0 Φ(x, t)dt = g(x), x ∈ C.

The following lemma is the essence of the convex integration method.

Lemma 4 Let A ⊂ Rn be a path-connected subset and f : Im→ Rn a smooth
map of the cube Im = {0≤ xj ≤ 1; j = 1, . . . ,m} ⊂Rm such that ∂f

∂xm
(Im)⊂ Int Â.

Then for any map v : Im−1 = Im ∩ {xm = 0} → A there exists a map g : Im→ Rn

which is C0-close to f , equal to f on Im−1 and such that ∂g
∂xm

|Im−1 = v, ∂g
∂xm
(x) ∈A

for all x ∈ Im and ∂g
∂xj

is C0-close to ∂f
∂xj

for j = 1 . . . ,m− 1. The result also holds
in the relative form, i.e., as an extension theorem.

Proof We write Im = Im−1 × [0,1], rename the last coordinate xm into t , and de-
note a point of Im as (x, t), x ∈ Im−1, t ∈ [0,1]. We will view x as a parameter and
use the notation f ′(x, t) for the partial derivative with respect to t . Let us divide
the interval [0,1] into sub-intervals of length 1

N
. Using Lemma 3 we find a map

Φ : Im−1 × [0, 1
N
] → A such that Φ(x,0)= v(x), x ∈ Im−1, and

∫ 1
N

0 Φ(x, t)dt =
1
N
f ′(x, 1

N
). Again using Lemma 2 we extend the mapΦ to Im−1×[ 1

N
, 2
N
] with the

property
∫ 2
N
1
N

Φ(t)dt = 1
N
f ′( 2

N
). Continuing the process we construct a continuous

map Φ : Im−1 × [0,1]→A such that

∫ j
N

j−1
N

Φ(x, t)dt = 1

N
f ′
(
x,
j

N

)
(1)

for all j = 1, . . . ,N . Set

g(x, t) := f (x,0)+
∫ t

0
Φ(x, t)dt.
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If t ∈ [ j
N
,
j+1
N
] then we have

g(x, t)= 1

N

j∑

1

f ′
(
x,
i

N

)
+
∫ t

j
N

Φ(x, t)dt →
N→∞f (x, t).

On the other hand, g′(x, t) = Φ(x, t) ∈ A. By differentiating integral (1) with re-
spect to parameters xj , j = 1, . . . ,m− 1, we get

∫ j
N

j−1
N

∂Φ

∂xj
(x, t)dt = 1

N

∂f ′

∂xj

(
x,
j

N

)
,

and thus

∂g

∂xj
(x, t) := ∂f

∂xj
(x,0)+

∫ t

0

∂Φ

∂xj
(x, t)dt

approximates ∂f
∂xj
(x, t) for t ∈ [ j

N
,
j+1
N
]. �

In order to formulate coordinate-free corollaries of Lemma 4 let us introduce
some terminology. A subset A ⊂ V of an affine space V is called ample if the
convex envelope of each of its path connected components coincides with the whole
space V . Note that the empty set is by this definition is ample as well.

Consider a smooth fibration π : X→ V . Given a point x ∈ X we denote by
Vertx the tangent space at the point x to the fiber π−1(π(x)) through the point x.
Then the canonical projection π(1) : X(1) → X of its 1-jet extension is a vector
bundle with the fiber Hom(TyV,Vertx), where we set y := π(x). The rank of this
vector bundle is equal to nq , where n= dimV and n+ q = dimX. There are cer-
tain q-dimensional linear subspaces of its fibers Hom(TyV,Vertx) which we will
call principal. Namely, let us choose a hyperplane L⊂ TyV and a homomorphism
l : L→Vertx . The corresponding principal subspace PL,l ⊂Hom(TyV,Vertx) con-
sists of homomorphisms λ : TyV → Vertx such that λ|L = l. A differential relation
is called ample in principal directions if for every x ∈ X and an affine subspace
Q ⊂ Hom(TyV,Vertx) parallel to a principal subspace the intersection R ∩Q is
ample.

Theorem 5 An open differential relation R ⊂ X(1) which is ample in principal
directions satisfies all forms of the h-principle.

Proof To prove the theorem we first reduce it, by covering the manifolds X and
V by coordinate neighborhoods, to the extension result for mappings of a cube in
Rm into Rn. Then starting with the given formal solution we use Lemma 4 to “de-
formalize” partial derivatives one by one. The condition of ampleness in the princi-
pal directions ensures that at each inductional step all the condition of Lemma 3 are
satisfied. The crucial property that the values of partial derivatives in the parameter
directions remain close guarantees that when improving a certain partial derivative
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we are not destroying the derivatives which were already taken care of at the previ-
ous steps of the construction. �

Theorem 5 has numerous corollaries: h-principles for a generic codimension two
singularity, for totally real and even ε-Lagrangian (see Sect. 6.1 below) embeddings.
For directed immersions of an n-dimensional manifolds to Rn+1 it implies the fol-
lowing result:

Corollary 6 Let A be any open subset of Sn such that its intersection with ev-
ery great circle contains an arc of length >π . Then any stably parallelizable n-
dimensional manifold M admits an immersion into Rn+1 with the Gaussian image
in A.

For instance, there exists an immersion T 2 →R3 whose Gaussian image misses
vertices of a regular tetrahedron. Though the convex integration method proves
existence of such an immersion, it is not easy to extract an explicit construction
from the proof. An explicit effective construction of such an immersion was done
by Ghomi in [66].

But the most attractive feature of the method of convex integration is that it is
applicable to certain classes of differential equations. In some sense it is applicable
to a generic “everywhere non-linear” PDE. As it was explained above, a system
of partial differential equations corresponds to a submanifold (or more generally,
to a stratified subset) R of the corresponding jet space. Under ampleness assump-
tion the h-principle allows us to construct approximate solutions, i.e., solutions of
differential relations Rε ⊃R for a sequence of decreasing neighborhoods of R in
the jet space. The condition which allows us to make this approximation process
converging is, roughly speaking, that R is ample in any sufficiently small neighbor-
hood U of any point a ∈R, i.e., for any principal direction P through the point a
the convex envelope of any connected component of the intersection R ∩ U ∩ P
contains U ∩ P (e.g., as it is the case for a curve of non-zero torsion in R3). The
solution provided by this limiting process is C1-smooth for differential relations in
1-jet spaces. In fact, one can even get solutions of Hölder class C1,α for sufficiently
small α depending on local differential geometric properties of the submanifold R
(but not C2 and even not C1,β for a sufficiently large β), see [17, 18, 35, 175]. In
fact, there are cases when the above local ampleness condition is not satisfied but
with an appropriate choice of an initial approximation the successive approximate
solutions obtained via the convex integration method still converge to a C1-solution.
The Nash–Kuiper C1-isometric embedding theorem is an example: any short, i.e.,
distance decreasing embedding of a Riemannian manifold (M1, g1) into another
Riemannian manifold (M2, g2) can be C0-approximated by C1-isometric embed-
dings, provided that dimM1 < dimM2. On Fig. 1, produced by Borrelli, Jabrane,
Lazarus and Thibet (project Hévéa), see [19], it is shown a C1-isometric embedding
of the flat 2-torus into R3, which is constructed using Gromov’s convex integration
scheme.



A Few Snapshots from the Work of Mikhail Gromov 161

Fig. 1 C1-isometric embedding of the flat torus in R3

Gromov’s point of view was that though the technique of convex integration in
its various versions is applicable to the large class of non-linear differential equa-
tions, the equations which are most interesting from physical applications point of
view cannot exhibit an h-principle type of behavior. However, some recent devel-
opment suggests that this may not be necessarily the case. In particular, Müller and
S̆verak, see [139] and also [38], noticed that if one drops the condition of path-
connectedness in the definition of ampleness, one still can use Gromov’s method
for constructing non-smooth but Lipschitz solutions. Further development of this
approach is an active current subject of research (see [39] for a survey) promising
interesting applications, in particular in the study of weak solutions of equations of
fluid dynamics and the theory of turbulence.

5 The Homotopy Principle in Complex Analysis (by Franc
Forstnerič)

5.1 The Oka–Grauert Principle

The homotopy principle in complex analysis is commonly known as the Oka Prin-
ciple after Kiyoshi Oka (1901–1978). In his series of papers during 1936–1953, Oka
invented new methods of constructing global analytic objects from local ones. The
Oka principle first appeared in his 1939 paper [149] where he showed that a holo-
morphic line bundle on a domain of holomorphy is holomorphically trivial if (and
only if) it is topologically trivial.

Domains of holomorphy form a sublass of the class of Stein manifolds that were
introduced by Karl Stein in 1951. During 1950s, Hans Grauert and Reinhold Rem-
mert studied Stein spaces, complex spaces that are holomorphically convex and on
which holomorphic functions separate points. In 1958, Grauert [70] extended Oka’s
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theorem to principal fiber bundles with arbitrary complex Lie group fibers over Stein
spaces, showing that the holomorphic classification of such bundles coincides with
their topological classification. More precisely, ifX is a Stein space andG is a com-
plex Lie group, then the inclusion OGX ↪→ CGX of the sheaf of germs of holomorphic
maps X→G into the sheaf of germs of continuous maps induces an isomorphism
H 1(X;OGX )∼=H 1(X;OGX ) of the 1st Čech cohomology groups. Oka’s theorem cor-
responds to the case when G = C∗ = C \ {0}, and it says that the Picard group
Pic(X)=H 1(X;O∗) is isomorphic to the topological Picard group, and hence (via
the first Chern class map) to H 2(X;Z).

Grauert’s result also pertains to fiber bundles with complex homogeneous fibers;
in particular, to complex vector bundles. Interesting generalizations and applications
were found by Forster and Ramspott, Henkin and Leiterer, and others (see Chap. 7
in [63]). This led to the formulation of the following heuristic principle:

Oka Principle: Analytic problems on Stein spaces which can be cohomologically
formulated have only topological obstructions.

Oka’s original theorem is proved by looking at the exact cohomology sequence
associated to the short exact sequence 0 → Z→ O

σ→ O∗ → 1, where σ(f ) =
exp(2πif ). This cohomological proof fails for nonabelian Lie groups, and in partic-
ular for GLn(C) when n > 1. Grauert reduced the proof to the problem of construct-
ing holomorphic sections of an associated holomorphic fiber bundle E→ X with
fiber G whose transition maps are left and right multiplications by elements of G.
The method is similar to the construction of global sections of coherent analytic
sheaves over Stein spaces (Cartan’s Theorem A). The key step consists in gluing a
pair of holomorphic sections over a suitable geometric configuration (A,B) in X,
called a Cartan pair. This is accomplished by the Cartan lemma on splitting a holo-
morphic map f : A ∩ B→G to a complex Lie group G into a product f = fAfB
of two holomorphic maps fA : A→G, fB : B→G, each one defined on one of the
larger sets A,B in our configuration.

The classical Oka–Grauert principle is limited to fiber bundles with complex ho-
mogeneous fibers. Challenging new problems in Stein geometry called for a more
general Oka principle. One such case was Forster’s result from 1970 [58] on the
existence of proper holomorphic embeddings of a Stein manifold Xn into CN for
values of N well below the classical result N = 2n + 1 of Remmert, Bishop and
Narasimhan. Forster conjectured that for n > 1 one can take N = [ 3n

2 ] + 1, the
smallest number for which there are no topological obstructions. Forster’s conjec-
ture was only confirmed two decades later by Eliashberg and Gromov [50], using
Gromov’s pioneering work on Oka principle presented in the next section.

5.2 Gromov’s Oka Principle

The modern development of the Oka principle started with Gromov’s seminal pa-
per of 1989 [76] in which the emphasis moved from the cohomological to the
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homotopy-theoretic aspect. Grauert’s proof uses the exponential map on a com-
plex Lie group for two purposes: to prove a Runge-type approximation theorem for
holomorphic maps to a complex Lie group, and to linearize the gluing problem for
holomorphic sections. Gromov introduced a much more flexible concept of a domi-
nating (holomorphic) spray on a complex manifold Y : A triple (E,π, s) consisting
of a holomorphic vector bundle π : E→ Y and a holomorphic map s : E→ Y such
that for each point y ∈ Y we have s(0y)= y and the differential ds0y : T0yE→ TyY

maps the vertical subspace Ey of the tangent space T0yE surjectively onto the tan-
gent space TyY . A complex manifold is said to be elliptic if it admits a dominating
spray. Gromov’s first main result is the following:

Theorem 7 (M. Gromov, [76]) Maps X→ Y from a Stein manifold X to an ellip-
tic manifold Y satisfy all forms of the Oka principle. The same holds for sections
f : X→E of any holomorphic fiber bundle π : E→X with a Stein base X and an
elliptic fiber Y .

This means that every continuous map (resp. section) is homotopic to a holomor-
phic one, with uniform approximation on compact holomorphically convex subsets
of X and with interpolation on closed complex subvarieties of X. The analogous
result holds with continuous dependence on parameters. In particular, the inclusion
O(X,Y ) ↪→ C (X,Y ) of the space of holomorphic maps into the space of continu-
ous sections is a weak homotopy equivalence.

Here are a few examples that were pointed out by Gromov:
(A) If a complex Lie group G acts transitively on Y by holomorphic automor-

phisms, we obtain a spray s : E = Y × g→ Y by taking s(y, v) = exp(v)y. Here,
g= T1G∼=Ck (k = dimG) is the Lie algebra of G.

(B) Let V1, . . . , Vk be complete holomorphic vector fields on a complex manifold
Y ; that is, the flow ϕjt (y) of Vj exists for all complex values of time t , starting at any
point y ∈ Y . If the vectors Vj (y) span the tangent space TyY at each point y ∈ Y ,
then we get a dominating spray s : Y × Ck→ Y by the formula s(y, t1, . . . , tk) =
ϕ1
t1
◦ ϕ2

t2
◦ · · · ◦ ϕktk (y).

(C) A dominating spray of type (B) exists on Cn \ A, where A is an algebraic
subvariety of C which does not contain any hypersurfaces.

Dominating sprays are used by Gromov in essentially the same way as sprays
of type (A) in Grauert’s construction; however, the details are considerably more
involved. Theorem 7 also holds for the ostensibly larger class of subelliptic mani-
folds: A complex manifold Y with a finite family of holomorphic sprays (Ej ,πj , sj )
which together dominate at every point y ∈ Y , meaning that TyY is spanned by the
vector subspaces (dsj )0y (Ej,y). For example, if A⊂CPn is a projective subvariety
of codimension >1, then CPn \A is subelliptic, but is not known to be elliptic.

Gromov considered the Oka principle in the more general context of sections of
holomorphic submersions over Stein manifolds. A surjective holomorphic submer-
sion π : Z→X is said to be elliptic if each point x0 ∈X admits an open neighbor-
hood U ⊂X and a family of dominating sprays sx on the fibers Zx , depending holo-
morphically on the base point x ∈U . Similarly one defines a subelliptic submersion.
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We introduce a stratified (sub-) elliptic submersion by asking that the baseX, which
may now be a complex space with singularities, is stratified by a descending chain
of closed complex subvarieties X =X0 ⊃X1 ⊃ · · · ⊃Xm = ∅, with smooth differ-
ences Sj = Xj \ Xj+1, such that the restriction of π to any stratum (a connected
component of a difference Sj ) is a (sub-) elliptic submersion. Gromov’s main theo-
rem [76, Main Theorem 4.5] is included in the following result from [59].

Theorem 8 If X is a Stein space and π : Z→X is a stratified (sub-) elliptic sub-
mersion, then sections X→Z of π satisfy the Oka principle.

Example 1 Let π : E→ X be a holomorphic vector bundle of rank n > 1, and let
Σ ⊂ E be a complex subvariety with affine algebraic fibers Σx =Σ ∩Ex ⊂ Ex ∼=
Cn (x ∈X) of codimension>1. IfΣ is locally uniformly tame (a condition concern-
ing its behavior at infinity), then the restricted submersion π : E \Σ→X is elliptic.
If X is Stein, it follows that the Oka principle holds for sections X→E \Σ .

The Oka principle in the above example is used to construct proper holomorphic
immersions and embeddings of Stein manifolds of dimension >1 into Euclidean
spaces of minimal dimension; see [50] and Chap. 8 in [63]. The problem of embed-
ding open Riemann surfaces properly holomorphically into C2 is still very much
open since the Oka principle does not apply in this case (see Sect. 8.9 in [63] for
results in this direction).

An interesting recent application of Theorem 8 was found by Ivarsson and
Kutzschebauch [120] who solved the following Gromov-Vaserstein problem: Ev-
ery null-homotopic holomorphic map X→ SLn(C) from a finite dimensional Stein
space X to a special linear group can be factored into a finite product of upper- and
lower triangular holomorphic maps into SLn(C).

A detailed exposition of Theorems 7 and 8 can be found in [59, 61, 62], and also
in Chaps. 5 and 6 of [63].

5.3 From Elliptic Manifolds to Oka Manifolds and Oka Maps

Gromov asked in [76] whether the Oka principle for maps X→ Y from Stein man-
ifolds X to a given complex manifold Y could be characterized by a Runge ap-
proximation property for entire maps Cn→ Y from Euclidean spaces to Y . This
conjecture was confirmed in 2006 by Forstnerič who showed that it suffices to ask
for Runge approximation on a special class of compact (geometrically!) convex sets
in Euclidean spaces. This condition, called CAP (the Convex Approximation Prop-
erty), is equivalent to some dozen ostensibly different Oka properties; a complex
manifold satisfying these equivalent properties is called an Oka manifold. (See [60]
and Chap. 5 in [63] for more information.) The simple characterization of Oka mani-
folds by CAP paved the way to prove some functorial properties which are unknown
in the class of elliptic manifolds. For example, if E and B are complex manifolds
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and E→ B is a holomorphic fiber bundle whose fiber is an Oka manifold, then B
is Oka if and only if E is Oka.

By Gromov’s Theorem 7, every elliptic manifold is an Oka manifold. A partial
converse, due to F. Lárusson, pertains to ‘good’ complex manifolds; this class in-
cludes all Stein manifolds and all quasi-projective manifolds. A good manifold Y
is Oka if and only if there exists an affine holomorphic bundle E→ Y whose total
space E is Oka and Stein, hence elliptic.

Any natural property of objects in a given category should induce a corre-
sponding property of morphisms. Following this philosophy, a holomorphic map
π : E → B is said to be an Oka map if it is a Serre fibration and it enjoys the
parametric Oka property. The latter is a parametric version of the basic Oka prop-
erty of π which pertains to the possibility of deforming any continuous π -lifting
F0 : X→ E of a given holomorphic map f : X→ B from a Stein space X into a
holomorphic lifting F1 : X→E of f .

Finnur Lárusson explained how Oka manifolds and Oka maps naturally fit into
an abstract homotopy-theoretic framework. The category of complex manifolds and
holomorphic maps can be embedded into a model category such that: (a) a holo-
morphic map is acyclic (as a map in the ambient model category) if and only if it
is a homotopy equivalence in the usual topological sense; (b) a holomorphic map
is a fibration if and only if it is an Oka map. In particular, a complex manifold is
fibrant if and only if it is Oka; (c) a complex manifold is cofibrant if and only if it is
Stein; (d) a Stein inclusion is a cofibration. (See [127] and Sect. 7 in [60] for more
information.)

A central problem is to determine the place of Oka manifolds in the classification
of complex manifolds. This is well understood only in dimension one: a Riemann
surface is Oka if and only if it is not Kobayashi hyperbolic. In particular, the com-
pact Riemann surfaces that are Oka are the Riemann sphere and all elliptic curves.
Already for complex surfaces the problem is difficult and to a large extent open.
Whether the Oka property is preserved by modifications such as blowing up and
blowing down is a closely related problem. In particular, we do not know whether
an Oka manifold of dimension >1 blown up at a point, or punctured at one point, is
still Oka.

6 Soft and Hard Symplectic Geometry (by Yasha Eliashberg)

This is the title of Gromov’s plenary lecture at the ICM-86 in Berkeley. Symplectic
geometry serves as an especially rich source of examples on both sides of the soft-
hard, or as I prefer to call it, flexible-rigid spectrum. Flexible and rigid problems
come in symplectic geometry extremely close to each other, and the development
of each side towards the other one shaped and continues to shape the subject from
its inception. In fact, when Gromov first entered the subject in 1967 it was unclear
whether symplectic geometry has any rigid side at all.
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6.1 Gromov’s Alternative

To set the stage let me give some basic definitions from symplectic and contact
geometries.

Symplectic geometry was born as a geometric language of classical mechanics,
and similarly contact geometry is a natural set-up for geometric optics and mechan-
ics with non-holonomic constraints.

The cotangent bundle T ∗M of any smooth n-dimensional manifold M carries
a canonical Liouville 1-form λ, usually denoted pdq , which in any local coordi-
nates (q1, . . . , qn) on M and dual coordinates (p1, . . . , pn) on cotangent fibers can
be written as λ=∑n

1 pidqi . The differential ω := dλ=∑n
1 dpi ∧ dqi is called the

canonical symplectic structure on the cotangent bundle of M . In the Hamiltonian
formalism of classical mechanics the cotangent budle T ∗M is viewed as the phase
space of a mechanical system with the configuration space M . The p-coordinates
have a mechanical meaning of momenta. The full energy of the system expressed
through coordinates and momenta, i.e., viewed as a function H : T ∗M→R on the
cotangent bundle (or a time-dependent family of functions Ht : T ∗M → R if the
system is not conservative) is called the Hamiltonian of the system. The dynam-
ics is then defined by the Hamiltonian equations ż = XHt (z), z ∈ T ∗M , where the
Hamiltonian vector field XHt is determined by the equation i(XHt )ω= dHt , and in
the canonical (p, q)-coordinates has the form

XHt =
n∑

1

−∂Ht
∂qi

∂

∂pi
+ ∂Ht
∂pi

∂

∂qi
.

The flow of the vector field XHt preserves ω, i.e. X∗Htω= ω. The isotopy generated
by the vector field XHt is called Hamiltonian.

More generally, the Hamiltonian dynamics can be defined on any 2n-dimensional
manifold endowed with a symplectic, i.e., a closed non-degenerate differential 2-
form ω. According to a theorem of Darboux any such form admits local canonical
coordinates p1, . . . , pn, q1, . . . , qn in which it can be written as ω=∑n

1 dpi ∧ dqi .
Diffeomorphisms preserving ω are called symplectomorphisms. Symplectomor-
phisms which can be included in a time dependent Hamiltonian flow are called
Hamiltonian. When n = 1 a symplectic form is just an area form, and symplecto-
morphisms are area preserving transformations. Though in higher dimensions sym-
plectomorphisms are volume preserving but the subgroup of symplectomorphisms
represents a small part of the group of volume preserving diffeomorphisms.

The projectivized cotangent bundle PT ∗M serves as the phase space in the geo-
metric optics. It can be interpreted as the space of contact elements of the manifold
M , i.e., the space of all tangent hyperplanes toM . The form pdq does not descend
to PT ∗M but its kernel does, and hence the space of contact elements carries a
canonical field of hyperplanes tangent to it. This field turns out to be completely
non-integrable. It is called a contact structure. More generally, a contact structure
on a (2n+ 1)-dimensional manifold is a completely non-integrable field of tangent
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hyperplanes ξ , where the complete non-integrability can be expressed by the Frobe-
nius condition α ∧ (dα)∧n �= 0 for a 1-form α (locally) defining ξ by the Pfaffian
equation α = 0. Though at first glance symplectic and contact geometries are quite
different, they are in fact tightly interlinked and it is useful to study them in parallel.

An important property of symplectic and contact structures is the following sta-
bility theorem due to Moser [138] in the symplectic case and to Gray [71] in the
contact one:

Theorem 9 Let ωt , t ∈ [0,1], be a family of symplectic (resp. contact) structures
on a manifold X which coincide outside of a compact set. In the symplectic case
suppose, in addition, that ωt −ω0 = dθt , t ∈ [0,1], where θt has a compact support.
Then there exists an isotopy ht : X→ X with compact support which starts at the
identity h0 = Id and such that h∗t ωt = ω0.

Maximal integral (i.e., tangent to ξ ) submanifolds of a (2n + 1)-dimensional
contact manifold (V , ξ) have dimension n and are called Legendrian. Their sym-
plectic counterparts are n-dimensional submanifolds L of a 2n-dimensional sym-
plectic manifold (W,ω) which are isotropic for ω, i.e., ω|L = 0. They are called
Lagrangian submanifolds. Here are two important examples of Lagrangian sub-
manifolds. A diffeomorphism f : W →W of a symplectic manifold (W,ω) is sym-
plectic if and only if its graph Γf = {(x, f (x)); x ∈W } ⊂ (W ×W,ω× (−ω)) is
Lagrangian. A 1-form θ on a manifoldM viewed as a section of the cotangent bun-
dle T ∗M is Lagrangian if and only if it is closed. For instance, if H1(M)= 0 then
Lagrangian sections are graphs of differentials of functions, and hence the inter-
section points of a Lagrangian with the 0-section are critical points of the function.
A general Lagrangian submanifold corresponds to a multivalued function, called the
front of the Lagrangian manifold. Given a submanifold N ⊂M (of any codimen-
sion), the set of all hyperplanes tangent to it in TM is a Legendrian submanifold of
the space of contact elements PT ∗M .

It was an original idea of H. Poincaré that Hamiltonian systems should satisfies
special qualitative properties. In particular, his study of periodic orbits in the so-
called restricted 3-body problem led him to the following statement, now known as
the “last geometric theorem of H. Poincaré”: any area preserving transformation
of an annulus S1 × [0,1] which rotates the boundary circles in opposite directions
should have at least two fixed points. Poincaré provided many convincing arguments
why the statement should be true [163], but the actual proof was found by G.D.
Birkhoff [16] in 1913, only after Poincaré’s death. Birkhoff’s proof was purely 2-
dimensional and further development of Poincaré’s dream of what is now called
symplectic topology had to wait till 1960s when V. I. Arnold [4] formulated a number
of conjectures formalizing this vision of Poincaré. In particular, one of Arnold’s
conjectures stated that the number of fixed points of a Hamiltonian diffeomorphism
is bounded below by the minimal number of critical points of a function on the
symplectic manifold.

At about the same time Gromov was proving his h-principle type results. Sym-
plectic problems exhibited some remarkable flexibility. For instance, as it was al-
ready mentioned, Gromov proved that symplectic structures on open manifolds, as
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well as Lagrangian immersions abide an h-principle. Moreover, this is also the case
for ε-Lagrangian embeddings (i.e., embeddings whose tangent planes deviate from
Lagrangian directions by an angle <ε). A remarkable h-principle was proven by
Gromov for the iso-symplectic and iso-contact embeddings. For instance, in the
symplectic case, Gromov proved that if (M,ω) and (N,η) are two symplectic man-
ifolds such that dimN ≥ dimM + 4 then any smooth embedding f : M→N which
pulls back the cohomology class of the form η to the cohomology class of ω, and
whose differential df is homotopic to a symplectic bundle isomorphism, can be C0-
approximated by an iso-symplectic embedding f̃ : M→N , i.e., f̃ ∗η= ω.

Gromov formulated the following alternative: either the group of symplectomor-
phisms (resp. contactomorphisms) is C0-closed in the group of all diffeomorphisms,
or its C0-closure coincides with the group of volume preserving (resp. all) diffeo-
morphisms. The proof of this alternative appeared first in his book [96] but I re-
member he explained to me a sketch of the proof already around 1970. One of the
corollaries of Gromov’s convex integration methods was that there are no additional
lower bounds for the number of fixed points of a volume preserving diffeomor-
phism of a manifold of dimension ≥3. Clearly the estimates on the number of fixed
points is a C0-property, and hence, if the second part of the alternative were true
this would imply that Hamiltonian diffeomorphisms of symplectic manifolds of di-
mension >2 have no special fixed point properties, and hence Poincaré’s theorem
and Arnold’s conjectures reflected pure 2-dimensional phenomena. In fact, it was
clear from this alternative, that all basic problems of symplectic topology are tightly
interconnected. Let us list some of such problems, besides Gromov’s alternative:

– Extension of symplectic and contact structures to the ball from a neighborhood
of the boundary sphere.

– 1-parametric version of the previous question: is it true that two structures on the
ball which coincide near the boundary and which are formally homotopic relative
the boundary, are isotopic?

– Fixed point problems for symplectomorphisms. More generally, Lagrangian inter-
section problem: Do Lagrangian manifolds under certain conditions have more
intersection points than it is required by topology?

– Are there any non-formal obstructions to Legendrian isotopy?

Proving an h-principle type statement in one of these problems would imply
that all symplectic problems have soft solutions. Thus a resolution of Gromov’s
alternative became a question about existence of symplectic topology as a separate
subject. In 1979 I proved Arnold’s conjecture for 2-dimensional surfaces [46], but
this still was just a two-dimensional result. The breakthrough came at the beginning
of 1980s.

In 1982 Bennequin [12] proved that for certain 3-dimensional contact structures
there are diffeomorphisms which could beC0-approximated by contactomorphisms.
Conley and Zehnder [34] proved Arnold’s conjecture about the number of fixed
points of a Hamiltonian diffeomorphism of the 2n-torus, see the next section. Via
Gromov’s alternative their results implied that the group of symplectomorphisms is
C0-closed in the group of volume preserving (resp. all) diffeomorphisms, and the
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group of contactomorphisms of any contact 3-manifold is C0-closed in the group
of all diffeomorphisms. However, they did not observe this connection. Let me also
mention that in 1981 I proved a theorem about the structure of fronts of Legendrian
submanifolds which implied rigidity in both symplectic and contact cases (see [48]),
but the full proof remains unpublished.

6.2 Proof of the Arnold Fixed Point Conjecture for the 2n-Torus

I sketch in this section a proof of the Arnold fixed point conjecture for the 2n-
torus, which is an adaptation of M. Gromov and myself, see [51], of the finite-
dimensional reduction of Conley-Zehnder’s proof given by Marc Chaperon, [32].
What is remarkable about this proof that it could be given by H. Poincaré. In fact,
the first half of the proof precisely follows the first page of Poincaré’s paper [163].

Theorem 10 (C. Conley and E. Zehnder [34]) Any Hamiltonian diffeomorphism
f of the 2n-torus (T 2n,ω)= (R2n,

∑
dpi ∧ dqi)/Z2n must have at least 22n fixed

points, provided that they are non-degenerate.

Sketch of a proof Let us lift f to a Hamiltonian diffeomorphism F : R2n→ R2n.
We write a point of R2n as (p, q), where p = (p1, . . . , pn), q = (q1, . . . , qn). We
also write the symplectic form

∑n
1 dpi ∧ dqi as dp ∧ dq .

We have F(p,q) = (P (p,q),Q(p,q)) and dP ∧ dQ = dp ∧ dq . If F is C1-
close to the identity then its graph

ΓF =
{
(p, q,P,Q) | P = P(p,q), Q=Q(p,q)}⊂R4n

is graphical with respect to the splitting of R4n into the (q,P )- and (p,Q)-
coordinate subspaces, i.e.

ΓF =
{
p = p(q,P ), Q=Q(q,P )},

and hence the equation dp ∧ dq = dP ∧ dQ is equivalent to the existence of a
function H(q,P ) such that pdq +QdP = dH . Fixed points p = P , Q = q of F
are zeroes of the 1-form (p − P)dq + (Q− q)dP = d(H − qP ). In other words,
fixed points are exactly the critical points of the functionG(q,P )=H(q,P )−qP .
It is not hard to check that the function G (called a generating function of F ) is
periodic in q , P , and hence descends to the 2n-torus T 2n. Thus, in the Morse case
the function G must have at least 22n critical points. Its critical points are in 1–1
correspondence with the fixed points of f , and therefore, f has as many fixed points.

As I already mentioned, the above proof almost literally repeats Poincaré’s ar-
gument in his attempt to prove his “last geometric theorem”. What Poincaré was
missing is the following seemingly trivial idea: an arbitrary Hamiltonian diffeomor-
phism is a composition of small ones. Namely, F can be written as a composition
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F = FN ◦ · · · ◦F1 of C1-small periodic Hamiltonian symplectomorphisms. I restrict
the discussion below to the case N = 2, the general case differs only in the notation.

The product Γ := ΓF1 × ΓF2 ⊂ R8n of the graphs of F1 and F2 is given by the
equations

p1 = p1(q1,P1), Q1 =Q1(q1,P1),

p2 = p2(q2,P2), Q2 =Q2(q2,P2).

Furthermore, pidqi + QidPi = dHi and the functions Gi = Fi − qiPi are Z2-
periodic, i = 1,2. Set G :=G1 +G2. Fixed points of F are in 1–1 correspondence
with the intersection Γ ∩ {p2 = P1,Q1 = q2,p1 = P2,Q2 = q1}, i.e., with the ze-
roes of the 1-form

α := (p1 − P2)dq1 + (Q1 − q2)dP1 + (p2 − P1)dq2 + (Q2 − q1)dP2

= dG(q1, q2,P1,P2)+ d
(
(P1 − P2)(q1 − q2)

)
.

Changing the variables (q1, q2,P1,P2) �→ (q1, u1 := q2 − q1,P1,U1 := P2 − P1)

we get

α = d(G̃+ u1U1), where G̃(q1, u1,P1,U1) :=G(q1, q1 + u1,P1,P1 +U1).

One can check that the function G̃ is periodic with respect to all variables, and
therefore, G̃+ u1U1 descends to a function

T 2n ×R2n =R2n/{q1 ∼ q1 + 1,P1 ∼ P1 + 1}→R.

Then the stable Morse theory implies that G̃+ u1U1 must have at least 22n critical
points, and hence f has as many fixed points. �

6.3 Advent of Holomorphic Curves

The true new era of symplectic topology started with the publication of Gromov’s
paper [73]. Searching for tools to establish symplectic rigidity, and, in particular,
to define invariants of symplectic manifolds, Gromov turned his attention to holo-
morphic curves which were known to be an important tool in Algebraic Geometry.
However, the environment of integrable complex structures was too rigid to be use-
ful in Symplectic Geometry. But then, Gromov’s extraordinary ability to uncover
simple but deep underlying geometric ideas led him to realization that Bers–Vekua’s
pseudo-analytic functions could be interpreted as J -holomorphic curves in a not
necessarily integrable almost complex structure J . This turned out to be precisely
the right tool to deal with in Symplectic topology.

Let us recall that an almost complex structure on a 2n-dimensional manifold W
is a complex structure on its tangent bundle, i.e., an anti-involution J : TW → TW ,
J 2 =−Id. A map f : (W1, J1)→ (W2, J2) between two almost complex manifolds



A Few Snapshots from the Work of Mikhail Gromov 171

of real dimension 2n1 = dimW1 and 2n2 = dimW2 is called holomorphic if the
differential df : TW1 → TW2 is complex linear, i.e.,

∂f := 1

2
(df ◦ J1 − J2 ◦ df )= 0. (2)

Written in local coordinates, Eq. (2) is a system of 2n1n2 equations with respect to
2n2 unknown functions, and hence it is overdetermined unless n1 = 1, i.e., when
(W1, J1) is a Riemann surface. Respectively, when n1 > 1 then for generic non-
integrable J1 or J2 there are no holomorphic maps (W1, J1)→ (W2, J2), even lo-
cally. On the other hand, when n1 = 1 Eq. (2) is an elliptic equation with the same
principal symbol as the standard Cauchy-Riemann equation in the integrable case.
Hence, with appropriate boundary conditions (e.g., for closed holomorphic curves,
or holomorphic curves with boundaries in totally real submanifolds) this is a Fred-
holm problem, and assuming certain transversality we get finite-dimensional moduli
spaces of solutions.

At the time when Gromov was working on his theory of J -holomorphic curves3

there was already known an example of a remarkable application of an elliptic PDE
in topology: Simon Donaldson [41] spectacularly applied in 4-dimensional topology
moduli spaces of solutions of another elliptic problem, the so-called anti-self-dual
Yang-Mills equation. Gromov’s idea was to realize a similar scheme in symplectic
topology using instead moduli spaces of holomorphic curves.

The starting problem in this scheme was to ensure compactness properties for
the corresponding moduli spaces, i.e., to prove in the holomorphic curve setup an
analog of Uhlenbeck’s compactnes theorem [187] in the Yang-Mills theory. Gromov
proved a far-going generalization of the Schwarz lemma from complex analysis
which allowed him to control derivatives of a holomorphic map in terms of the
diameter of its image. Combining this lemma with an ingenious use of hyperbolic
geometry of Riemann surfaces Gromov proved that

Theorem 11 Given a sequence fn : (S, j)→ (M,J ) of holomorphic curves in
a closed almost complex manifold such that the area Area(fn(S)) is uniformly
bounded, there exists a subsequence converging to a nodal holomorphic curve with
spherical bubble trees.

Instead of giving a precise definition of a nodal holomorphic curve with spherical
bubble trees, we illustrate the notion by the following example.

Example 2 Consider a sequence of holomorphic maps fn : CP 1 → CP 1 given in
homogeneous projective coordinates by the formula

fn(z1 : z2)=
(
z1

n
: z2

)

3Gromov used the term pseudo-holomorphic but I omit here this degrading prefix.
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Fig. 2 Nodal holomorphic curve with spherical bubble-trees

and let Fn : CP 1 →CP 1 ×CP 1 be the sequence of their graphs:

Fn(z1 : z2)=
(
z1 : z2, fn(z1 : z2)

)
.

It is natural to think that the sequence of graphs converges to the horizontal
curve z1 : z2 �→ (z1 : z2,0 : 1) together with the vertical spherical bubble ((1 : 0)×
CP 1)⊂CP 1 ×CP 1. However, this union is not an image of CP1 under any holo-
morphic map CP 1 → CP 1 × CP 1. What happens here is that there exists a se-
quence of holomorphic coordinate charts on CP1 centered at (0 : 1) on which the
sequence converges to the horizontal curve CP 1 × (0 : 1), and a sequence of holo-
morphic coordinate charts centered at (1 : 0) on which the sequence converges to
the vertical curve (0 : 1)×CP 1.

In more general cases, in order to analyze the behavior of a sequence of holo-
morphic curves near a point where the gradient explodes, one may need to do some
further rescaling, and as a result get a tree of spherical bubbles, see Fig. 2.

Gromov also analyzed the case of moduli spaces of holomorphic curves with
boundaries in a totally real submanifold and proved a similar compactness theorem.
Besides trees of spherical bubbles appearing at interior points there is also in this
case a possibility of formation of trees of holomorphic disc bubbles at boundary
points.

The spherical bubble formed in the above example was vertical, and this turns
out to be always the case when one deals with sections of J -holomorphic bundles.
Namely, suppose π : W → S is a smooth bundle over a Riemann surface (S, j), and
J is an almost complex structure on W such that the projection (W,J )→ (S, j)

is holomorphic. Then, from any sequence of holomorphic sections of the bundle π
with a uniform area bound one can choose a subsequence converging to a section
together with a union of vertical spherical (or disc) holomorphic bubble trees, where
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the word “vertical” means that all bubble trees are contained in fibers. In particular,
if we know that there are no non-constant holomorphic spheres and discs in the
fibers we can conclude a conventional C∞-convergence to a section.

The problem with applications of this compactness theorem is that in the general
case it is unclear how to control the area of holomorphic curves. Here is where
Gromov introduces a symplectic form into the picture. Suppose that there exists a
symplectic form ω which tames the almost complex structure J , i.e., ω is positive
on complex directions: ω(X,JX) > 0 for X �= 0. Then according to the Wirtinger
inequality, for any holomorphic curve f : S→M one has

∫
S
f ∗ω ≥ cAreaf (S)

for some positive constant c. In particular, if a Riemann surface S is closed, then the
left-hand side of the inequality depends only on the homology class realized by the
holomorphic curve f : S→W , and hence when all the curves fn belong to the same
homology class the area of fn(S) is uniformly bounded, and therefore compactness
in the sense of Theorem 11 holds. On the other hand, on a given symplectic manifold
the space of almost complex structures which are tamed by its symplectic form is
non-empty and contractible.

Similarly, one has a uniform control of the area of holomorphic curves with La-
grangian boundary conditions which belong to a fixed relative homology class. Gro-
mov’s compactness theorem also holds when the target manifold is non-compact,
but its geometry prevents holomorphic curves to go to infinity. For instance, this
is the case for holomorphic curves with boundaries in a compact Lagrangian sub-
manifold of R2n endowed with a symplectic form and an almost complex structures
standard at infinity.

Here are a few examples of Gromov’s application of holomorphic curves in sym-
plectic geometry. A Lagrangian submanifold L of an exact symplectic manifold
with a fixed primitive λ (called a Liouville form) is said to be exact if the form λ|L
is exact. Note that if H1(X)= 0 then exactness is independent of the choice of the
Liouville form λ.

Theorem 12 There are no compact exact Lagrangian submanifolds in R2n.

Sketch of a proof We begin the sketch with Gromov’s important observation that
the graph of a solution of an inhomogeneous ∂̄-equation ∂f = g for maps (S, j)→
(M,J ) can be interpreted as a J̃ -holomorphic curve in S ×M for an appropriate
almost complex structure J̃ on S ×M . The almost complex structure J̃ has the
property that the projection (S ×M, J̃ )→ (S, j) is holomorphic and the restriction
of J̃ to the fibers of this projection coincides with J . Let us apply this observation
to the space M (C) of maps f : (D, ∂D)→ (Cn,L) in the trivial relative homol-
ogy class, which satisfy the equation ∂̄f = C where C is a (0,1)-form

∑n
1 cidz̄i on

Cn with constant coefficients. We note that there are no non-constant holomorphic
spheres in Cn, and exactness of the Lagrangian manifold L also implies that there
are no non-constant holomorphic discs with boundary in L. Hence one can conclude
that for every (0,1)-form C the space M (C) is compact. Moreover, for a generic
C the space M (C) is a manifold, and a generic path Ct , t ∈ [0,1], provides us with
a cobordism between M (C0) and M (C1). As we already pointed out above, the
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space M (0) consists of constant discs and hence can be identified with L. More-
over, the diffeomorphism between these manifolds is given by the evaluation map
ev : M (0)→ L at some fixed point p ∈ ∂D. Hence, for a generic C the evaluation
map ev : M (C)→ L realizes the fundamental homology class of the manifold L,
and in particular, M (C) is non-empty. On the other hand, when at least one of the
coefficients cj is sufficiently large then M (C)=∅. Indeed, for a constant form C
the coordinate functions of any solution f of the equation ∂f = C are harmonic
and hence satisfy an a priori bound for their derivatives in terms of the diameter of
the Lagrangian manifold L. This contradiction proves that the Lagrangian manifold
L cannot be exact. In fact, the argument proves more: there exists a non-constant
J -holomorphic disc with boundary in L for any standard at infinity almost complex
structure J which is tamed by the standard symplectic form on Cn. �

Further adjusting the argument, Gromov proved that there are no exact La-
grangian submanifolds in any symplectic manifold which can be split as a product
with the standard symplectic plane R2, and using this modification, he showed that
an exact Lagrangian submanifold can never be displaced with itself by a Hamil-
tonian isotopy. An interesting application is that any closed exact Lagrangian sub-
manifold of a cotangent bundle must intersect the 0-section. Indeed, if an exact
Lagrangian submanifold L⊂ T ∗M does not intersect the 0-sectionM ⊂ T ∗M then
by scaling L→ εL, ε→ 0, the submanifold L can be disjoint with itself, while
remaining exact, and hence this deformation can be realized via a Hamiltonian iso-
topy.

The beautiful argument used by Gromov in his proof of absense of exact La-
grangian submanifolds was replicated many times in later years by several authors.
In particular, it is a starting point in a remarkable theorem of Abouzaid that for cer-
tain exotic n-spheres their cotangent bundles are not symplectomorphic to T ∗Sn,
see [1].

As it was already mentioned above, fixed points of a symplectomorphism
f : (M,ω)→ (M,ω) can be interpreted as intersection points of its Lagrangian
graph Γf = {(x, f (x))} ⊂ (M,ω) × (M,−ω) with the Lagrangian diagonal Δ =
{(x, x)}. Hence, the Lagrangian non-displaceability result implies existence of fixed
points of a Hamiltonian diffeomorphism of a symplectically aspherical, i.e., con-
taining no non-constant symplectic 2-spheres, symplectic manifold. The asphericity
assumption is needed to prevent the bubbling off of holomorphic spheres.

However, this argument only shows that the set of fixed points is non-empty and
does not give the lower bound predicted by Arnold’s conjecture. Gromov promised
a more precise estimate in his sequel paper to [73] which he referred to as [Gro2].
Unfortunately this paper had never appeared. Soon after the paper [73] was writ-
ten, Andreas Floer, inspired by Gromov’s work, and also motivated by Witten’s
work [194] and Conley–Zehnder’s paper [34], came up with his Floer homology,
see [56, 57], which allowed him to improve Gromov’s result and to prove Arnold’s
conjecture for symplectically aspherical manifolds. Gromov told me that Floer sug-
gested to him to collaborate on this project, but Gromov declined and unfortunately
dropped his intended project [Gro2].
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Attempts to prove Arnold’s fixed point conjectures in full generality were a
prominent driving force in the development of symplectic topology in the years af-
ter Gromov’s work. The symplectic asphericity assumption was gradually removed
(see [65]), and depending on its interpretation one can either claim that the Arnold
fixed points conjecture is now fully proven, or still remains open. Indeed, Arnold
formulated different versions of his conjecture. For instance, in the so-called non-
degenerate case, a weaker formulation asserts that the number of fixed points of a
Hamiltonian diffeomorphism of a closed symplectic manifold is bounded below by
the rank of the homology of the manifold, while a more optimistic version asserts
a bound in terms of the minimal number of critical points of a Morse function on
the manifold. While the former version is proven, see [65], the latter one remains
open for most of symplectic manifolds. The situation is even less satisfactory in the
degenerate case (see, however, [51, 114, 173]).

Let us sketch a proof of another of Gromov’s application of holomorphic curves:

Theorem 13 Let (N,η) be a symplectically aspherical manifold, σ an area form
on S2, and J a tamed by η× σ almost complex structure on (M =N × S2, η× σ).
Suppose that

∫
S2 σ is bounded above by the minimal positive value of η on spherical

classes in N . Then each point inM belongs to a J -holomorphic sphere inM which
realizes a homology class of pt × S2 ⊂N × S2.

Sketch of a proof The space of holomorphic reparameterizations of S2 = CP1

is non-compact (e.g., see Example 2). To fix this problem we choose three dif-
ferent points p0,p1,p∞ ∈ S2 and consider the space M (J ) of J -holomorphic
maps f : CP1 → S2 × N , such that f (0) ∈ p0 × N , f (1) ∈ p1 × N , f (∞) ∈
p∞ × N . Then the absence of J -holomorphic curves in N guarantees compact-
ness of M (J ). Consider the evaluation map ev : M (J )× CP1 →M given by the
formula ev(f, z) = f (z), f ∈M (J ), z ∈ CP1. When J is a split almost complex
structure CP 1 × (N, J̃ ) then the map is a diffeomorphism, and therefore it has de-
gree 1 for any generic J . Using compactness one more time, we conclude that it is
onto for any J . �

Theorem 13 is the key ingredient in the proof of famous Gromov’s non-squeezing
theorem.

Theorem 14 Suppose that 0 < r < R. Then there are no symplectic embeddings
D2n(R)→D2(r)×R2n−2. Here we assume that R2k is endowed with the standard
symplectic structure and denote by D2k the unit ball in R2k .

Proof Suppose that such an embedding f : D2n(R)→D2(r)× R2n−2 does exist.
Then for a sufficiently large R′ we have f (D2n(R)) ⊂W :=D2(r)×D2n−2(R′).
For any ε > 0 we can find an area preserving embedding D2(r) into (S,ω) where
(S,ω) is the 2-sphere with an area form ω of total area r + ε. We also embed
D2n−2(R) into (2n− 2)-torus (T 2n,Θ)= (T 2, θ)× · · ·× (T 2, θ) with a split form,
where the area

∫
T 2 θ is sufficiently large. There exists an almost complex structure J
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on W tamed by the symplectic form ω×Θ and equal to f∗i on f (D2n(R)), where
i is the standard complex structure on R2n =Cn. According to Theorem 13 there is
a J -holomorphic sphere C in the horizontal class passing through the image f (0)
of the center 0 ∈D2n(R). Denoting by ω0 the standard symplectic structure in R2n

we have

π(r + ε)2 =
∫

C

ω×Θ ≥
∫

f−1(C)

ω0 =Area
(
f−1(C)

)
.

On the other hand, the monotonicity estimate, see [129], implies that any properly
embedded holomorphic curve passing through the center of the ball in Cn has its
area bigger or equal than the area of a planar section trough the center of the ball.
Hence, Area(f−1(C))≥ πR2, and therefore R ≤ r . �

This theorem for the first time established existence of specifically symplectic
(e.g., different from the volume) invariants, and in particular, implied symplec-
tic rigidity theorem (i.e., the C0-closedness of the group of symplectomorphisms).
One can also deduce from 14 that for any n > 1 there is a symplectic structure on
Op∂D2n which does not extend to D2n, while there are no formal obstructions for
that (see Sect. 4.1). Interestingly, a similar extension problem in the contact case is
still open in dimension >3.

Slightly modifying the original Gromov’s definition we define swidth(U,ω) of a
2n-dimensional manifold (U,ω), or as it is now usually called the Gromov width as

swidth(U) := sup
{
πr2; B2n(r) symplectically embeds into (U,ω)

}
.

Thus, swidth(D2(r) × D2n−2(R)) = πr2 if r ≤ R, and one can similarly prove
that swidth(S2(a) × R2n−2) = a, where we denote by S2(a) the 2-sphere of area
a, assume that the symplectic structure on R2n is standard, and that the product is
endowed with the split symplectic structure. It is interesting to note that this Gro-
mov rigidity result coexists with the h-principle type observation of Polterovich
(see [52]) that swidth(T 2(a)× R2n−2) =∞. In a similar vein is a recent result of
Latschev–McDuff–Schlenk, see [128]: the 4-torus admits an embedding of the 4-
ball of full volume, and hence, swidth(T 2(a)× T 2(b))=√2ab.

Using an argument somewhat similar to his proof of Theorem 13, Gromov also
proved that for any almost complex structure on CPn which is tamed by the stan-
dard symplectic form one has a holomorphic sphere in the class of the generator of
H2(CP

n) passing through any two points. He then applied this result (cf. the proof
of the non-squeezing theorem) to show that if there is a symplectic embedding of
two disjoint balls D2n(r1) and D2n(r1) into D2n(1) then r2

1 + r2
2 ≤ 1. Indeed, if

ballsD2n(r1) andD2n(r1) embed intoD2n(1), then they also embed into CPn with
the symplectic area of the generator of H2(CP

n) is slightly bigger than π . Then
one can choose an almost complex structure on CPn tamed by the standard sym-
plectic form and equal to the push-forward of the standard complex structure on the
images of the balls. Finally, using the monotonicity theorem we conclude that the
holomorphic sphere in the generator class passing through the centers of these balls
has symplectic area ≥π(r2

1 + r2
2 ), and the required inequality follows.
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This result opened the whole new subject of symplectic packing inequalities with
the most remarkable results proven in the 4-dimensional case. For instance, let us
denote

vk := sup
k vol(D4(r))

volD4(1)
,

where the supremum is taken over all r such that D4(r) � · · · �D4(r)︸ ︷︷ ︸
k

symplec-

tically embeds into D4(1). Gromov’s result implies that v2 ≤ 1
2 . In the work of

Karshon [121], Traynor [185], McDuff–Polterovich [135] and Biran [14] there were
computed the precise values of vk for all k. It turns out that

k 1 2 3 4 5 6 7 8
vk 1 1/2 3/4 1 20/25 24/25 63/64 288/289

and vk = 1 for k ≥ 9.
Inspired by Gromov’s definition of invariants of symplectic domains, Helmut

Hofer defined in [115] a remarkable invariant of a Hamiltonian symplectomorphism,
called nowadays the Hofer norm (a related invariant was defined by Claude Viterbo
in [192]).

To connect Hofer’s and Gromov’s definitions let us consider a Hamiltonian dif-
feotopy ht : D2n→D2n, t ∈ [0,1], from the identity to h1 = h. The isotopy is gen-
erated by a family of Hamiltonian functions Ht : D2n→D2n equal to 0 on ∂D2n.
Let ΓHt ⊂D2n × [0,1] ×R be the graph of Ht :

ΓHt =
{
u=Ht(x); x ∈D2n, t ∈ [0,1]}⊂ (D2n ×R2,ω+ dt ∧ du),

where ω is the symplectic form on D2n. Let us assume for a moment that Ht is
positive on the interior of the ball and consider the domain

UHt =
{
(x, t, u) | 0≤ u≤Ht(x), t ∈ [0,1], x ∈D2n}.

Choosing a different Hamiltonian path h̃t connecting Id with h, we observe that if
the two paths are homotopic through paths with positive Hamiltonian functions then
the corresponding domains UHt and UH̃t are symplectomorphic. If not the annoying
positivity constraint, this would imply that symplectic invariants of the domain UHt ,
e.g. its Gromov width, are invariants of the Hamiltonian diffeomorphism h (or more
precisely, of its lift to the universal cover of the group of Hamiltonian diffeomor-
phisms).

Hofer got around this difficulty and defined his conjugation invariant norm ‖h‖
for any Hamiltonian diffeomorphism h : D2n→D2n as

‖h‖ = inf
(
maxHt(x)−minHt(x)

)
,

where the max and min are taken over all (x, t) ∈ D2n × [0,1], and the infimum
is taken over all Hamiltonians Ht with Ht |∂D2n = 0 generating h. One can think



178 D. Burago et al.

of ‖h‖ as the Gromov width of a smallest box D2n × [0,1] × [m,M] contain-
ing the graph ΓHt . The non-degeneracy of this norm, i.e., the fact that a sym-
plectomorphism which can be generated by an arbitrary C0-small Hamiltonian
is equal to the identity, is parallel to Gromov’s non-squeezing theorem. Hofer’s
norm can be equivalently defined by the formula ‖h‖ = infHt

∫ 1
0 ‖Ht‖C0dt , where

‖Ht‖C0 =maxx∈D2n Ht (x)−minx∈D2n Ht (x) is the C0-norm on the space of func-
tions on D2n equal to 0 on ∂D2n, and the infimum is again taken over all Hamil-
tonians Ht with Ht |∂D2n = 0 generating h. In this formulation we see that Hofer’s
norm is just the path-length norm on the group H of Hamiltonian diffeomorphisms
corresponding to the Finsler metric given by the C0-norm on the Lie algebra of the
group H . A remarkable theorem of Buhovsky and Ostrover, see [23], asserts that
any conjugation invariant Finsler (pseudo-)norm on the group of Hamiltonian dif-
feomorphisms that is generated by an invariant norm on the Lie algebra which is
continuous with respect to the C∞-topology, is either identically zero or equivalent
to the Hofer metric.

Hofer’s norm, later generalized to all symplectic manifolds by Lalonde–McDuff
[125], generates a bi-invariant metric on the group of Hamiltonian symplectomor-
phisms, which plays an important role in Hamiltonian Dynamics.

As Gromov demonstrated in his seminal paper, holomorphic curves are espe-
cially useful in 4-dimensional symplectic geometry due to the positivity of inter-
section property. As in the integrable case, transversely intersecting holomorphic
curves in an almost complex 4-manifold intersect positively. Gromov sketched an
argument that even in the singular case the analogy with the integrable case should
hold. It turned out that the issue is quite subtle, and was settled in a series of papers
of McDuff [134] and Micalleff-White [136]. As one of the applications Gromov
proved the following improvement of Theorem 13 in dimension 4:

Theorem 15

1. Let F be an orientable closed surface. Suppose thatX = S2×F is endowed with
a split symplectic structure ω, and in the case when F = S2 suppose in addition
that the area of the first factor is ≤ than the area of the second one. Then for
any almost complex structure J tamed by ω the manifold X admits a foliation by
J -holomorphic curves in the homology class of the first factor.

2. Let J be any almost complex structure on CP 2 tamed by the standard (Fubini–
Studi) symplectic form on CP 2. Then through any two distinct points there
is a unique J -holomorphic sphere in the homology class of the generator of
H2(CP

2), and any two such spheres intersect at 1-point. All these spheres are
embedded.

3. Let (X,ω) be a symplectic 4-manifold with a tamed by ω almost complex struc-
ture J . Suppose that there exists an embedded J -holomorphic sphere S ⊂X with
S · S = 1, and there are no embedded holomorphic spheres with the self inter-
section equal to −1. Then (X,ω) is symplectomorphic to CP 2 with the standard
symplectic form.
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Theorem 15.3 was improved by McDuff [133]: without assuming an absence of
(−1)-curves one can conclude that X is symplectomorphic to CP 2, possibly blown
up at a few points.

A corollary of Theorem 15.3 is that there exists a unique standard at infinity
symplectic structure on R4, where uniqueness is understood up to symplectomor-
phism fixed at infinity. Another spectacular corollary is that the group of compactly
supported symplectomorphisms of the standard symplectic R4 is contractible. This
implies that the space of standard at infinity symplectic forms on R4 is homotopy
equivalent to the group of all compactly supported diffeomorphisms. Note, however,
that nothing is currently known about the topology of this group.

C.H. Taubes found a link, see [178, 179], between the Seiberg–Witten gauge
theory and Gromov’s theory of holomorphic curves. His result in combination with
Theorem 15.3 implied that the uniqueness up to symplectomorphism result also
holds for symplectic structures of a fixed total volume on CP 2.

Though Gromov never wrote the promised second part [Gro2] of his holomor-
phic curves paper, which was supposed to contain a more algebraic treatment of
information encoded into moduli spaces of holomorphic curves in symplectic man-
ifolds, the subject began developing with exponentially increasing speed. We al-
ready mentioned the work of Floer who defined his Floer homology for Lagrangian
intersection and fixed point problems. His theory united Gromov’s holomorphic
curves methods with variational techniques used by Conley–Zehnder in their proof
of Arnold’s conjecture for tori, and which goes back to Rabinowitz’s work on moun-
tain path method. Motivated by Physics, holomorphic curves were used to define a
deformation of the product on cohomology of a symplectic manifold into a quantum
product, and the holomorphic curve information was conveniently packaged into a
generating function, which nowadays is called Gromov–Witten potential. Gromov–
Witten theory was expanded to a relative setting as Symplectic Field Theory, see
[49] which brought, in particular, new powerful applications in contact geometry.

There were discovered remarkable connections of Gromov–Witten theory with
the theory of integrable systems. This theory is also an essential part of the math-
ematical theory of Mirror Symmetry, which predicts a wealth of information about
symplectic manifolds and their Lagrangian submanifolds by looking at the mir-
ror problems in complex geometry. Many of these predictions are now rigorously
proven, and the picture continues to unravel.

The Heegaard homology theory created by P. Ozsváth and Z. Szabó [154], and
more recently embedded contact homology of M. Hutchings [118] and C.H. Taubes
[181], which are defined using J -holomorphic curves, became one of the most pow-
erful tools in low-dimensional topology and led to solutions of several long-standing
classical problems in this area.

Applications of holomorphic curves in Hamiltonian Dynamics brought us closer
to the realization of Poincaré’s dream of establishing qualitative properties of me-
chanical systems (e.g., existence and the number of periodic trajectories) without
actual solving the equations of motion. In particular, the Weinstein conjecture as-
serting existence of periodic trajectories of Reeb vector fields was proven in many
cases, see [116, 191], and in dimension 3 in full generality (see [180]).
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Today, 27 years after Gromov’s discovery, the theory of J -holomorphic curves
remains one of the center-pieces of Modern Mathematics, and attracts more and
more attention of Mathematicians and Physicists.

6.4 Flexible Side of Symplectic Geometry is Still Alive

We will finish this section by discussing a few advances on the flexible side of
symplectic topology which happened more recently.

We already mentioned above Gromov’s h-principle for iso-symplectic embed-
dings in codimension >2. Applying holomorphic curve technique it is not difficult
to construct counter-examples to a similar h-principle in codimension 2. However,
Simon Donaldson, using his theory of almost holomorphic sections of complex line
bundles over almost complex symplectic manifolds, proved among other remarkable
results the following

Theorem 16 (Donaldson, [42]) For any closed 2n-dimensional symplectic mani-
fold (M,ω) with an integral cohomology class [ω] ∈H 2(M) and a sufficiently large
integer k there exists a codimension 2 symplectic submanifold Σ ⊂M which repre-
sents the homology class Poincaré dual to kω. Moreover, the complementM \Σ has
a homotopy type of an n-dimensional cell complex (as it is the case for complements
of hyperplane sections in complex projective manifolds).

Let us denote by P(r1, . . . , rn) the polydisc {|z1| ≤ r1, . . . , |zn| ≤ rn} ⊂ Cn,
where we assume r1 ≤ r2 ≤ · · · ≤ rn. If P(r1, . . . , rn) symplectically embeds into
P(R1, . . . ,Rn) then famous Gromov’s non-squeezing theorem implies that r1 ≤R1.
We also have the volume constraint r1 . . . rn ≤R1 . . .Rn. Many people tried to prove
that for a similar embedding problem for high-dimensional polydiscs there are addi-
tional constraints on radii besides the width and volume constraints. However, Larry
Guth proved the following remarkable result on the flexible side, which showed that
the room for additional constraints is very limited.

Theorem 17 (Guth, [107]) There exists a constant C(n) depending on the di-
mension n such that if C(n)r1 ≤ R1 and C(n)r1 . . . rn ≤ R1 . . .Rn then a polydisc
P(r1, . . . , rn) symplectically embeds into P(R1, . . . ,Rn).

While the results confirming Arnold’s conjecture for intersection of two La-
grangian submanifolds remain one of centerpieces of rigid symplectic topology, its
analog concerning lower bounds for the number of double points of a Lagrangian
immersion turned out to be wrong. For instance, an “Arnold type” conjecture pre-
dicts that the minimal number s(L) of transverse double points of an exact La-
grangian immersion of an orientable n-dimensional closed manifold L should sat-
isfy the bound s(L)≥ 1

2 rankH∗(L), which for L= T n gives s(L)≥ 2n−1.
However, it turns out (see [43]; for n= 2 the result is due to D. Sauvaget, [171])

that this conjecture is wrong:
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Theorem 18 Let L be an n-dimensional orientable manifold. If the complexified
tangent bundle T ∗(L)⊗C is trivial4 then

s(L)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

=− 1
2χ(L), if n is even and χ(L) < 0;

≤ 1
2χ(L)+ 2, if n is even and χ(L)≥ 0;

≤ 2, if n is odd;
= 1, if n= 3.

Here χ(L) is the Euler characteristic of L. For instance, any 3-manifold admits
a Lagrangian immersion into R6 with exactly 1 self-intersection point.

It is again interesting to contrast this theorem with the following rigidity result
of Ekholm and Smith [44]:

Theorem 19 If a closed orientable 2k-manifold L, k > 2, with χ(L) �= −2 admits
an exact Lagrangian immersion into R4k with one transverse double point and no
other self-intersections, then L is diffeomorphic to the sphere.

In his work Gromov approached symplectic topology both, from its flexible and
rigid sides, and today the research which he has initiated is bringing both sides closer
and closer to each other.

7 The Waist Inequality in Gromov’s Work (by Larry Guth)

The central theme of this essay is the following inequality.

Theorem 20 (Waist inequality) If F is a continuous map from the unit n-sphere to
Rq , then one of the fibers of F has (n− q)-dimensional-volume at least that of an
(n− q)-dimensional equator. In other words,

there is some y ∈Rq so that Voln−q F−1(y)≥Voln−q Sn−q .

The waist inequality is a fundamental fact of Euclidean geometry. It is also a
difficult theorem—it is much harder to prove than it may look at first sight. In my
opinion, the waist inequality is one of the most under-appreciated theorems in ge-
ometry, and so I am excited to write about it. The waist inequality also connects
with several other areas of mathematics.

Gromov began writing about the waist inequality in the early 80’s, and he came
back to it many times since then. When he started writing, the waist inequality could
be proven as a corollary of deep work in geometric measure theory. Gromov gave
several other proofs of the theorem, trying to get towards the bottom of this fun-
damental fact of geometry. He recognized and popularized the theorem, and gave

4This is a necessary and sufficient condition for existence of a Lagrangian immersion.
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a number of applications in geometry. More recently, he wrote several papers con-
necting the waist inequality to other areas of mathematics, such as combinatorics
and topology.

The isoperimetric inequality began as a theorem about Euclidean space. Later,
people began to think about isoperimetric inequalities on other spaces, and they
became a fundamental concept in geometry. Still later, people realized that many
situations in different parts of mathematics are analogous to the isoperimetric in-
equality. Isoperimetric inequalities now play an important role in parts of group the-
ory, graph theory, analysis, probability, computational complexity, and many other
fields. In Gromov’s recent work, the waist inequality is beginning to play a similar
role.

7.1 Why is the Waist Inequality Hard?

The waist inequality is sharp and the optimal map is quite simple. Think of Sn as the
unit sphere in Rn+1. Let L be a linear map Rn+1 →Rq . The fibers of L : Sn→Rq

will be (n − q)-dimensional spheres, and the largest of these will be an (n − q)-
dimensional equator.

The waist inequality for maps F : Sn→R follows easily from the isoperimetric
inequality on the sphere. One special case of the isoperimetric inequality says that
if U ⊂ Sn has half the volume of Sn, then the boundary of U has (n− 1)-volume at
least as big as an equator. Now we choose a value y so that the set {x : F(x) < y} has
exactly half the volume of Sn. The boundary of this set is exactly the fiber F−1(y),
and the isoperimetric inequality tells us that it has (n− 1)-volume at least as big as
Sn−1.

But this approach is hard to generalize to maps F : Sn→ Rq for q ≥ 2. When
q ≥ 2, a fiber of the map F does not divide Sn into regions, so there is no analogue
of the method we used to choose y. A key difficulty is that it is not clear which value
y ∈Rq we should look at.

There is another important difference between the case q = 1 and the case q ≥ 2.
If q = 1, then most of the fibers of F are pretty big, but when q ≥ 2, they may be
almost all tiny. We can make this precise as follows. For any map F : Sn→ Rq ,
we let UF (w) denote the union of all the fibers with (n − q)-volume at least w.
When q = 1, the same argument we used to prove the waist inequality delivers the
following stronger information. If L : Sn→ R is a linear map and F : Sn→ R is
any continuous map, then VolUF (w)≥VolUL(w) for every w! The waist inequal-
ity (for maps Sn→ R) is a corollary of this stronger inequality. And the stronger
inequality fails dramatically for larger q . For any q ≥ 2 and any n > q , there are
maps Fε : Sn→Rq so that UFε(ε) has volume less than ε. (In other words, all but a
tiny volume of the sphere Sn is covered by tiny fibers of Fε .)

If q ≥ 2, then there is no obvious candidate y ∈ Rq which should have a large
fiber, and if we wander randomly around the domain Sn, we may see only tiny fibers.
We will have to overcome these difficulties even to prove the waist inequality with
a non-sharp constant.
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Proving the waist inequality with a sharp constant is much harder. To get some
perspective, we note that the corresponding problem for the unit cube is wide open!
Conjecturally, any map F : [0,1]n→ Rq should have a fiber with (n− q)-volume
at least 1, but no one knows how to prove it. The conjecture is true for linear maps
by a theorem of Vaaler from 1979. One great advantage of a linear map is that we
know which fiber should be big: the fiber through the center of the cube. Vaaler
proved [188] that any k-plane through the center of a unit cube intersects the cube
in k-volume at least 1. The sharp waist inequality for the unit cube would be a major
non-linear generalization of Vaaler’s theorem.

7.2 A Quick History of the Waist Inequality, Part 1

The first proof of the waist inequality is essentially due to Almgren. In [3], Almgren
developed a new set of tools in minimal surface theory, allowing him to find minimal
surfaces by using minimax arguments. Almgren’s minimax arguments can be used
to prove the waist inequality under mild hypotheses about the regularity and gener-
icity of the map F . We call this first proof the minimax proof of the waist inequality.
The proof is hard. I do not know the details of the proof. Almgren’s paper [3] is over
100 pages long, and it requires a good background in geometric measure theory.
(The full proof may require an additional regularity result like Allard’s regularity
theorem. . . ) Suppose that a student wanted to learn the proof after taking good first-
year graduate courses in differential geometry, PDE, analysis, and topology. They
would probably have to read over 200 pages of math.

In the early 80’s, Gromov gave a short proof of the waist inequality with a non-
sharp constant ([94], page 134). The proof is only a few pages long. We give a
detailed sketch of it at the end of this essay. The sharp constant is certainly interest-
ing, but the waist inequality is important even with a non-sharp constant, and having
a proof of reasonable length makes a big difference.

In [81], Gromov gave a new proof of the waist inequality (with the sharp con-
stant). The proof does not use geometric measure theory, and instead it uses a lot
of algebraic topology. One key ingredient is a generalization of the Borsuk–Ulam
theorem, proven using characteristic classes. Another key ingredient is (a cousin of)
the Brunn-Minkowski inequality. This proof is also pretty hard. In my opinion, it is a
little shorter than the minimax proof, but that may just be subjective. Our imaginary
student will probably still have to read over 100 pages of math to learn the proof.

There are now at least three different proofs of the waist inequality: the mini-
max proof, the short proof based on the isoperimetric inequality (with non-sharp
constant), and the Borsuk–Ulam proof. The proofs with the sharp constant are sur-
prisingly long and difficult. I tried my best to explain why the waist inequality is
hard to prove, but I do not feel I can account for the length and difficulty of these
proofs. There may be more proofs yet to be discovered, and it is not at all clear that
we have found the simplest proof.

In the last few years, Gromov has been coming back to the idea of waists in
a sequence of papers on a wide range of topics. These papers apply the idea of the
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waist inequality to questions in geometry, topology, and combinatorics. A main goal
of this essay is to explain some of this work.

7.3 Combinatorial Analogues of the Waist Inequality

Suppose that we have N points in Rq . There are
(
N
q+1

)
different q-simplices with

vertices among these points. It is interesting to try to understand how much these
simplices have to overlap with each other. In [11], Barany proved that there is al-
ways a point which lies in a definite fraction of all these simplices. This result is
sometimes called the point selection theorem.

Theorem 21 (Point selection, [11]) For any N points in Rq , there is some other
point in Rq which lies in at least c(q)

(
N
q+1

)
of the q-simplices that they determine.

The point selection theorem can be rephrased in a way that makes it look like
the waist inequality. Given N points in Rq , we can define a linear map L from the
(N−1)-simplexΔN−1 to Rq sending the vertices of the simplex to the given points.
Now for a point y in Rq , the fiber L−1(y) is a subset of ΔN−1, and we define the
size |L−1(y)| to be the number of q-faces of ΔN−1 which L−1(y) intersects. The
point selection theorem can now be rephrased as follows:

For any linear map L :ΔN−1 → Rq , there is a point y ∈ Rq so that |L−1(y)| ≥
c(q)

(
N
q+1

)
.

Using this analogy, Gromov adapted ideas from the waist inequality to give a new
proof of the point selection theorem. The short proof of the waist inequality adapts
smoothly to this combinatorial setting. Moreover, the argument automatically gives
the following more general result:

Theorem 22 ([83]) For any continuous map F :ΔN−1 → Rq , there is a point y ∈
Rq so that |F−1(y)| ≥ c(q)( N

q+1

)
.

This story is an example of why it is useful to have many proofs of fundamental
theorems. The minimax and Borsuk–Ulam proofs of the waist inequality do not
adapt to the combinatorial setting (as far as we know. . . ) The minimax and Borsuk–
Ulam proofs use a lot of specific information about the geometry of Sn, which makes
them more difficult to adapt to other situations. The short proof, although it gives a
weaker result, is more adaptable.

One important open problem in this area is to understand the asymptotic behav-
ior of the constant c(q). Gromov and Barany both give a constant c(q) which is
approximately 1/q!. On the other hand, in the worst known examples, the constant
c(q) is approximately e−q . In particular, it would be interesting to know whether
c(q) decays exponentially or super-exponentially.

The analogy with the waist inequality gives a new perspective on this problem.
Gromov’s proof of point selection is based on the short proof of the waist inequal-
ity. The short proof of the waist inequality gives a non-sharp constant which is too
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small by a factor ∼2q/q!. This gap roughly matches the gap between the known
constants and the worst examples in the point selection problem. Perhaps a bet-
ter understanding of the waist inequality will some day help us to understand the
asymptotic behavior of the point selection problem.

7.4 Topological Analogues of the Waist Inequality

We begin with an image from everyday life. Imagine we have sewn up a tear in a
pair of pants. At the end we take out the sewing needle, and there is some thread
sticking out. We have to tie the thread up in a knot to make sure that it does not go
back through the fabric and undo the stitches. What kind of knot should we tie? The
knot has to be thick to prevent it from pulling back through the hole in the fabric. For
example, a long string of trefoil knots will not work, because they may pull through
the fabric one at a time. We want our knot to be thicker than the hole. And we want
the knot to stay thick even if it gets jostled. How can we make such a knot?

A friend who sews described to me one way of doing this in practice. Take the
loose end of string, wrap it several times around your finger, then roll it gradually
off your finger, pressing it into a ball and pulling it tight at the same time. When
she does it, the result is a tightly knotted knob of string too thick to go back through
the hole in the fabric. Even if I squeeze it, it stays round and resists squishing into
a narrow tube. Mathematically, it is not clear to me why this works. What is the
geometry/topology that keeps this knot from passing through the hole in the fabric?

Let us formulate a mathematical question in a similar spirit. We define the waist
of a knot K ⊂R3 to be the smallestW so that we can isotope K to a position where
it meets each horizontal plane in ≤W points. For example, consider a torus knot
Tp,q with p < q . If we take a standard representative and orient it in a sensible way,
it meets each horizontal plane in ≤2p points. Can we isotope it to some strange
position to reduce this number 2p? Recently in [156], Pardon gave an elegant proof
that the waist of Tp,q is exactly 2p. This estimate about the waist was the first step
in Pardon’s solution to a problem about the distortion of knots that Gromov posed
in the early 80’s.

Let us digress a little to explain this problem. If K ⊂ Rn, we recall that the
intrinsic distance between two points is the length of the shortest curve between the
two points in K . The extrinsic distance is the distance between the two points in
Rn. The distortion of K is the largest value of the ratio between intrinsic distance
and extrinsic distance. If the distortion is large, it means that there are two points
of K which are close together, but the shortest path between them in K is long. In
the early 80’s, Gromov asked whether there are isotopy classes of knots that require
arbitrarily large distortion, and the question was open for almost thirty years. One
key difficulty is that knots with distortion<100 can be extremely complex: there are
infinitely many isotopy classes, and they can have arbitrarily large values of many
(all?) standard knot invariants. Pardon estimated the distortion of torus knots: he
proved that if 2≤ p < q , then any Tp,q torus knot has distortion � p. In particular,
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there are torus knots that require arbitrarily large distortion. Pardon’s key idea was
to connect estimates for distortion with estimates for waists, and he combined this
with his estimate for the waist of Tp,q .

Returning to the theme of waists, we next consider a closed 3-manifold M . We
say that the waist ofM is the smallestW so that we can find a mapM→R3 where
each fiber is a surface of total genus at most W . (The total genus of a disconnected
surface is the sum of the genus of each component.) Gromov explored the waists
of 3-manifolds in [100]. The most interesting 3-manifolds considered are arithmetic
hyperbolic 3-manifolds. These 3-manifolds are defined in an algebraic way, and
the definition is simple and natural from the point of view of algebra. From the
point of view of geometry and topology, they are interesting and complex. Gromov
showed that an arithmetic hyperbolic 3-manifold triangulated with N simplices has
waist ∼N . Any 3-manifold triangulated with N simplices has waist �N , and so the
arithmetic hyperbolic 3-manifolds are in some sense as complicated as possible.

From this starting point, Gromov showed that arithmetic hyperbolic 3-manifolds
are topologically complicated in many other ways. The most interesting result has
to do with the “Morse theory” of maps from M to R2. The standard Morse theory
connects the topology of a manifold M with the critical points of a smooth generic
mapM→R. For example, ifM is topologically complicated, then the Morse theory
proves that any smooth generic function must have many critical points. It is natural
and interesting to try to replace the target R with something more general, but it
turns out to be very difficult to formulate an interesting analogue of Morse theory
with a higher-dimensional target. If we take a generic smooth map M→ R2, then
the set of critical points inM will not be discrete—it will typically be 1-dimensional.
In nice cases, it will be a 1-dimensional manifold—a union of circles. Next we may
ask how the topology of M is connected with the set of critical points of a generic
smooth mapM→R2. IfM is a topologically complicated 3-manifold, does it imply
that the set of critical points must have many circles? Surprisingly, the answer is no.
In [45], Eliashberg proved that any closed orientable 3-manifold admits a generic
smooth map to R2 where the set of critical points consists of 4 small (unknotted)
circles! (Eliashberg’s construction is a special case of his “h-principle for folded
maps”. It is a part of the theory of h-principles, which Gromov played a big role in
developing. This aspect of Gromov’s work is discussed in Eliashberg’s essay in this
volume.)

At this point, it may look as though there are no analogues of the Morse inequal-
ities for maps from M3 to R2. But Gromov observed that interesting inequalities
appear when we switch our attention from the set of critical points (inM) to the set
of critical values (in R2). For nice maps M3 → R2, the set of critical values will
be an immersed curve. And ifM is complicated topologically, then Gromov proved
that this curve must have a large number of self-intersections. In particular, Gromov
proved that if M is an arithmetic hyperbolic 3-manifold triangulated with N sim-
plices, then the number of self-intersections of the curve of critical values must be
�N2. Any 3-manifold triangulated with N simplices admits a map to R2 where the
curve of critical values has �N2 self-intersections, and so the arithmetic hyperbolic
3-manifolds are again as complicated as possible. One key step in the proof is to see
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how this Morse inequality problem is connected with the waist of a 3-manifold, and
another key step is to estimate the waists of arithmetic hyperbolic 3-manifolds.

The point that I would like to make here is that the waist of a knot or a 3-manifold
is a useful definition. The problem on the distortion of knots was pretty old. And the
problem of finding some type of Morse inequalities for maps to R2 is even older,
although it did not have a precise formulation. The two theorems we talked about
required several new ideas, but the idea of waists played a key role in both.

So far, we have only talked about waists for maps from a 3-manifold to R. This
corresponds to the “easy” case of the waist inequality: the case of maps to R. For
maps to Rq with q ≥ 2, much less is known, and there are many interesting open
problems described in [100] and [83]. For example, if we consider a map from a
7-dimensional arithmetic hyperbolic manifold to R2, does one of the fibers need to
be topologically complicated? This looks difficult. In fact, the situation is unclear
even for high-dimensional tori. If we consider a continuous map from the n-torus
T n to Rq , what can we say about the complexity of the fibers? It is straightforward
to construct maps where the most complicated fiber consists of two (n− q)-tori. In
this case, the sum of the Betti numbers of each fiber is at most 2n−q+1. Does every
continuous map T n→ Rq have a fiber with the sum of the Betti numbers at least
2n−q+1? This is unknown. For q = 1, Gromov proved a nearly sharp lower bound
on the topological complexity of fibers in [83]. For q ≥ 2, the best lower bound
[100] is still far from the upper bound of 2n−q+1.

The waist inequality gives an interesting perspective on topological complexity,
inspired by geometry. Let us compare a large arithmetic hyperbolic 3-manifold with
the connected sum of many 3-dimensional tori. In some ways, they are both topo-
logically complicated: both have large homology groups, both have fundamental
groups that require many generators, and both require many simplices to triangu-
late. But the arithmetic hyperbolic 3-manifold is far more difficult to understand or
to imagine. In some fundamental way, the arithmetic hyperbolic 3-manifold is much
more complex. The waist gives one perspective for describing this complexity.

7.5 A Quick History of the Waist Inequality, Part 2

The waist inequality has taken a long time to get recognition as something impor-
tant. I want to try here to address the history of people writing about the waist
inequality. Actually I know of very few examples of people writing about the waist
inequality, and I will mention all the ones that I know. It is hard to be sure if I missed
something—if I did, I would definitely like to hear about it.

Who first posed the question of the waist inequality? I have no idea. Plausibly it
could be a hundred years old. But as far as I personally know, it might not have been
posed until the 70’s or even the 80s?

Almgren’s paper on varifolds [3] from the early 60’s contains the tools for the
minimax proof of the waist inequality. But Almgren did not state the waist inequal-
ity in that paper. He had a different goal: he proved that every closed Riemannian
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manifold contains a minimal surface of every dimension. I suspect that the waist
inequality was known in the geometric measure theory community in the 60’s and
70’s as a folk theorem, but I do not know of any place that it was published. The
most well-known source on minimax techniques in minimal surface theory is Pitts’s
book [160], which also does not mention the waist inequality. Even today, I do not
know of any published source that states the waist inequality and then explains in
detail how it follows from Almgren’s minimax methods.

The first place that I know where something like the waist inequality appears
in writing is Gromov’s paper [94] (on pages 106 and 133–135). Gromov describes
Almgren’s work, discusses some possible connections between the waist inequality
and systolic geometry, and gives his short proof of the waist inequality with a non-
sharp constant.

I would be very interested to know what people thought about the waist inequality
in the 60’s, 70’s, 80’s, 90’s. Since I know so little about what other people were
thinking, I thought I might mention my first experience with the waist inequality.
I first learned about the waist inequality reading Gromov’s book Metric Structures
when I was a graduate student. (The waist inequality is described in a paragraph in
Section 2.12 1

2 .) When I first read about it, it did not make much impression on me.
It did not seem surprising, and I thought incorrectly that it was the sort of thing that
had been known for a long time. But then I needed to use it in my thesis in many
places, and over time, I gradually developed a great respect for it.

In 2003, Gromov wrote an entire paper about the waist inequality [81]. I believe
that this was the first time anyone wrote a paper about the waist inequality. From
then until the present, it has played an important role in much of his work. Dur-
ing that time, Gromov popularized the waist inequality as something important and
worth knowing.

7.6 Quantitative Topology

All of the proofs of the waist inequality use some topology. They all use degree
theory, and one uses Borsuk–Ulam and characteristic classes. The waist inequality
is closely connected to topology, more so than its cousin the isoperimetric inequal-
ity. One reason is that the waist inequality implies the topological invariance of
dimension. To see this, suppose that we had a homeomorphism (or just a contin-
uous injective map) Φ : Rq+1 → Rq . Let L : Sn→ Rq+1 be a linear map, so that
the fibers of L are (n− q − 1)-dimensional spheres. Now consider the composition
F : Φ ◦ L : Sn→ Rq . The composition F is continuous, and so the waist inequal-
ity should apply. Since Φ is injective, each fiber of F would be an (n − q − 1)-
dimensional sphere. These fibers would be one dimension lower than they “should”
be! In particular, each fiber would have (n−q)-volume equal to zero. So we see that
the waist inequality (even with a non-sharp constant) implies topological invariance
of dimension.



A Few Snapshots from the Work of Mikhail Gromov 189

One useful way of thinking about the waist inequality is as a quantitative version
of the topological invariance of dimension. Now there is already an important quan-
titative version of the topological invariance of dimension, going back to the very
beginning of the subject.

Lebesgue covering lemma If Ui are open sets covering the n-cube [0,1]n, and if
each point of the cube lies in ≤n of the sets Ui , then one of the Ui has diameter ≥1.

The Lebesgue covering lemma has the following corollary, which looks analo-
gous to the waist inequality.

Corollary If n > q , and F : [0,1]n→ Rq is a continuous map, then one of the
fibers of F has diameter ≥1.

This corollary should be compared to the waist inequality for the unit cube. As
we mentioned above, the sharp constant in the waist inequality for the unit cube is
unknown, but the waist inequality for the sphere implies the following non-sharp
result:

Theorem 23 (Waist inequality for the unit cube) If n > q , and F : [0,1]n→ Rq is
a continuous map, then one of the fibers of F has (n − q)-volume ≥c(q,n) > 0.
(Conjecturally, we should be able to take c(q,n)= 1 for all q,n.)

Comparing the last two results, we see that the waist inequality is like the
Lebesgue covering lemma with diameter replaced by (n − q)-volume. I wonder
if people working in topological dimension theory asked about the waist inequality,
but I do not know of any evidence that they did. It seems to me that the waist in-
equality plays a natural role in topological (or geometrical) dimension theory. I like
to view this story as an attempt to move the understanding of dimension from lin-
ear algebra into topology and geometry. Here are some highlights of the story in
chronological order—each grouped around one fundamental fact from linear alge-
bra.

Linear Algebra Theorem 1 If n > q , there is no surjective linear map from Rq

to Rn.

The topological analogue of this theorem is false! In the 1870’s, Peano con-
structed a surjective continuous map from Rq to Rn. This important example
showed that people’s intuition can be wrong and emphasized the need to be careful
in topology. After Peano’s example, it might have seemed like a bad idea to keep try-
ing to generalize ideas from linear algebra into topology and geometry. Remarkably,
some very good generalizations followed.

Linear Algebra Theorem 2 If n > q , there is no injective linear map from Rn

to Rq .
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This time, the topological analogue of the theorem is true! In 1909, Brouwer
proved that there is no injective continuous map from Rn to Rq . Brouwer’s proof
was based on his discovery of the degree of a map. Lebesgue proposed his covering
lemma almost immediately, and the lemma was proven by Brouwer a few years
later. The covering lemma implies a quantitative geometric version of the theorem:
If n > q , and F : [0,1]n→Rq is a continuous map, then one of the fibers of F has
diameter ≥1.

Linear Algebra Theorem 3 If n > q , then any linear map from Rn to Rq has
kernel of dimension at least n− q .

This theorem is a stronger version of Linear Algebra Theorem 2. In particular, if
n is much bigger than q , then the fibers of a linear map Rn→Rq must be very large.
The Lebesgue covering lemma and its corollary do not provide a good geometric
analogue for this stronger theorem. They say that a non-linear map F : [0,1]n→Rq

must have a fiber with a large diameter, but this fiber may look more like a hair than
like an (n − q)-dimensional plane. The waist inequality says that any map from
[0,1]n to Rq has a fiber which is large in an (n− q)-dimensional sense. The waist
inequality is a good geometric analogue of this fundamental theorem of linear alge-
bra. (But one may ask for a fiber which is large in a different way besides volume,
and it is not clear to me what is the qualitatively strongest thing we can say about
one of the fibers. . . )

The geometric results that we have mentioned here are examples of quantita-
tive topology. They are quantitive geometric versions of qualitative theorems from
topology. They are geometric estimates with close ties to topology, estimates whose
proofs are powered by topology. This is a young area pioneered by Gromov. (See
Nabutovsky’s essay in this chapter for other material related to quantitative topol-
ogy.) So far, there are only a handful of general methods in the area. Some of the
fundamental tools go back to Gromov’s short proof of the waist inequality in the
early 80’s. In the next section, we try to give a flavor of this area via a detailed
sketch of this proof.

7.7 Gromov’s Short Proof of the Waist Inequality

In the early 80’s, Gromov gave a short proof of the waist inequality with a non-sharp
constant. We describe the proof here, slightly adapted to the present context. I think
it is a good idea to try to include a real proof in a survey like this. This theorem is
not nearly as deep the non-squeezing theorem or the groups of polynomial growth
theorem, but it is one of my favorites of Gromov’s short proofs. I think it should be
accessible to many people.

This proof has had a significant influence, and I think it will continue to be in-
fluential in the future. The proof combines topological arguments and quantitative
geometric estimates. This can sometimes feel (to me) like trying to mix water and
oil, and this proof gives a great example of how to get them to work together.
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Another reason that the proof is influential is that it is very robust. I have used it
and adapted it in several of my papers on quantitative topology ([106, 108]). Gromov
adapted it to the combinatorial setting of the point selection theorem in [83]. We will
describe that adaptation in the next section.

For any X ⊂ Sn, let Covr (X) denote the minimal number of balls of radius r
which are needed to cover X. We give here an estimate for the covering numbers of
fibers, analogous to the waist inequality.

Theorem 24 (Essentially contained in [94], page 134) For each n > q , there exists
a constant βn,q > 0 so that the following holds. Suppose F : Sn→ Rq is a contin-
uous map. For each r > 0, there is some y ∈ Rq so that the fiber F−1(y)⊂ Sn has
Covr (F−1(y))≥ βn,qr−(n−q).

The theorem says that each continuous map Sn→ Rq has a fiber with covering
size comparable to an (n− q)-dimensional equator. At the very end we explain how
to estimate the volumes of fibers by similar methods.

The first main ingredient of the proof is the following fundamental theorem of
topology.

Ingredient 1 (Brouwer) The identity map Sn→ Sn is not homotopic to a constant
map.

The second main ingredient of the proof is an isoperimetric-type inequality which
is essentially due to Federer and Fleming.

Ingredient 2 Suppose that X ⊂ Sn is a proper subset of Sn. Then X is contained
in a contractible set Y ⊂ Sn with Covr (Y )≤ Cnr−1 Covr (X).

We sketch the proof of this isoperimetric inequality. The set Y ⊃ X will be
a cone. Recall that the cone CpX is defined to be the union of all the minimal
geodesics which start at p and end at a point of X. If X contains the antipode to p,
then CpX is the entire sphere Sn; otherwise, CpX is a contractible proper subset
of Sn. We have to choose p so that we can control Covr (CpX). Federer and Flem-
ing had the remarkable idea to choose p randomly and estimate the average value
of Covr (CpX).

Let us see how to estimate the average value of Covr (CpX), averaged over all
p ∈ Sn. Let B denote an r-ball centered at a point x. If B lies in the hemisphere cen-
tered at p, then CpB may easily be covered by �r−1 balls of radius r . However, if B
lies near to the antipode of p, then CpB may be much larger. Let us write p̄ for the
antipode of p. A short calculation shows that Covr (CpB) � r−1 dist(x, p̄)−(n−1).
The exponent −(n − 1) is very important. The key point is that the function
dist(x, p̄)−(n−1) is integrable in p! Therefore, if we move p randomly on Sn, then
the average value of Covr (CpB) is �r−1. The same holds true for each r-ball used
to cover X, and we see that the average of Covr CpX is �r−1 Covr X.
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I think this averaging trick of Federer and Fleming is a wonderful idea. For any
particular choice of p, it is hard to calculate what is going on. Naive choices for p,
such as the point at the greatest distance from X, do not work. But if we average
over p, then everything becomes transparent.

Notice that one of main ingredients is a fundamental result of topology and the
other is an isoperimetric-type inequality, a fundamental quantitative estimate from
geometry. Now we are going to sketch how these two ingredients work together
in Gromov’s proof of the waist inequality. The proof is by contradiction. Suppose
that we have a map F : Sn→ Rq and that, for some r > 0, every fiber of F can be
covered by βr−(n−q) balls of radius r . We get to choose the constant β = βn,q > 0
as small as we like. Using the structure from F , we will construct a homotopy from
the identity map to a constant map. This homotopy contradicts ingredient 1, proving
our theorem.

We are going to construct a homotopy from the identity to a constant map: we
will construct a map H : Sn × [0,1] → Sn, which is the identity at time 0 and
constant at time 1. We just defined the map H on Sn × {0} ∪ Sn × {1}, and now
we have to extend H to the rest of Sn × [0,1]. We will use the map F to help
us construct this homotopy. The map F allows us to organize the sphere Sn into
small pieces which overlap nicely. We choose a fine triangulation of Rq , and we
consider F−1(Δ) for different simplices Δ in the triangulation. Now we construct
the homotopy in small steps:

Step 0. Define H on F−1(v)× [0,1] for each vertex v of the fine triangulation.
Step 1. Define H on F−1(Δ1)× [0,1] for each 1-simplex of our triangulation.

. . .
Step q . Define H on F−1(Δq)× [0,1] for each q-simplex of our triangulation.

When we get to step j , we have already defined H on the boundary of
F−1(Δj )× [0,1] for each j-simplex Δj in our triangulation. Let us take a minute
to think about the boundary of F−1(Δj )× [0,1]. It has two parts:

• The top and bottom: F−1(Δ)× {0} and F−1(Δ)× {1}.
• The sides: F−1(f j−1)× [0,1] where f j−1 is a hyperface of Δj .

We defined H on the top and bottom at the very outset, and we defined H on
the sides at step j − 1. So in step j , we have to extend H from the boundary of
F−1(Δj )× [0,1] to all of F−1(Δj )× [0,1].

How do we know there is any extension at all? If the map H from the boundary
of F−1(Δ) × [0,1] does not cover all of Sn, then the map from the boundary is
contractible and we can use this to build an extension. So the key point is that the
image of the boundary does not cover all of Sn. In order to control this, we try to
make the image of H as small as possible at each step, and we prove estimates
about the size of the image of H . We will construct H so that it obeys the following
estimates:

1. The image of the boundary of F−1(Δj )× [0,1] has Covr -size �βr−n+q−j .
2. The image of F−1(Δj )× [0,1] has Covr -size �βr−n+q−j−1.
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The top and bottom of ∂(F−1(Δj )× [0,1]) have small images because of our
hypotheses. Because H is the identity at time 0, the image of the top is exactly
F−1(Δj ) ⊂ Sn. Since our triangulation is fine, this lies in a small neighborhood
of F−1(y) for y the center of Δj , and so the image of the top has covering size
�βr−n+q . Because H is constant at time 1, the image of the bottom is just a point!
This establishes estimate 1 for j = 0. Also, the sides at step j are controlled by
estimate 2 at step j − 1. Now we can do a proof by induction, and we just have to
check the following claim:

Suppose we have defined H on the boundary of F−1(Δj ) × [0,1], and the
image of the boundary has covering size �βr−n+q−j . Then we can extend H to
F−1(Δj )× [0,1] so that its image has covering size �βr−n+q−j−1.

This claim follows directly from the isoperimetric inequality. We define X to be
the image of the boundary. By the isoperimetric inequality, X is contained in a con-
tractible Y with Covr (Y ) � r−1 Covr (X) � βr−n+q−j−1. Since Y is contractible,
we can extend H to a map from F−1(Δj )× [0,1] into Y .

When we use the isoperimetric inequality, we have to know that X is a proper
subset of Sn. By choosing β small enough, we can arrange that Covr (X) �
βr−n+q−j is always strictly smaller than Covr (Sn)∼ r−n. This criterion determines
the constant β .

(Technical remarks: The theorem implies that one of the fibers is fairly large
in terms of covering by balls. If the fibers are decently regular, then we can let
r → 0, and we see that one of the fibers has (n − q)-volume at least cn,q > 0.
More generally, with a small amount of extra record-keeping, we can deal with
coverings by balls of varying radii and estimate the Hausdorff content. In this way,
it follows that any continuous map Sn→ Rq has a fiber with (n− q)-dimensional
Hausdorff measure at least c(n, q) > 0. For a general continuous map, one still
does not know the sharp waist inequality for the Hausdorff measure of the fibers,
but Gromov proved in [81] that the sharp waist inequality holds for the Minkowski
volume of a fiber.)

7.8 Gromov’s Proof of Point Selection

The great thing about the short proof of the waist inequality is how flexible it is. As
an example, we explain here how to adapt it to the combinatorial setting of the point
selection theorem. Gromov’s generalization of the point selection theorem goes as
follows:

Theorem 25 ([83]) For any continuous map F :ΔN →Rq , there is a point y ∈Rq

so that the fiber F−1(y) intersects at least a fraction c(q) of all the q-faces of ΔN .
(The constant c(q) does not depend on N—it is approximately 1/q!.)

We will focus attention on the boundary of ΔN , which is homeomorphic to the
sphere SN−1. Basically, we are just going to adapt the proof of the waist inequality
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from a round sphere SN−1 to ∂ΔN . The first main ingredient of the proof is exactly
the same as above.

Ingredient 1 (Brouwer) The identity map ∂ΔN → ∂ΔN is not homotopic to a con-
stant map.

We follow the same outline of proof. Suppose that we have a map F : ∂ΔN →Rq

and every fiber of F intersects only a small fraction of the q-faces of ΔN . We will
construct a homotopy H : ∂ΔN × [0,1]→ ∂ΔN , which is the identity at time 0 and
constant at time 1. We choose a fine triangulation of Rq , and then we construct the
homotopy H in small steps:

Step 0. Define H on F−1(v)× [0,1] for each vertex v of the fine triangulation.
Step 1. Define H on F−1(e)× [0,1] for each edge e of our triangulation.

. . .
Step q . Define H on F−1(f q)× [0,1] for each q-face f q of our triangulation.

As before, the boundary of F−1(f j )× [0,1] has two parts:

• The top and bottom: F−1(f j )× {0} and F−1(f j )× {1}.
• The sides: F−1(f j−1)× [0,1] where f j−1 is a hyperface of f j . There are j + 1

sides.

We defined H on the top and bottom at the very outset, and we defined H on
the sides at step j − 1. So in step j , we have to extend H from the boundary of
F−1(f j )×[0,1] to all of F−1(f j )×[0,1]. As long as the map H from the bound-
ary of F−1(f )× [0,1] does not cover all of ∂ΔN , then the map from the boundary
is contractible and we can extend it to F−1(f ) × [0,1]. The key point is that the
image of the boundary does not cover all of ∂ΔN . In order to control this, we need
to estimate the size of the image at every step.

At this moment, we need to adapt our idea of size to the situation. We do not
know anything about the volumes of the fibers of F . Instead, we know that each
fiber of F intersects only a small fraction of the q-simplices of F . We make this
the basis of our notion of size. After fine-tuning a little bit, Gromov settled on the
following definition.

For a subset X ⊂ ∂ΔN , we let ‖X‖j denote the probability that X intersects the
face spanned by j + 1 randomly chosen vertices v0, . . . , vj of ΔN . It may happen
that the vertices v0, . . . , vj are not distinct, in which case this face has dimension
<j . But in our situation, we will have N much larger than j , in which case ‖X‖j
is essentially the probability that X intersects a random j -face of the simplex. The
hypothesis of our proof by contradiction is that every fiber obeys ‖F−1(y)‖q ≤ β
for an appropriate β which is close to c(q).

With this language, we can describe our estimates about the map H . We will
construct H so that, for each j -face f j in our triangulation of Rq , the following
holds:

1. The image of the boundary of F−1(f j )× [0,1] has j -norm �β .
2. The image of F−1(f j )× [0,1] has (j − 1)-norm �β .
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The top and bottom of ∂(F−1(f j )× [0,1]) have small images because of our
hypotheses. Because H is the identity at time 0, the image of the top is exactly
F−1(f j )⊂ ∂ΔN . Since our triangulation is fine, this lies in a small neighborhood
of F−1(y) for y the center of f j , and so the image of the top has q-norm ≤β . It
also has j -norm ≤β for all j < q . Because H is constant at time 1, the image of the
bottom is just a point! This establishes estimate 1 for j = 0. Also, the sides at step j
are controlled by estimate 2 at step j − 1. Now we can do a proof by induction, and
we just have to check the following claim:

Suppose we have defined H on the boundary of F−1(f j )×[0,1], and the image
of the boundary has j -norm <1. Then we can extend H to F−1(f j )×[0,1] so that
its image has (j − 1)-norm obeying the following bound:

∥∥H
(
F−1(f j

)× [0,1])∥∥
j−1 ≤

∥∥H
(
∂
(
F−1(f j

)× [0,1]))∥∥
j
.

This claim follows from an isoperimetric inequality adapted to this situation.

Ingredient 2 Suppose that X ⊂ ∂ΔN with ‖X‖j < 1. Then X is contained in a
contractible set Y ⊂ ∂ΔN with ‖Y‖j−1 ≤ ‖X‖j .

The proof of this ingredient is closely modeled on the argument of Federer and
Fleming using random cones. The first task is to give an appropriate definition of a
cone. Let p denote the center of one of the (N − 1)-faces of ∂ΔN , and let p̄ denote
the opposite vertex. Given any point x ∈ ∂ΔN which is not p̄, then we can define
the ray from x to p as follows. If x lies in the same (N −1)-face as p, then draw the
ordinary Euclidean ray from x to p. If not, imagine the simplex sitting on a table,
with the face containing p face down. Draw the line from p̄ through x, and follow
it until it hits the base of the simplex at some point x′. The ray from x to p is given
by the line segment from x to x′ and then the line segment from x′ to p. If p̄ is not
in X, then the cone Cp(X) is the union of all the rays from x ∈X to p. As long as
p̄ /∈X, the cone Cp(X) is contractible. (If p̄ ∈X, then we can define CpX to be all
of ∂ΔN .)

Now we consider Y = Cp(X) where p is the center of a random (N − 1)-face.
We have to estimate the (j − 1)-norm of Y . Because of the geometry of our set up,
the face spanned by v0, . . . , vj−1 intersects Y if and only if the face spanned by
v0, . . . , vj−1,p intersects X. Therefore, we get the following simple equation:

Averagep
∥∥Cp(X)

∥∥
j−1 = ‖X‖j .

We choose p so that Y = Cp(X) enjoys ‖Y‖j−1 ≤ ‖X‖j < 1. Evidently, Y is not all
of ∂ΔN , and so we must have p̄ /∈ X and Y is contractible. This finishes the proof
of Ingredient 2.

Finally, we just need to choose β small enough so that we have ‖X‖j < 1 at
every step. Doing a careful book-keeping, it turns out that β ∼ c(q)∼ 1

q! works.
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8 Quantitative Topology and Quantitative Geometric Calculus
of Variations (by Alex Nabutovsky)

This is a survey of some of the original work of Misha Gromov on quantitative
topology and curvature-free geometric inequalities in Riemannian geometry as well
as some recent advances in these areas motivated by the problems that he posed
and involving approaches that he invented. In particular, we discuss upper bounds
for measures of various extremal objects on a Riemannian manifold in terms of the
volume or the diameter of the underlying manifold, and various problems about
fillings and slicings of Riemannian manifolds.

8.1 Quantitative Topology

A number of fundamental works of Misha Gromov are devoted to Quantitative
Topology. Its object of study is quantitative properties of maps between Rieman-
nian manifolds, (or, more generally, length spaces) that are known to exist for
non-constructive topological reasons sometimes involving homotopy-theoretic ar-
guments. In particular, one is interested in complexity of “optimal” homotopies,
extensions, liftings, etc. (cf. [92, 99, 103]). There are many diverse ways to mea-
sure the complexity of a map f : X −→ Y . One of the most natural measures
of complexity of a Lipschitz map is its Lipschitz constant or dilatation dilf =
supx1,x2∈X

distY (f (x1),f (x2))
distX(x1,x2)

. For example, if X is a circle of length 1, and we
reparametrize f proportionally to the arclength, then the dilatation of f coincides
with the length of the closed curve f (X) in Y . More generally, dilatation measures
how much lengths of curves in X can increase under f . Gromov notices that one
can also define the complexity as k-dilation dilk that measures the maximal increase
of the k-area of k-dimensional subsets of X under f . (Here k is any positive integer
number that does not exceed dimX.) If X and Y are Riemannian manifolds, and f
is C1, then dilk is the C0-norm of the kth exterior power of the derivative df . Of
course, 1-dilation coincides with the dilatation. One can also consider Lp-norms of
the kth exterior power of Λkdf for p <∞ (cf. [97]). If f is an embedding, then
Gromov suggests that its distortion max{dilf,dilf−1|f (X)} provides yet another
natural measure of complexity.

Once an appropriate complexity functional had been chosen, one can ask, for
example, how many homotopy classes of the considered maps are representable
by maps with complexity ≤x, or what is the complexity of “optimal” homotopies
contracting a given contractible map of complexity ≤x.

8.1.1 Fundamental Group and Homotopies Contracting Null-Homotopic
Curves

Assume thatX is a circle of radius one, and we have replaced f by a homotopic map
parametrized proportionally to the arclength. The two basic questions are: (1) How
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long are the generators of π1(M
n)? and (2) Given a contractible closed curve γ of

length ≤l in a closed Riemannian manifold Y what is the minimal value of L such
that γ can be contracted via closed curves of length ≤L? Can one also estimate the
Lipschitz constant of an “optimal” contracting homotopy? The answer for the first
question is provided by the following theorem of Gromov ([103], Proposition 5.28):
For each closed Riemannian manifoldMn of diameter d , each p ∈Mn there exists a
finite presentation of π1(M

n), where all generators gi can be represented by loops of
length ≤2d based at p and all relations are of the form gigjg

−1
k = e. (Gromov also

proved that one can choose loops representing a system of generators of π1(M
n) so

that the lengths of these loops are strictly less than 2d , unless Mn is diffeomorphic
to a real projective space and has a very special metric.) This frequently quoted
theorem is not difficult to prove: Take a sufficiently fine triangulation ofMn, connect
the base point with the vertices vi of the triangulation by minimizing geodesics
gvi , and for every 1-simplex vivj of the triangulation consider the loop formed by
gvi , vivj , and gvj travelled in the opposite direction towards the base point. These
loops will be the generators of π1(M

n) , and each 2-simplex of the triangulation
will yield a relation. The generators are represented by loops of length ≤2d + ε,
where ε can be made arbitrarily small by choosing a sufficiently fine triangulation.
A compactness argument finishes the proof.

Recently, A. Petrunin noticed that this theorem has the following unexpected
implication: Consider a Riemannian manifold M of diameter 1 with a finite funda-
mental group of order k. It is obvious that the universal covering M̃ of M with the
pullback Riemannian metric has diameter ≤2k. It is not difficult to improve the up-
per bound to k ([141]), but Petrunin noticed that if π1(M

n) is a cyclic group of order
k −→∞, then the diameter of M̃ is bounded by O(logk). He asked if, in fact, the
diameter of M̃ is always bounded by a sublinear function of k, where O(logconst k)

seems a reasonable guess [158].
The second question (about lengths of closed curves in an “optimal” homo-

topy) is partially answered by a result by Gromov ([103], Proposition 2.26) that
deals with the simply-connected case. In particular, Gromov proved that for each
closed simply-connected manifold Mn there exists a constant c(Mn) such that
each closed curve f : S1 −→ Mn can be contracted to a point via curves of
length ≤c(Mn) length(f ). Moreover, this upper bound can be improved to (1 +
o(1)) length(f ), as length(f ) −→∞. Furthermore, for each n ≥ 2 this assertion
can be generalized to the situation, when S1 is replaced by any metric polyhedron
of dimension k ≤ n − 1, providing that Mn is assumed to be k-connected. In this
case Gromov proved that each mapping P −→Mn of dilatation x is contractible to
a constant map via maps of dilatation ≤(1+ o(1))x, as x −→∞.

In the case, when the fundamental group of Mn is infinite, the behaviour of the
maximal length of closed curves arizing in “optimal” homotopies contracting closed
curves of length x is determined by the Dehn function of π1(M

n). (The Dehn func-
tion measures the number of times that one needs to apply relations to demonstrate
that a word of length ≤N representing the trivial element, indeed, represents the
trivial element. It turns out that its growth does not depend on a particular choice of
a finite presentation of a group.)
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Returning to the simply connected case note that the result of Gromov that we
have just quoted is of asymptotic nature, as it does not provide any estimate for the
constant c(Mn) and, thus, cannot be used as is for specific closed curves γ . It had
been noticed in [140] that even if Mn is diffeomorphic to the n-sphere, there is no
computable upper bound on c(Mn) in terms of various Riemannian functionals of
Mn such as volume, diameter, various norms of the curvature tensor, injectivity ra-
dius, etc. The reason is that despite the simply-connectedness of Mn, the geometry
of Mn can “strongly resemble” the geometry of a smooth homology sphere such
that its fundamental group has an unsolvable word problem, and, therefore, non-
computably fast growing Dehn function. This result explains why most existing (and
expected) results in quantitative homotopy topology are either of asymptotic nature
or involve specific Riemannian metrics on considered manifolds. Two notable ex-
ceptions are the cases of low dimensions (n= 2, and possibly, n= 3), and the case,
when one a priori knows that all closed curves in Mn can be “easily” contracted.
This last case is relevant for study of periodic geodesics onMn and, more generally,
the geometry of loop spaces on Mn. It turns out that in this case one usually can at
least theoretically obtain the desired upper bounds even for maps of manifolds of
high dimensions (see [146] for some first results in this direction). Now we would
like to make a digression and to discuss a seemingly trivial issue, namely “optimal”
homotopies contracting the boundaries of Riemannian 2-discs.

8.1.1.A. How Difficult is it to Contract the Boundary of a Riemannian 2-Disc?

In the first version of [77] Gromov posed the following question: Given a Rieman-
nian 2-disc of diameter d with a boundary of length L, is it possible to contract the
boundary to a point through closed curves of length ≤ const(L+ d), where const
is an absolute constant, e.g., 1010? By the time his paper was ready for publication
S. Frankel and M. Katz found counterexamples showing that, in general, no such
bound is possible [64]. Then they asked if there exists an upper bound for length
of curves in an “optimal” contracting homotopy in terms of d,L and the area A of
the discs. Twenty years later a positive answer for proven in a paper by Y. Lioku-
movich, the author and R. Rotman [132]: One can bound the lengths of the curves

by L+ 200dmax{1, ln
√
A
d
}.

8.1.2 Quantitative Homotopy Theory for Higher Dimensions

Let us review the foundational results of the theory in the case when X = Sn. (Gro-
mov observes that his results and conjectures probably generalize for the general
case of simply-connected X, see [97].) Theorem 7.10 [103] asserts that if Y is a
simply-connected Riemannian manifold, then the number of different homotopy
classes of maps X −→ Y of dilatation ≤z grows at most as O(zc(Y )), where c(Y )
depend only of the rational homotopy type of Y ; the proof involves Chen–Sullivan
minimal models theory. The basic idea is that the norm of a rational homotopy class
represented by a given map f of a sphere can be represented as an integral of a
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certain differential form associated with f , and the norm of this form can be ma-
jorized in terms of the dilatation of f . Gromov asks if the number of homotopy
classes of maps Sn −→ Y of dilatation ≤z is always asymptotic to zr for some r
providing that π1(Y ) is finite. He also asks what is the behaviour of the minimal
possible dilatation of a homotopy contracting a contractible map f of dilatation ≤z
between two simply-connected Riemannian manifolds X,Y . In particular, Gromov
asks if the minimal possible dilatation of a contracting homotopy always bounded
by const(X,Y )zα for an appropriate α depending on a rational homotopy type of
X and Y . A well-known (and open) particular case of this problem involves con-
tractible maps f : SN −→ Sn between two round spheres of radius one. Gromov
notes that one can prove a straightforward quantitative version of Serre’s theorem
asserting the finiteness of homotopy groups of spheres πN(Sn) forN > 2n−1 yield-
ing an upper bound of the form exp(exp(. . . (z) . . .)), where the height of the tower
of exponentials is determined by N and asks if the optimal upper bound is, in fact,
polynomial (or even linear) in z. This question is highly relevant for upper bounds
in various filling problems via cobordism theory (see Chap. 5 of [78]). More specif-
ically, let Mn be an orientable manifold triangulated with N n-simplices so that
not more than c(n) n-simplices are adjacent to any vertex. Assume thatMn bounds
an orientable manifold Wn+1. One would like to find Wn+1 triangulated with the
smallest possible number of simplices so that not more than C(n) simplices meet
at any vertex. Consider the smallest number of (n+ 1) simplices as a function of
N . What is its behaviour as N −→∞? Does it admit a polynomial bound? Cobor-
dism theory can be used to rewrite the property of being orientably null cobordant
as vanishing of appropriate elements in certain homotopy groups, and then to obtain
an upper bound that behaves as a tower of exponentials of N ([78], Chap. 5).

Gromov has also similar results about embeddings. In [92] he used Haefliger’s
reduction of embedding theory V −→ W to homotopy theory (for a simply con-
nected W ) in metastable range (dimW > 3

2 dimV + 2) to show that the number of
smooth isotopy classes of such embeddings of distortion ≤x is bounded by a poly-
nomial of x. He also noticed that the existence of infinitely many (smooth) Haefliger
knots S4k−1 ⊂ S6k implies that this dimension restriction is necessary. Yet in a re-
cent paper [54] S. Ferry and S. Weinberger observe that for each x the number of
topological isotopy classes of embeddings V −→W with distortion ≤x is finite as
long as dimW − dimV �= 2. They pose an interesting problem of estimating this
number of topological isotopy classes as a function of x. In particular, they ask
whether or not this number can be bounded by a polynomial function (as in the
results by Gromov described at the beginning of this section).

We also would like to mention a recent work by M. Krcal, J. Matousek, F. Serg-
eraert on fast computations of homotopy groups and, more generally, Postinkov
towers of simply connected simplicial complexes ([123], see also [30]). They hope
to prove that homotopy groups of simply-connected finite simplicial complexes are
computable in a polynomial time. The flavour of their work is different from Gro-
mov’s point of view. To illustrate the difference consider the problem of computing
π2(X) for a simply-connected finite simplicial complex X. Hurewicz theorem im-
plies that π2(X) is isomorphic to H2(X), and the problem of calculation of H2(X)
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is essentially a problem of linear algebra that can be solved by means of a very fast
algorithm. Yet, if π2(X) �= 0, then complexity of the simplest non-contractible 2-
sphere in X does not admit any computable upper bound in terms of the number of
simplices of X ([146], Theorem 0.5). Informally speaking, the reason why this is so
is that, in general, we do not have any “evidence” of simply-connectedness of X.

8.1.3 k-Dilations

Recall, that k-dilation of a map f between two Riemannian manifolds measures
the maximal amount of increase of k-areas under f , and that dilatation can be also
regarded as 1-dilation. What happens if k > 1? We refer the reader to [105] for
the review of the old results as well as new results about relationships between
homotopy properties of maps and their k-dilation. The foundational result relating
homotopy properties of maps and their k-dilation asserts that for even n the absolute
value of the Hopf invariant of a map f : S2n−1 −→ Sn between round spheres of
radius one does not exceed c(n)dil2n(f ), where diln(f ) denotes the n-dilation of f .
A stronger form of this result of Gromov can be found in [97] on p. 222. Further-
more, Gromov proved that any non-contractible map Sm −→ S2 has a 2-dilation
>c(m) > 0 (see p. 230 of [97] for a stronger result). Tsui and Wang [186] proved
that one can take here c(m) = 1. Most recently, L. Guth [105] proved that non-
contractible maps Sm −→ Sm−1 can have arbitrarily small k-dilations if and only if
k > m+1

2 . In particular, there exist non-contractible maps S4 −→ S3 with arbitrarily
small 3-dilation. In the same paper Guth proved that in some homotopy groups of
spheres and for some values of k there exist non-trivial elements representable by
maps of arbitrarily small k-dilation , as well as some other elements that are not.
(This happens, for example, for π8(S

5)= Z24, and k = 4.)
Numerous results about relationships between homotopy properties of maps f

and Lebesque norms of Df (or ΛkDf ) can be found in Chaps. 2 and 3 of [97].

8.1.4 Quantitative Morse Theory

In the previous section we discussed representations of individual maps f :
V −→W by homotopic maps of small dilatation. An alternative point of view sug-
gested by M. Gromov in [92] is to consider the dilatation (or any other interesting
measure of complexity) as a functional on a space of Lipschitz maps V −→W , and
to study different asymptotic aspects of topology of the inclusion maps of sublevel
sets dil−1([0, x]) in the whole space. Earlier, we were discussing the number N(x)
of connected components of the space of maps that have a non-zero intersection
with dil−1([0, x]), but one can also ask what is the maximal numberm=m(x) such
that every map of an arbitrary polyhedron K of dimension ≤m into the space of
Lipschitz maps V −→W is homotopic to a map into dil−1([0, x]). This last ques-
tion is already interesting enough, when we consider the spaces of based or free
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loops on a simply-connected Riemannian manifoldW , but [92] discusses this prob-
lem for a variety of different complexity functionals on different spaces of maps.
For spaces of either free or based loops on simply-connected closed Riemannian
manifolds Gromov proved that m(x) has a linear growth with x; see Chap. 7.A in
[103]. Then he applied this result to prove strong lower bounds for the number of
periodic geodesics on W of length ≤x. Gromov did not estimate the constant C in
the upper bound Cx for m(x), but his proof implies that it can be estimated in terms
of the maximal width w(W) of the optimal homotopy contracting a closed curve
of length ≤2d , where d denotes the diameter of W . (The width of a homotopy is
the maximal length of a trajectory of a point during the homotopy. For every closed
curve of length ≤2d one takes the infimum of widths over the set of homotopies
contracting the curve. Then one defines w(W) as the supremum of the resulting
quantity over the set of all closed curves of length ≤2d .) In [141] we prove that one
can explicitly majorize the constant C for the space of based loops in terms of S(W)
defined as the minimal x such that each closed curve of length ≤2d is contractible
via closed curves of length ≤x. This is stronger than Gromov’s result as one can
easily majorize S(W) in terms of w(W), but not vice versa. The meaning of our
result is that if the length functional on a space of based loops onW has a very deep
critical point of index >0 of finite depth (i.e., corresponding to a null-homologous
cycle), then it has a very deep local minimum. In the same paper we prove that if
the length functional on Mn has a very deep local minimum of finite depth, then it
must have many deep local minima. We do not know if these or similar results hold
for spaces of free loops or 1-cycles.

8.2 Quantitative Geometric Calculus of Variations

One of the central results of Gromov’s paper [94] asserts that the length l of the
shortest non-contractible periodic geodesic on an essential closed n-dimensional

Riemannian manifold Mn does not exceed c(n)vol(Mn)
1
n (Gromov’s systolic in-

equality). Here c(n) is an explicit constant that depends only on the dimension of
the manifold. A manifold Mn is called essential if the natural map f from Mn

to the classifying space of its fundamental group K(π1(M
n),1) has the follow-

ing property: The image of the fundamental homology class of Mn under the ho-
momorphism induced by f is a non-zero element of the nth homology group of
K(π1(M

n),1). (Here one uses homology groups with coefficients in Z, if Mn is
orientable, and in Z2, if Mn is non-orientable.) Note that the essentiality is a ho-
motopy property. All essential manifolds are nonsimply-connected; the examples
include real projective spaces, closed surfaces of genus >0, and, more generally,
closed aspherical manifolds. A result by I. Babenko [7] implies that no generaliza-
tions of Gromov’s upper bound for the length of a shortest non-contractible periodic
geodesic is possible if the underlying manifold is not essential. So, in this respect
the result of Gromov is optimal.

In the same paper, Gromov asks if a similar upper bound for the length l of a
shortest non-trivial periodic geodesic in terms of the volume holds for all closed
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(possibly simply-connected) Riemannian manifolds. (The periodic geodesic does
not need to be non-contractible anymore. Recall that the celebrated theorem proven
by A. Fet and L. Lyusternik asserts the existence of a non-trivial periodic geodesic
on every Riemannian manifold [55].) Gromov conjectured that such an estimate
should exist, if n = 2 (where the only remaining case was the case of Mn is dif-
feomorphic to S2). Indeed, soon afterwards C. Croke proved that the length of
a shortest non-trivial periodic geodesic on a Riemannian 2-sphere M does not
exceed 31

√
Area(M) [36]. This upper bound was later improved by Rotman to

4
√

2
√

Area(M) [164], which is still more than three times higher than the conjec-

tured by M. Gromov and E. Calabi optimal bound 12
1
4
√

Area(M) (that corresponds
to the limit case of 2-spheres glued out of two flat equilateral triangles). This ques-
tion of Gromov remains open for all non-essential manifolds of dimension ≥3. One
can extend it also to complete non-compact manifolds of finite volume, where one
does not even know if a non-trivial periodic geodesic always exist. (However, if
n = 2, the existence of a non-trivial periodic geodesic (and even an infinite set of
distinct periodic geodesics) was proven by V. Bangert [10] and G. Thorbergsson
[182]; Croke proved that the smallest length of a non-trivial periodic geodesic can
be majorized by a multiple of the square root of the area as in the compact case [36].)

One can also ask if the smallest length l of a non-trivial periodic geodesic can be
majorized by c(n)d , where d denotes the diameter of the Riemannian manifold, and
c(n) depends only on its dimension. It is well-known and easy to prove that if the
manifold is not simply-connected, then l ≤ 2d , so the question is interesting only for
simply-connected manifolds. The question remains completely open for all simply-
connected manifolds of dimension ≥3, but, again, Croke proved the desired upper
bound for n = 2 with c(n) = 9 ([Cr]). Later this upper bound was independently
improved to 4d by the author and Rotman [142] and S. Sabourau [168]. On the
other hand a natural conjecture that the length of a shortest periodic geodesic on a
Riemannian 2-sphere does not exceed 2d (so that the round spheres are optimal)
unexpectedly turned out to be false. This fact had been proven by F. Balacheff,
Croke and M. Katz in [8]. However, no one has any idea of what are the Riemannian
metrics of diameter one on S2, where the length of a shortest non-trivial periodic
geodesic is the maximal (or nearly maximal) possible.

One had better luck with establishing curvature-free upper bounds for the small-
est length of a non-trivial closed geodesic net. Closed geodesic nets in Rieman-
nian manifolds are homological “cousins” of periodic geodesics. They are the criti-
cal points of the length functional on the space of immersed finite (multi)graphs.
A closed geodesic net in a Riemannian manifold Mn is an immersed finite
(multi)graph such that each edge is immersed as a geodesic and with the following
additional property: For each vertex the sum of unit tangent vectors to all edges of
the graph adjacent to the considered vertex and directed from it is equal to zero. All
periodic geodesics are closed geodesic nets, but closed geodesic nets are still “rare”.
In particular, a geodesic loop is a closed geodesic net only if it is a periodic geodesic.
It is also extremely difficult to prove the existence of closed geodesic nets that are
not unions of periodic geodesics with [111] being the only known to me work in this
direction. Yet in [143] it was proven that the length of a shortest closed geodesic net
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on a closed Riemannian manifold Mn can be majorized by c(n)d , where d denote

the diameter of Mn and also by c(n)vol
1
n (Mn). Here c(n) is an explicit constant.

Later, Rotman [165, 167] found much better values for c(n) and demonstrated that
there always exists a closed geodesic net satisfying these estimates that looks like
a wedge of geodesic loops based at the same point. Misha Gromov once asked me
another interesting question about geodesic nets which is still open: Is it always
true that the union of all closed geodesic nets on a closed surface endowed with a
Riemannian metric is an everywhere dense subset of this surface?

Of course, one can ask whether or not there exist curvature-free upper bounds for
the smallest area (or volume) of a closed minimal surface in a closed Riemannian
manifold. Here the theory of systolic freedom developed by I. Babenko, M. Katz
and A. Suciu (see [103], Appendix D and references there) that is based on the first
examples of systolic freedom found by Gromov [98] implies that the topology of the
manifold does not seem to help. (This contrasts with the situation with the length
of a shortest periodic geodesic, where the essentiality of the manifold guarantees
the existence of the upper bound in terms of the volume.) In [144] we proved upper
bounds for volumes of embedded minimal hypersurfaces in manifolds of dimen-
sion between 3 and 7 as well as stationary k-varifolds of arbitrary dimensions and
codimensions (a quantitative version the existence results proven by F. Almgren and
J. Pitts; see [161]). Our upper bounds are valid only for manifolds with vanishing
homology groups in all dimensions up to k − 1 and involve the homological filling
functions for these dimensions in addition to either the diameter or the volume of
the underlying manifold. An obvious question is whether the triviality of homol-
ogy groups is really necessary here and whether or not one can get rid of the filling
functions in these upper estimates. In a conversation with the author Misha Gro-
mov observed that one probably cannot hope for the estimates in terms of only the
diameter without the filling functions, and one can look for the counterexamples
that are obtained as approximations of appropriate Carnot–Carathéodory metrics by
Riemannian metrics (see [97]). The work of D. Burago and S. Ivanov [24] seems
to provide another source of the potential counterexamples. The question about the
existence of the upper bounds in terms of the volume of the ambient manifold that
do not involve the filling function is widely open.

Finally, recall that Serre’s theorem asserts that any two points on a closed Rie-
mannian manifold can be connected by infinitely many geodesics. If these two
points coincide, then the resulting geodesics are geodesic loops. Sabourau proved
that for each Riemannian manifold Mn there exists a geodesic loop based at some

point of Mn of length ≤c(n)vol(Mn)
1
n [169]. The example of a long thin ellipsoid

of revolution shows that one cannot have such a bound for the smallest length of
a non-trivial geodesic loop based at each point of the manifold. Yet Rotman [166]
proved the existence of a non-trivial geodesic loop of length ≤2nd based at any
prescribed point of each closed n-dimensional Riemannian manifold of diameter d .
The same estimate holds for the length of the second shortest geodesic between any
pair of points on the manifold [145]. Further, for every closed Riemannian manifold
Mn , each pair of points p,q ∈Mn and each k there exist k distinct geodesics be-
tween p and q of length≤4nk2d [141]. Note that the proof of Serre’s theorem given
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by A. Schwartz [172] implies that the lengths of geodesics connecting a fixed pair
of points grow at most linearly with k. It is interesting question whether or not one
has a linear upper bound of the form c(n)kd for the length of the first k geodesics.
Recently, the author and Rotman proved that this is the case for n = 2, where the
only non-trivial case is whenM is diffeomorphic to the 2-sphere. (The proof in the
particular case, when the two points coincide, had been published as [147].) Another
interesting open question is whether or not one can eliminate the dependance on the
dimension n in these upper bounds.

8.3 Gromov’s Filling Technique

The upper bounds discussed in Sect. 8.2 are effective versions of topological exis-
tence theorems proven using the Morse theory. In all such proofs one constructs a
non-trivial homology class in a loop space or a space of cycles on considered man-
ifold. This cycle can be represented by a map of a sphere or a torus to the ambient
manifold. A “sweep-out” of this cycle by loops can yield the desired cycle in the
loop space. Thus, one is led to the following question: Given a cycle in Mn rep-
resenting a non-trivial homology class h in the loop space of Mn is it possible to
sweep it out by loops of length bounded in terms of the diameter or the volume of
the underlying manifold and the information about [h] ∈H∗(ΩMn)? One can also
pose this question for spaces of free loops as well as for spaces of cycles in Mn of
various dimensions. The answers for these questions are almost invariably negative
or (for some spaces of cycles) unknown. (The only known exceptions happen, when
n= 2. They are discussed in Sect. 4.) Therefore, this approach does not immediately
lead to the results mentioned in Sect. 2. However, one frequently uses different ver-
sions of the following technique invented by Gromov and used to prove the systolic
inequality (cf. [94], pp. 9–10): One embeds Mn in L∞(Mn) using the Kuratowski
embedding. Then one uses a famous theorem proven by Gromov asserting that one
can represent the embeddedMn as a boundary of a (n+1)-chainWn+1 in L∞(Mn)

so that the distance from every point ofWn+1 toMn does not exceed a(n)vol
1
n (Mn)

for some explicit constant a(n). (The minimum of maxx∈Wn+1 dist(x,Mn) over all
fillings Wn+1 of Mn in L∞(Mn) is called the filling radius on Mn and is de-
noted Fill Rad(Mn). The just mentioned Gromov’s theorem is usually written as

Fill Rad(Mn)≤ a(n)vol
1
n (Mn).) Afterwards one attempts to construct an extension

of the classifying map f :Mn −→ K , where K denotes K(π1(M
n),1), to Wn+1.

Note that the essentiality ofMn implies that such an extension cannot exist. Assum-
ing that Wn+1 is endowed with a very finite triangulation, one maps the vertices
of this triangulation to the closest points in Mn, and 1-simplices to minimizing

geodesics between the images of the endpoints (of length ≤2c(n)vol
1
n (Mn)). The

next step consists in contracting the already constructed maps of the boundaries of
2-simplices into Mn. These boundaries are represented by closed curves of length

≤6a(n)vol
1
n (Mn). Assume that all closed curves of length ≤a(n)vol

1
n (Mn) are
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contractible. Then this step of the extension becomes trivial. We are not going to
have any problems with a further extension of this map to simplices of Wn+1 of
higher dimension as all homotopy groups πl(K), l > 1 vanish. So, the desired ex-
tension exists, and the resulting contradiction refutes our assumption that all closed

curves of length ≤6a(n)vol(Mn)
1
n are contractible. Now one can take a short non-

contractible curve and shrink it to a non-contractible periodic geodesic.
This technique of Gromov can be modified or generalized in many ways. One

can summarize the main idea of this technique as gaining a control over geometry
of a non-contractible map by attempting an impossible extension. One can try to
extend different maps that are known to be non-extendable or try to fill nonnull-
homologous cycles by chains. Various versions of Gromov’s technique were used to
prove many results mentioned in Sect. 8.2. However, note that all modifications of
this technique work only if one is capable to contract fairly general maps of spheres
in an effective way, or at least has/assumes the existence of contracting homotopies
with some good properties.

We would like to finish this section by noting that the proofs of many results
mentioned in Sect. 8.2 work like that: One organizes the extension process (in some
version of the original Gromov non-existing extension argument) so that the desired
“nice” extension to discs/simplices can be blocked only if there exist a desired ex-
tremal object with “small” measure. Looking from a different perspective, one sep-
arates here between the case when the Riemannian manifoldMn has a “nice” shape,
(where the desired extensions are possible, and a desired minimal object exists as a
corollary of the original existence proof), and the case, when the Riemannian man-
ifold Mn is “rugged”, and this “ruggedness” somehow implies the existence of the
desired minimal objects.

8.4 Slicing Riemannian Manifolds

In [94], Appendix A, Gromov defines a number of slicing invariants of Riemannian
manifolds and proves several theorems about them (see also [75]). For example,
given a Riemannian manifoldM and a natural number k one can define the Urysohn
width (or diameter), widk(M), (also denoted diamk(M)), as the infimum of x such
that there exists a continuous map f into a k-dimensional polyhedron K such that
for each point p ∈K the diameter of the inverse image f−1(p) of p under f does
not exceed x. Recently L. Guth [104] proved a difficult theorem asserting that for
each closed n-dimensional manifold Mn its (n − 1)-width widn−1(M

n) does not

exceed c(n)vol(Mn)
1
n for an appropriate constant c(n). This result solves a well-

known problem of Gromov (posed in [94]) and is obtained using a refining of Guth’s
technique from [110]. Note that the Urysohn widths widi (Mn) decrease with i.
Earlier G. Perelman proved that one has a stronger inequality

∏n−1
i=0 widi (Mn) ≤

C(n)vol(Mn) as well as the opposite inequality
∏n−1
i=0 widi (Mn) ≥ c(n)vol(Mn)

for appropriate positive constants c(n) and C(n) in the case when Mn has non-
negative sectional curvature. This result of Perelman had been previously conjec-
tured by Gromov in [75].
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Gromov observed that Urysohn k-widths measure the (Gromov-Hausdorff) dis-
tance between Mn and the nearest k-dimensional metric polyhedron. One of his
most well-known open problems involves complete Riemannian manifolds of scalar
curvature ≥1 and asks whether or not any such manifold has Widn−2(M

n) ≤ c(n)
for some c(n), that is, whether or not each manifold of scalar curvature ≥1 is c(n)-
close to a (n− 2)-dimensional metric polyhedron ([94], p. 130, [75]).

A different kind of widths, Wk(Mn), is defined by slicing Mn into k-cycles (or,
relative k-cycles, if Mn is a Riemannian manifold with boundary), measuring the
supremum of k-volumes of the cycles, and passing to the infimum with respect to
all such slicings of Mn. In [106] Guth noticed that one cannot estimate Wn−1(M

n)

in terms of n and vol(Mn) alone. If n ≥ 3, this is impossible even if Mn is diffeo-
morphic to Sn. Moreover, in this case one even cannot majorize the minimal volume
of a (n− 1)-cycle cuttingMn into two domains of volume between 1

4 vol(Mn) and
3
4 vol(Mn) by c(n)vol(Mn)

n−1
n . The proof uses the results of Burago and Ivanov

from [24]. Yet in the same paper Guth proved that if U is a domain in Rn, then

Wk(U)≤ c(n)vol
k
n (Mn).

One of the most interesting problems in this direction was posed by Guth in

[109]. He asked whether or not W1(M
3) can be bounded by const vol

1
3 (M3), when

M3 is diffeomorphic to the 3-torus, and where const can be any constant. In partic-
ular, is there always a map from a Riemannian 3-torus of volume one to the plane
such that the inverse images of all points of the plane are (not necessarily connected)
curves of length less than 1010?

A problem of finding lower bounds forWk(Mn) is also interesting. In particular,
Gromov waist inequality implies the optimal lower bound vol(Sk) forWk(Sn)where
Sn and Sk are round spheres of radius 1 (see [81] and its generalizations in [108]).

When n= 2, one has many positive results about cutting and slicing of surfaces
and fewer unsolved problems. First, Balacheff and Sabourau proved that each closed
surface M of genus g can be sliced into (disjoint) 1-cycles (not necessarily con-
nected closed curves) of length ≤108√g + 1

√
Area(M) [9]. The dependance on g

is optimal here. Easy examples show that there are no similar upper bounds if one
wants all 1-cycles to be connected, even if M is diffeomorphic to S2. Liokumovich
used Riemannian metrics constructed by Frankel and Katz to prove that, there is
no constant c such that each Riemannian 2-sphere M can be sliced or even swept-
out by loops of length ≤c diam(M) [131]. Very recently he extended this result to
sweep-outs by 1-cycles. (The difference between slicing and sweeping-out is that
the intersections are allowed during a sweep-out. One can formally define a sweep-
out of a 2-sphere M by free loops as the family of images of parallels of a round
S2 under a map S2 −→M of non-zero degree.) On the other hand it had been re-
cently proven in [132] that each 2-sphere can be sliced into simple closed curves

of length ≤200dmax{1, ln
√
A
d
}, where A and d denote its area and diameter; this

upper bound is optimal up to a multiplicative constant.
The most well-known open problem about slicing of surfaces (by L. Guth and

P. Buser) asks whether one can slice a closed Riemannian surface of genus g and
area 1 into not necessarily connected closed curves so that the length of each con-
nected component of each curve has length ≤const, where const is an absolute con-
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stant that does not depend on g. (Of course, the quoted result of [9] implies the
existence of a slicing, where the total length of all connected components of each
curve does not exceed 108√g+ 1.)

8.5 Filling Riemannian Manifolds

In Sect. 8.1.2 we have briefly discussed the posed by Gromov problem of finding
the “sufficiently small” orientable manifolds bounded by a given orientably null-
cobordant manifold. Another class of filling problems of interest for Gromov in-
volves representing Riemannian manifolds Mn as boundaries of Riemannian man-
ifolds or even metric polyhedra Wn+1 so that the induced distance function on
the boundary of Wn+1 coincides with the original distance function on Mn. We
have already mentioned a deep theorem by Gromov asserting that one can find
Wn+1 such that the distance from any point of Wn+1 to Mn does not exceed

c(n)vol
1
n (Mn). Further, M. Katz [122] proved that one can choose W so that for

each point x ∈W dist(x,M) does not exceed 1
3d , where d denotes the diameter of

M (and the constant 1
3 is optimal here!) Note that we can isometrically embed Mn

into L∞(Mn) using the Kuratowski embedding, and observe that arbitrary fillings
of Mn inside L∞(Mn) have the desired property that the restriction of the distance
function of the filling to its boundary coincides with the distance function of Mn.
A well-known open problem also posed by Gromov [94] asks whether or not the
minimal area of a surface filling a circle of radius 1 in the considered sense is equal
to 2π . In other words, is the filling of a circle by the round hemisphere the most
“economical”, if we would like to ensure that no path between two points of the
boundary circle through a filling surface is shorter than a path along the boundary?
In this connection we would like to mention a recent result by Burago and Ivanov
[27] asserting that for each normed vector space H and any bounded domain in an
affine 2-plane insideH , this domain has the smallest 2-dimensional Hausdorff mea-
sure among all surfaces in H with the same boundary. This result solves a problem
that had been open for fifty years, and it is still not known if a similar result holds for
affine k-subspaces with k > 2. (See also an earlier paper [25] by the same authors.
In particular, Theorems 2 and 4 there illustrate why this and related questions are
much more complicated than what one might initially think.)

A related problem is when the distance function on the boundary Mn of a Rie-
mannian manifold Wn+1 determines the Riemannian metric on Wn+1. A Rieman-
nian manifold Wn+1 with boundary is called boundary rigid if each Riemannian
manifold Un+1 with the same boundary and the same distance function on the
boundary is isometric to Wn+1 via a boundary preserving isometry.

It is not difficult to construct examples of manifolds with boundary that are not
boundary rigid, as the distance function is, obviously, not sensitive to any changes
in the geometry in the domain of Wn+1 located at the distance >diam(∂Wn+1)

from the boundary. Yet is natural to conjecture that so called simple manifolds are
boundary rigid (Michel’s conjecture). A manifold with boundary is called simple if
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its boundary is strictly convex, all pairs of points on the boundary are connected by
unique geodesics, and these geodesics do not have conjugate points. Michel’s con-
jecture had been proven in dimension two by L. Pestov and G. Uhlmann [157], who
used analytical methods, but is widely open for higher dimensions. Recently, Burago
and Ivanov proved the boundary rigidity of Riemannian manifolds with boundary
that are C3-close to compact domains with smooth boundaries in either (flat) Eu-
clidean spaces or the hyperbolic space Hn [26, 28]. Their methods are geometric
and, in particular, use ideas from [94], but the proofs are quite involved.

9 Geometric Group Theory (by Mladen Bestvina)

Traditionally, combinatorial group theory studies finitely presented groups from the
point of view of the combinatorics of the presentation. In his work, Gromov intro-
duced a metric point of view in group theory.

We quote [80] for Gromov’s thoughts on this.

The idea of negative curvature was injected into group theory by Dehn and
grew into small cancellation theory. In the course of development, the geomet-
ric roots were forgotten and the role of curvature was reduced to a metaphor.
Algebraists do not trust geometry. It eventually turned out that the geometric
language of Dehn and Alexandrov accomplishes many needs of combinato-
rial group theory more efficiently than the combinatorial language. Summing
up, geometry furnishes a proper language, while combinatorial group theory
(especially random groups) provides a pool of objects for a meaningful usage
of this language.

Gromov’s papers are best enjoyed by opening up a random page and thinking
about the mathematics there. In this overview we will attempt to give the reader a
flavor of Gromov’s approach to group theory.

The basic concept in what follows is that of the word metric on a finitely gener-
ated group and the associated Cayley graph. Let G be a group and A a finite gen-
erating set. It will be convenient to assume that A is symmetric, i.e., that A−1 =A.
The word length |g| of g ∈ G is the smallest n such that g = a1a2 · · ·an for some
ai ∈A. The word metric on G is defined as d(g, g′)= |g−1g′|; it is invariant under
left translations. The associated Cayley graph X has vertex set G and two vertices
are joined by an edge if the distance between them is 1. Assigning length 1 to each
edge turns X into a geodesic metric space (the distance between two points equals
the length of a shortest path joining them; such paths are geodesics).

9.1 Groups of Polynomial Growth

A major theme in Gromov’s work is rescaling and passing to (Gromov–Hausdorff)
limit. These ideas play a major role in the stunning theorem that can be viewed as
the birth of modern geometric group theory.
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Theorem 26 [93] Let G be a finitely generated group of polynomial growth. Then
G contains a nilpotent subgroup of finite index.

The assumption on polynomial growth means that there is a polynomial P(x)
such that for every R ≥ 1 the number of vertices in the ball of radius R in the
Cayley graphX is bounded by P(R). Changing the finite generating set may require
replacing P by another polynomial. It was known earlier (a theorem of Wolf) that
finitely generated nilpotent groups have polynomial growth, and that finite index
subgroups have equivalent growth functions.

We will outline a proof below. The following are the main ingredients:

• (Milnor–Wolf) If Γ is finitely generated and solvable and has subexponential
growth, then Γ is virtually nilpotent.

• If Γ is finitely generated and has subexponential growth, and

1→K→ Γ → Z→ 1

is exact, then K is finitely generated. If in addition Γ has polynomial growth of
degree ≤d , then K has polynomial growth of degree ≤d − 1.

• Let Γ be finitely generated and have polynomial growth. Then there is a metric
space Y and a homomorphism � : Γ → Isom(Y ) to the isometry group of Y so
that:

(1) Y is homogeneous, i.e., Isom(Y ) acts transitively on Y .
(2) Y is connected, locally connected, complete, locally compact, finite dimen-

sional. The metric on Y is proper (closed balls are compact).
(3) If �(Γ ) is finite and Γ is not virtually Abelian, then Γ ′ = Ker(�) has, for

each neighborhood U of the identity in Isom(Y ), a representation ρ : Γ ′ →
Isom(Y ) so that ρ(Γ ′)∩U �= {id}.

• (Gleason–Montgomery–Zippin) The above Isom(Y ) is a Lie group with finitely
many components.

• (Tits alternative) A finitely generated subgroup of GLn(R) either contains a non-
abelian free group (and hence has exponential growth) or is virtually solvable
(and hence is either virtually nilpotent or has exponential growth).

• (Jordan’s theorem) For every n there is q so that every finite subgroup of GLn(R)
contains an Abelian subgroup of index ≤q .

Proof (Outline of proof of Gromov’s theorem) By the fifth bullet, there is nothing
more to be done if Γ is a linear group. In fact, by Milnor–Wolf, induction on degree,
and the second bullet, it suffices to construct an epimorphism Γ ′ → Z for a finite
index subgroup Γ ′ ⊂ Γ . If �(Γ ) is infinite, it is virtually nilpotent by the fifth bullet,
and it virtually maps onto Z by definition of nilpotent groups. Suppose �(Γ ) is finite.
Let L be the identity component of Isom(Y ). We now have:

Claim There is a subgroup Δ⊂ Γ of finite index that admits homomorphisms to L
with arbitrarily large images.
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To prove the claim, the key is that for all N there is a neighborhood U ⊂ L of
the identity so that no nontrivial element in U has order ≤N . Then apply (3) to get
homomorphisms Γ ′ → Isom(Y ) with arbitrarily large images. Some subgroupΔ of
index ≤ the number of components of Isom(Y ) maps to L infinitely often.

To finish the argument, ifL⊂GLn(R) is a linear group, Jordan’s theorem implies
that Δ has infinite abelianization and we are done. If L is not linear, replace it with
L/Z(L). �

9.2 Gromov–Hausdorff Limits

There are three ways of passing from the discrete group Zn to Euclidean space Rn.
An algebraist might tensor with R. A topologist would “connect the dots”, i.e., build
a Zn-invariant contractible complex by attaching cells of dimension >0. Finally, a
geometer, following Gromov, would rescale and pass to the limit. It is tempting
to think that this procedure can be discovered by thinking about the Bieberbach
theorem that any torsion free group that contains Zn as a subgroup of finite index
acts freely and cocompactly by isometries on Rn.

Suppose we start with Γ = Z2 and the usual metric on Γ . Now “stand twice as
far” from Γ , i.e., consider the same group but with metric divided by 2. Continue
“moving away” i.e., rescaling the metric. The result is a sequence of denser and
denser lattices in R2, and the limiting object is R2.

This is Gromov’s signature construction, going from discrete to continuous, and
we proceed to describe it in more detail.

Let X be a metric space. When A⊂X we denote

Nr(A)=
{
x ∈X | d(x,A) < r}

and when A,B ⊂X the Hausdorff distance is

dH (A,B)= inf
{
r > 0 |Nr(A)⊃ B,Nr(B)⊃A

}
.

IfX is a compact metric space, the space of nonempty closed subsets with Hausdorff
metric is a compact metric space.

Now let A,B be two compact metric spaces. The Gromov–Hausdorff distance
dGH (A,B) is defined to be the infimum of numbers R > 0 such that there are iso-
metric embeddings of A,B into some metric space X with dH (A,B) < R. It turns
out that dGH (A,B)= 0 implies that A and B are isometric. We say a sequence Ai
converges to A if dGH (Ai,A)→ 0.

As an example, consider the Hopf fibration h : S3 → S2. Choose a Riemannian
metric on S2 and on S3 so that at every point the derivative h∗ is an isometry when
restricted to the subspace orthogonal to the fiber. Then for every t > 0 define the
metric gt on S3 by scaling the fiber direction by t . As t→ 0 the sequence (S3, gt )

converges to S2. In a similar way, one can construct a sequence of metrics on the
Möbius band converging to a closed interval.
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It is not true that every sequence of compact metric spaces has a subsequence
that converges. For example, every convergent sequence has uniformly bounded
diameters. There is a more subtle obstruction to convergence. Recall that a metric
space is totally bounded if for every ε > 0 there is a finite cover by ε-balls. We say
that a sequence of metric spaces is uniformly totally bounded if for every ε > 0 there
is N =N(ε) such that every space in the sequence admits a cover by N ε-balls. For
example, any convergent sequence is uniformly totally bounded.

Theorem 27 (Gromov’s Compactness Criterion) A uniformly totally bounded se-
quence of compact metric spaces has a convergent subsequence.

There is a version of Gromov–Hausdorff convergence with basepoints. The dis-
tance dGH ((A,a), (B,b)) is the infimum of numbers R > 0 such that there are
isometric embeddings A,B ↪→X so that dH (A,B) < R and d(a, b) < R.

We have to deal with noncompact metric spaces, but with a preferred basepoint.
If Yi, Y are metric spaces in which closed balls are compact and yi ∈ Yi, y ∈ Y are
basepoints, define (Yi, yi)→ (Y, y) to mean that for every R > 0 the sequence of
balls B(yi,R) converges to B(y,R) (as compact metric spaces with basepoints).

For example, letting Yi be 1
i
Zn, i.e., Zn with the standard word metric scaled

by 1/i, we obtain a sequence that converges to Rn with �1-metric (with origin as
basepoints).

More interestingly, consider the (discrete) Heisenberg group H , the group of
upper triangular 3× 3 matrices with integer entries and 1’s on the diagonal. This is
a nilpotent group, a lattice in a nilpotent Lie group diffeomorphic to R3. Rescaling
a word metric as above produces a convergent sequence, and the limit is a metric
space Y homeomorphic to R3 but with the Carnot–Caratheodory metric, whose
Hausdorff dimension is 4. To understand this phenomenon better, it is useful to note
that the center of H , i.e., the group

Z =
⎛

⎝
1 0 ∗
0 1 0
0 0 1

⎞

⎠

is quadratically distorted, that is, the length (in H ) of the element that has N in the

upper right corner is∼√|N |. For example, the commutator of

(
1 k 0
0 1 0
0 0 1

)
and

(
1 0 0
0 1 k
0 0 1

)

is

(
1 0 k2

0 1 0
0 0 1

)
.

The quotient H/Z is isomorphic to Z2. It is then not surprising that the limiting
space Y fibers over R2 with fiber R equipped with the metric d(x, y) =√|x − y|
whose Hausdorff dimension is 2, causing Y to have Hausdorff dimension 4.

On the other hand, if X is the infinite 3-valent tree or hyperbolic plane it is not
hard to see that the sequence of rescalings 1

i
X does not have a convergent subse-

quence. This follows from volume considerations. In both examples, volume of a
ball of radius R is exponential in R, so the number of balls of radius R required to
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cover a ball of radius 2R is ∼ e2R

eR
= eR , and so the sequence of 2-balls in 1

i
X is not

uniformly totally bounded.
WhenG is a group of polynomial growth, Gromov shows that there is a sequence

of carefully chosen scales ri so that the sequence 1
ri
G converges to a metric space Y .

We will not go into the details of the third bullet.

9.3 Groups as Metric Spaces and Quasi-isometries

A quasi-isometric embedding of one metric space to another is a function f :
X→ Y such that for some K ≥ 1, L ≥ 0 the following inequality holds for all
x, x′ ∈X:

1

K
d
(
x, x′

)−L≤ d(f (x), f (y))≤Kd(x, x′)+L.
We say f is a quasi-isometry if, in addition, there is R > 0 so that every R-ball in Y
intersects the image of f . Thus when x, x′ are at a small distance the above carries
essentially no information. On large scales f behaves like a K-Lipschitz map. Note
that there is no requirement that f is continuous. For example, Z is quasi-isometric
to R, and two different word metrics on the same group are quasi-isometric. “Being
quasi-isometric” is an equivalence relation. In his ICM address in Warsaw in 1983
[95] (see also [72]) Gromov proposes to study groups up to quasi-isometry, e.g., to
look for invariants of quasi-isometries or to classify finitely generated groups quasi-
isometric to some model space. Here are some examples, given by Gromov in [95]:

• Any group quasi-isometric to a virtually nilpotent group is virtually nilpotent (this
follows from Gromov’s polynomial growth theorem since “having polynomial
growth” is a quasi-isometry invariant).

• Any group quasi-isometric to Zn is virtually Zn.
• Any torsion free group quasi-isometric to a free group is free (follows from the

celebrated Stallings’ splitting theorem about groups with infinitely many ends).
• Any torsion free group quasi-isometric to Hn, n≥ 2, acts cocompactly and prop-

erly by isometries on Hn (follows from the work of Mostow, Sullivan, Tukia).

In [77] Gromov offers a rich sample of the subject and fertile ideas that have
served as inspiration to many researchers.

9.4 CAT(−1) and CAT(0) Spaces

A theme in Gromov’s work is a study of singular spaces. Traditionally, one seeks to
resolve singularities by smooth objects. Gromov’s philosophy is to live with them
and take advantage of them. The notion of negative curvature for singular spaces
(i.e., not manifolds) is crucial in geometric group theory.
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Gromov used comparison inequalities from differential geometry to define cur-
vature for complete geodesic metric spaces (those where any two points are joined
by a geodesic, i.e., path of length equal to the distance between the endpoints).
Given such a space X, say that it is CAT(0) (or CAT(−1)) if every geodesic tri-
angle abc satisfies the comparison inequality: let a′b′c′ be a triangle in Euclidean
(or hyperbolic) plane with same side lengths as abc. Let p ∈ [a, b], q ∈ [a, c] and
let p′ ∈ [a′, b′], q ′ ∈ [a′, c′] be the corresponding points in the comparison triangle.
Then d(p,q) ≤ d(p′, q ′). Thus triangles are thinner in X than in the comparison
plane. IfX is a complete simply connected Riemannian manifold, thenX is CAT(0)
(CAT(−1)) precisely when the sectional curvature is ≤0 (≤−1). Thus, this notion
captures local negative curvature, while δ-hyperbolicity is an asymptotic concept.
For more information about CAT geometry see [22]. The acronym CAT stands for
Cartan–Aleksandrov–Toponogov (in French, one adds Hadamard and CAT becomes
CHAT). A version of the Cartan–Hadamard theorem is that CAT(0) spaces are con-
tractible.

9.5 Hyperbolization of Polyhedra

Important examples are provided by cubical complexes. Such a complex X is
CAT(0) if and only if it is simply connected and all links (which are naturally sim-
plicial complexes) are flag, i.e., if the 1-skeleton of a simplex is in the link, the
whole simplex is in the link (or, the way Warren Dicks likes to put it, every non-
simplex contains a non-edge). Gromov offered several simple constructions (going
by the name “hyperbolization”) that turn a connected finite polyhedron to another
polyhedron Ph, whose universal cover is CAT(0). Here is one such construction.
Assume P is a finite cubical complex. If dimP ≤ 1 then let Ph = P . If dimP = 2
replace each 2-cell �2 (a square) by the Möbius band �2

h = (∂�2 × [−1,1])/Z2

where Z2 acts diagonally and by x �→ −x in each coordinate. The boundary of �2
h

can be identified with ∂�2 and we use the same attaching map. So for example, this
will turn the boundary of the 3-cube to a (nonorientable) surface of Euler character-
istic χ = −4. This surface has a natural fixed point free involution induced by the
antipodal map on the cube, and one continues inductively on dimension. Define

�kh =
((
∂�k

)
h
× [−1,1])/Z2

so for example in dimension 3 one obtains a compact 3-manifold M whose bound-
ary is the above surface with χ = −4 and it is totally geodesic in M . If P has
dimension k, first hyperbolize the (k − 1)-skeleton P k−1, and then for each k-cube
in P glue in �kh to the hyperbolized boundary of the cube.

Here is a topological application. It was the first general construction of closed
aspherical manifolds (another construction can be made, à la Mike Davis, using
Coxeter groups).

Theorem 28 Every closed PL manifoldM is cobordant to an aspherical manifold.
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Proof Let P = cM be the cone on M and cubulate P . The hyperbolization Ph is a
manifold away from the cone point c, whose link is M , and the boundary of P is
totally geodesic, so it is aspherical. Removing a small neighborhood of c gives the
desired cobordism. �

Gromov also has hyperbolization procedures that preserve orientability of man-
ifolds. This construction should be compared to the earlier Kan–Thurston aspheri-
calization, which does not preserve manifolds (but does preserve homology).

9.6 Hyperbolic Groups

Before Gromov’s paper [74] one studied fundamental groups of closed Riemannian
manifolds of negative curvature. It was becoming increasingly clear, particularly in
the work of Cannon [31] that there is a more abstract concept, depending only on the
Cayley graph of a group. Gromov made the definition in [74], which evolved from
his ICM Warsaw address [95] in 1983 (see also [72, 6.4]). For more information,
see [67] and [22].

The Cayley graph X of a group G (and the group G) is δ-hyperbolic for some
δ > 0 if for any three vertices a, b, c ∈X and any three geodesics [a, b], [b, c], [a, c]
between them, every vertex of [a, c] is within δ of some vertex in [a, b] ∪ [b, c]. If a
group is δ-hyperbolic with respect to one finite set of generators, then for any other
choice of generators the Cayley graph is δ′-hyperbolic for a suitable δ′ > 0, so it
makes sense to talk about a finitely generated hyperbolic group, without specifying
a generating set (or δ). Fundamental groups of negatively curved closed manifolds
are hyperbolic, and so are free groups, while Z2 is not. Likewise, if G acts as a
cocompact covering group on a CAT(−1) space X then G is hyperbolic.

Gromov sketches a whole theory of hyperbolic groups. A driving force is the
“Morse lemma” that every quasi-geodesic in X is a uniform distance away from a
geodesic. This property fails in Euclidean plane.

For example, any hyperbolic group acts properly and cocompactly on a simplicial
complex. Gromov attributes the following construction to Rips. Fix d ≥ 4δ+ 1, and
let Pd(X) be the simplicial complex with vertex set G and with g1, . . . , gn span-
ning a simplex if d(gi, gj ) ≤ d for all i, j (the distance is in X). Then Pd(X) is
contractible and G acts by left multiplication cocompactly and properly discontinu-
ously. In particular, G is finitely presented (and if it is torsion-free it has a compact
classifying space).

Every hyperbolic group G has a space at infinity, or a boundary ∂G. A point of
∂G is an equivalence class of geodesic rays in X, where two rays are equivalent
if they are within bounded distance of each other. There is a natural topology on
the boundary, making it into a compact metrizable space. In the case of negatively
curved closed manifolds one always gets a sphere as the space at infinity, but in the
world of general hyperbolic groups there is a rather rich supply of spaces that can
occur. This may be a particularly attractive feature of the subject that persuaded so
many topologists to study it.
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Gromov’s motivation for thinking about hyperbolic groups may have been his
desire to understand, from a geometric point of view, why Burnside groups B(n)=
〈x, y |wn = 1〉 where w =w(x,y) runs over all words in x, y, are infinite for large
n (work of Novikov-Adyan and Ivanov). In [74] he gives a construction of infinite
torsion groups, as follows. Start with a hyperbolic group, e.g., a nonabelian free
group. Pass to the quotient by killing a suitable high power of an infinite order
element, and argue that it is also hyperbolic. Repeat the process infinitely many
times; the group in the limit (given correct choices of words to kill) is a finitely
generated infinite torsion group. Gromov laments that geometry is not yet developed
sufficiently to construct such groups with order of elements bounded. This was done
a bit later by Olshanskii [152] and Ivanov–Olshanskii [119], but it is likely that only
[40] put the matter to rest in Gromov’s mind.

A variation of this construction is to kill “sufficiently long, random” words in-
stead of high powers. With this, one can show for example that every hyperbolic
group (which is not virtually cyclic) has an infinite quotient which is hyperbolic and
has Kazhdan’s property (T ). See [153] for details.

Here is the intuition. SayX is a CAT(−1) space andG a deck group of a covering
map X→ X/G with quotient compact. Let g ∈G be an element of infinite order,
and represent g as closed geodesic � in X/G. Assume in addition that � passes
through a singular vertex v ∈ X/G so that in the link Lk(v) the distance between
the two directions determined by � are at distance >π . For n > 1 form a cone by
taking a geodesic triangle ABC in H2 such that the angle at A is 2π/n and the sides
AB and AC have lengths 1. Then identify AB to AC. This is a cone whose base is
not convex, but the angle at B = C can be made arbitrarily close to π by making n
large. Scale the metric up so that the base has the same length as � and glue it to �
so that B = C gets glued to v. The resulting space is no longer CAT(−1), but it is
CAT(−ε) for a suitable ε > 0. It is also not a polyhedron, but an orbihedron, that is,
the cone point corresponds to a point fixed by Zn. Its orbihedron fundamental group
is G/〈〈gn〉〉. For a modern version of this kind of a construction, see [37].

Hyperbolic groups, cube complexes and the construction above (in the form of
Dehn fillings) play a crucial role in the recent solution of the virtual Haken conjec-
ture about 3-manifolds by Wise and Agol, see [2].

9.7 Isoperimetric Functions

Suppose G is a finitely presented group with generators a1, . . . , an and relators
R1, . . . ,Rm. It is convenient to assume that inverses of generators (relators) are gen-
erators (relators). A “loop” of length L is any wordW = ai1ai2 · · ·aiL that represents
the identity in G. Thus one has an identity in the free group

W =
M∏

s=1

wsRjsw
−1
s
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for some M and some choice of relators and words ws . The smallest possible M
is called the area of W . By ϕ(L) denote the largest area of any loop of length ≤L.
Then ϕ is called an isoperimetric function or a Dehn function for G. If ϕ′ is an
isoperimetric function of G with respect to a different presentation, then

ϕ′(L)≤ aϕ(bL+ c)+ d

for suitable constants a, b, c, d > 0. This leads to a natural equivalence relation
among functions N→[0,∞), and one talks e.g., about linear, or quadratic, or poly-
nomial, or exponential isoperimetric functions. For example, Z×Z has a quadratic
isoperimetric function.

It is essentially due to Dehn that hyperbolic groups have a linear isoperimetric
function. Gromov proved the converse, that a finitely presented group G is hyper-
bolic if and only if it has a linear isoperimetric function. What’s more, if G has an
isoperimetric function of the form aL2 + b for a sufficiently small a > 0, then G is
hyperbolic. There are countably many exponents α so that Lα is (equivalent to) an
isoperimetric function; the set of these α is 1 together with a dense subset of [2,∞)
(see [15, 21, 170]). The interval (1,2) is the Gromov gap. Gromov also has a sharp
version of the statement that can be used to algorithmically detect δ-hyperbolicity.
The following is Papasoglu’s formulation [155].

Theorem 29 Let G= 〈a1, . . . , an | R1, . . . ,Rm〉 be a triangular presentation of G
(i.e., all relators have length 3). Assume that for some integer K > 0 every word w
with area in the interval [K2/2,240K2] has area bounded by 1

20000L
2, where L is

the length of w. Then K2L is un upper bound for the isoperimetric function.

Constants such as 20000 are the so called Gromov constants. They appear in
statements where one is not particularly concerned with sharp inequalities. They
are useful when different constants in an argument appear with different orders of
magnitude, making it easier to follow proofs.

Isoperimetric functions in groups measure the complexity of the word problem:
find an algorithm that decides whether a given a word in the generators represents
the trivial element of the group. If G is the fundamental group of a closed Rie-
mannian manifold M , then the universal cover M̃ also has a natural isoperimetric
function ψ , namely ψ(L) is the smallest number such that every loop of length ≤L
bounds a disk of area ≤ψ(L). What makes this concept particularly appealing is
that ψ is equivalent to the combinatorial isoperimetric function.

9.8 L2-Cohomology

There are many equivalent definitions of amenability. For the purposes of this sec-
tion, we say a group G that acts cocompactly and properly discontinuously on a
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connected (simplicial) complex is amenable if there is a sequence Fj of finite sub-
complexes such that

|∂Fj |
|Fj | → 0

where |A| denotes the number of cells in a finite complex A. For example, Z2 is
amenable since it acts on R2 in the usual way, and for Fj one can take a j × j
square, when |Fj | grows like j2 while |∂Fj | grows like j . Likewise, it is not hard
to see that nonabelian free groups are not amenable. For example, in a 3-valent tree
any finite subtree T must have more vertices of valence 1 than of valence 3 leading
to the inequality |∂T |

|T | >
1
2 .

Theorem 30 [33] Let Y be a finite complex with universal coverX contractible and
with G= π1(Y ) amenable. Then the Euler characteristic χ(Y )= 0.

A theorem of this nature was proved by Gottlieb [69]: If instead of amenabil-
ity one assumes that G has nontrivial center the same conclusion holds. Cheeger-
Gromov go on to prove a generalization of Gottlieb’s theorem: if G contains an
infinite normal amenable subgroup then χ(Y )= 0.

Let

0→ C0
2(X)→ C1

2(X)→ ·· ·
denote the cochain complex of square summable cochains on X, i.e., c ∈ Cp2 (X)
is a real valued function on p-cells ep of X such that

∑
ep c(e

p)2 <∞. Each
C
p

2 (X) is a Hilbert space and G acts by orthogonal transformations. The cobound-

ary operator d : Cp2 (X)→ C
p+1
2 (X) has an adjoint d∗ : Cp+1

2 (X)→ C
p

2 (X) (i.e.,
〈dg,h〉 = 〈g,d∗h〉). A cocycle u is harmonic if d∗(u) = 0. The subspace of har-
monic p-cocycles is denoted H p . It is canonically isometric to L2-cohomology

Ker
(
d : Cp2 (X)→ C

p+1
2 (X)

)
/Im
(
d : Cp−1

2 (X)→ C
p

2 (X)
)
.

Any G-invariant closed subspace V of l2(G)n has a von Neumann dimension
dimG(V ), a real number in [0, n], defined as the trace of the orthogonal projec-
tion ΠV : l2(G)n→ l2(G)n onto V . Each Cp2 (X) is a Hilbert space of the form
l2(G)n and so H p has a dimension. By the standard Hopf argument the alternating
sum

∑
p(−1)p dimGH p = χ(X).

The trace of a G-equivariant bounded operator F : l2(G)n→ l2(G)n is simply∑n
i=1〈1i , F (1i )〉 where 1i denotes 1 ∈ l2(G) in the ith coordinate (the function that

assigns 1 ∈R to 1 ∈G and 0 to all other g ∈G).

Proof We will argue that dimGH p = 0 for all p. Fix a (strict) fundamental domain
D ⊂ X and Følner tiles Fj . Assume for simplicity that Fj is a union of say Nj
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translates of D. Then, denoting by χep the characteristic function of ep ,

dimGH p = tr(ΠH p )=
∑

ep∈D

〈
ΠH p (χep ),χep

〉= 1

Nj

∑

ep∈D

〈
ΠH p (χep ),χep

〉

≤ 1

Nj
dim Im(gj )

where gj : Cp(Fj )→ Cp(Fj ) is the composition ofΠH p with the restriction to Fj ,
and the last inequality comes from the fact that |gj | ≤ 1.

Now the key claim is that cochains in this image are completely determined
by their values on p-cells that intersect the boundary of Fj . This implies that
dimGH p ≤ npj

Nj
where npj is the number of p-cells that intersect the boundary

of Fj , and this number goes to 0 by the choice of Følner tiles.
To prove the claim, assume that h is a harmonic p-cocycle that vanishes on p-

cells that intersect the boundary of Fj . We will also assume that h= 0 outside Fj
and argue that h = 0. Since X is contractible, h = dg for some (not necessarily
square summable) (p − 1)-cochain g. Let g′ be a p-cochain of finite support that
agrees with g on all cells that intersect Fj . Then

〈h,h〉 = 〈dg,h〉 = 〈dg′, h〉= 〈g′, d∗h〉= 〈g′,0〉= 0

so h= 0. �

9.9 Random Groups

In [74] Gromov states that most groups are hyperbolic. He develops the subject
further in [77]. New applications are found in [102] and [82]. For more information
on this subject see [68] and [150].

Perhaps the main application of the theory of random groups (other than making
phrases such as “random groups are hyperbolic” precise) is a construction of groups
with surprising properties. The best example of this is Gromov’s construction of
a finitely presented group G that does not admit a uniform embedding in Hilbert
space. This means that there is no f :G→ �2 and a function Φ : {0,1,2,3, . . .}→
[0,∞) such that Φ(d(x, y))≤ |f (x)− f (y)| ≤ d(x, y) for all x, y ∈G and so that
Φ(n)→∞ as n→∞. By a theorem of Yu groups that admit uniform embedding in
�2 satisfy the coarse Baum-Connes conjecture, and in fact Gromov’s groups provide
counterexamples to certain generalizations of this conjecture. See [112].

9.9.1 Model with a Fixed Number of Relators

The most straightforward concept of a “random group” is the following. Fix two
numbers k ≥ 2 and r ≥ 1 and for l large consider presentations

G= 〈a1, a2, . . . , ak |R1,R2, . . . ,Rr 〉
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where Ri are reduced cyclic words in a±1
i of length l. Denote the number of such

presentations by N(k, r, l). Let Nhyp(k, r, l) be the number of such presentations
that define hyperbolic groups.

Theorem 31 [74, 153]

lim
l→∞

Nhyp(k, r, l)

N(k, r, l)
= 1.

In fact there is a version of this theorem where one allows lengths of relators to
go to infinity at different rates.

9.9.2 Density Model

A more sophisticated model of randomness appears in [77], the so called “density
model”. When X is a finite set and A a subset, we say the density of A in X is

dens(A)= log |A|
log |X|

and the codensity is

codens(A)= 1− dens(A).

Then it turns out that for randomly chosen sets A,B ⊂X we have

codens(A∩B)= codens(A)+ codens(B)

(where codens(A) > 1 is interpreted as A= ∅). For example, two random subsets of
density < 1

2 are disjoint, meaning: if d < 1
2 and X has size l, the probability P(l, d)

that two subsets of X of size ∼ ld are disjoint goes to 1 as l→∞. The “birthday
paradox” can be interpreted in this language as follows: If A⊂X has density < 1

2 a
random function A→X is injective; if d > 1

2 it is not injective.

Now fix k ≥ 2 as before and let S(l) be the set of reduced words in a±1
i of

length l. Fix d , 0< d < 1, and consider a random subset R ⊂ S(l) of density d (of
course, |S(l)|d is likely not an integer; just take a nearest integer and let R have that
cardinality).

We say that a property P of groups occurs with overwhelming probability at
density d if its probability goes to 1 as l→∞. There are also variations on the
above model. For example, instead of considering relators of length exactly l one
could look at some interval (l − c, l + c) for a fixed c.

Theorem 32 Let G= 〈a1, a2, . . . , ak |R〉 with
R randomly chosen as above with density d . Then with overwhelming probability:

• G is trivial or Z2, if d > 1
2 ,
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• G is hyperbolic and not virtually cyclic, if d < 1
2 ,

• G satisfies Kazhdan’s property (T), if d > 1
3 ,

• G does not satisfy property (T), if d < 1
5 ,

• G is a-T-menable and acts freely and cocompactly on a CAT(0) cubical complex,
if d < 1

6 ,
• G is small cancellation C′(1/6), if d < 1

12 G is small cancellation C′(1/6) (see
below).

The first two statements are due to Gromov, the third to Żuk [195], and the rest
to Ollivier and Wise (see [150] for a detailed discussion).

We only indicate the proof of the first statement. Consider the map on the set
of relators that forgets the last letter. Since d > 1

2 this map is not injective (with
overwhelming probability). It follows that in G the last two letters are identified. In
fact, with overwhelming probability, all of a±1

i are identified, giving the result.

9.9.3 Graph Model

First recall the classical small cancellation theory. Given a group presentation G=
〈a1, . . . , ak |R〉 one says a piece P is a word in a±1

i such that P appears more than
once (with either orientation) in cyclic words in R. For λ ∈ (0,1) the presentation
is C′(λ) if whenever p is a piece contained in some Ri then |P | < λ|Ri |. Groups
with a C′(1/6) presentation are all hyperbolic.

If one has a presentation of the form 〈a, b, c | R1 = R2 = R3〉 where Ri are say
of length 100, one could rewrite it as 〈a, b, c |R1R

−1
2 ,R1R

−1
3 〉 but this will usually

not be of type C′(1/6). There is a natural extension of small cancellation theory,
introduced by Gromov in [82]; here is a special case of that extension. Let Γ be a
finite graph (for the above example take the theta graph) and label edges by words
in a±1

i (with R1,R2,R3 in the above example). We are imagining subdividing each
edge of Γ and labeling each subdivision edge with a±1

i so that the given word reads
along the original edge (and the inverse of the word reads in the opposite direction).
This labeling satisfies C′(λ) if whenever a labeled segment is embedded in two
different ways in Γ , its length is <λr0 where r0 is the injectivity radius of Γ . We
are tacitly assuming that the labeling is reduced i.e., every embedded path reads a
reduced word. It now turns out, not surprisingly, that

• for any λ > 0 random labeling by sufficiently long words (say of roughly the
same length) will be C′(λ),

• if the labeling is C′(1/6) then the associated group (obtained from the free group
by moding out words read along closed paths) is hyperbolic,

• moreover, with overwhelming probability the graph Γ will be isometrically em-
bedded in the Cayley graph of the quotient group.

Now one wants to continue the process and pass to a further quotient. It is neces-
sary to first generalize small cancellation theory to allow labeling with elements of
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a hyperbolic group, and we will not go into the details. The interested reader should
consult [68] and [151]. The result of an infinite sequence of steps is a finitely gen-
erated group G whose Cayley graph contains quasi-isometrically embedded copies
of a pre-chosen infinite family of finite graphs. Choosing this family to be a se-
quence of expanders, one obtains a group that does not admit a uniform embedding
in Hilbert space. With care one can arrange that this group is a subgroup of a finitely
presented group, which then does not uniformly embed in Hilbert space.

10 Gromov’s Work on Manifolds of Positive Scalar Curvature
(by John Roe)

10.1 Introduction

On a Riemannian manifold of dimension n, the curvature tensor is a rather com-
plicated geometric object, having n2(n2 − 1)/12 components at each point. The
Riemann tensor determines and is determined by the sectional curvatures of the
manifold along the various tangent 2-planes. Two contractions of the curvature ten-
sor, the Ricci curvature and the scalar curvature, are specially important. The scalar
curvature at a point is simply (up to a scaling factor) the average of sectional cur-
vature over the Grassmannian of tangent 2-planes at that point; the scalar curvature
operator can also be characterized abstractly as the unique (up to a scaling fac-
tor) Diff-equivariant quasilinear second order differential operator from metrics to
smooth functions.

Its characterization as “average sectional curvature” makes it easy to build ex-
amples of manifolds that carry metrics of positive scalar curvature. For instance,
whatever X is (provided it has sectional curvatures bounded below), the product
metric on X × S2 will have positive scalar curvature provided that one takes the
S2 factor small enough. This simple example shows that the global consequences
of positive scalar curvature are going to be delicate. In the world of positive Ricci
curvature, for example, local estimates of geodesic divergence can be integrated to
yield global bounds on volume and diameter (Bonnet-Myers theorem). But X× S2

can have scalar curvature as large as you please and still have exponential volume
growth on scales larger than the diameter of the S2-factor. In fact, it is not readily
apparent that scalar curvature provides any geometric or topological constraint on
the manifold M , and this impression is reinforced by results showing that metrics
with negative scalar curvature are exceedingly common on any manifold (Kazdan–
Warner, Lohkamp).

Misha Gromov’s work with Blaine Lawson [78, 79, 84–86] addresses the ques-
tions:

• Which manifolds admit metrics of positive, or of uniformly positive, scalar cur-
vature?

• For a manifold admitting such a metric, can we classify such metrics (for instance,
up to an appropriate notion of isotopy or cobordism)?
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• Can one describe geometrically the “large scale” consequences of positive scalar
curvature?

To take the last question first, one of Gromov’s guiding ideas is that an n-manifold
with scalar curvature greater than ε−2 (where ε is a positive constant) should be
“(n − 2)-dimensional on scales greater than ε”. After the fact, one can see how
this idea originates from consideration of the X× S2 examples above. Formulating
the idea, and using it to generate conjectures which can be turned into provable
theorems, is of course a quite different matter.

10.2 Simply-Connected Compact Manifolds

LetM be a compact even-dimensional spin manifold. The Atiyah–Singer index the-
orem [5, 6] identifies the index of the Dirac operator onM with a certain Pontrjagin
number, the Â-genus ofM . (In fact, Atiyah has written that “accounting for” the in-
tegrality of Â(M) for spin manifolds was a key motivation in the proof of the index
theorem.)

In 1963, Lichnerowicz [130] computed the square of the Dirac operator in terms
of the associated connection Laplacian. His formula,

D2 =∇∗∇ + 1

4
κ,

where κ is the scalar curvature, shows that the Â-genus vanishes for a compact spin
manifold admitting a metric with κ > 0. (In making this argument, Lichnerowicz
was following a path traversed earlier by Bochner, who considered the Laplacian
on 1-forms and used Hodge theory to proved that positive Ricci curvature implies
the vanishing of H 1(M;Q), a fact that can also be deduced from the Bonnet-Myers
theorem.) Since it is not hard to give examples of compact spinable manifolds with
non-vanishing Â-genus, Lichnerowicz’ theorem shows that there are topological
obstructions to the existence of positive scalar curvature metrics.

It is then natural to ask how many such obstructions there are. Amazingly, it can
be shown that in the simply-connected case, the Lichnerowicz obstruction is the
only one! More precisely,

Theorem 33 Let M be a simply-connected compact manifold of dimension ≥5.
Then

(a) If M is spinable, then it has a positive scalar curvature metric if and only if
Â(M)= 0.

(b) IfM is not spinable then it always has a positive scalar curvature metric.

Historically, part (b) came first and is due to Gromov and Lawson; part (a), based
on similar techniques but requiring more elaborate input from algebraic topology,
was proved by Stefan Stolz.
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The dimension restriction is a hint that surgery is going to get involved some-
where. What is surgery?

It is not too hard to believe the following statement.

Lemma 5 Let M and N be n-manifolds of positive scalar curvature, n ≥ 3. Then
their connected sumM#N also carries a positive scalar curvature metric.

The reason this is plausible is that M#N is smoothly glued together from three
pieces—M minus a disc, N minus a disc, and a tube Sn−1 × [0,1] joining them—
each of which individually carry positive scalar curvature metrics (since n− 1≥ 2).
Making the disc really small, so that the positive scalar curvature on the tube is large,
one expects that there is enough wiggle room to carry out the necessary smoothings
while preserving the positive scalar curvature condition.

Now to form a connected sum one excises a pair of discs—that is, a space
Dn× S0—from the disjoint unionM �N , and replaces it by a cylinder Sn−1 ×D1.
More generally one can consider a surgery where one excises a region diffeomor-
phic toDq×Sn−q and replaces it by Sq−1×Dn−q+1, which has the same boundary
Sq−1 × Sn−q . This process is called a surgery. Generalizing the connected sum ex-
ample above, Gromov and Lawson showed (by a delicate construction) that if the
codimension q is at least 3, then surgery on a positive scalar curvature manifold
yields a new manifold which also admits a positive scalar curvature metric.

Repeated surgeries generate an equivalence relation, which is a form of bordism.
To prove (b), Gromov and Lawson used this idea to show that the existence of a
positive scalar curvature metric on M (non-spinable, simply connected) depends
only on the class of M in the oriented bordism ring ΩSO∗ . Explicit generators for
this ring are known from the work of Wall [193], and they all admit positive scalar
curvature metrics. This finishes the proof. (For case (a), the relevant bordism theory
is ΩSpin∗ , and explicit generators for this ring are not known. This is the reason for
the greater complexity of Stolz’ proof [177] in this case.)

10.3 Beyond Simple Connectivity

Consider the non-simply-connected manifold M = Tn, the n-torus. Since the tan-
gent bundle admits a flat connection, all characteristic classes—and the Â-genus in
particular—vanish. For n = 2, the Gauss-Bonnet theorem tells us that there is no
metric of positive scalar (=Gaussian) curvature. What about higher dimensions?

Remember that a guiding principle for Gromov is that an n-manifold having
scalar curvature greater than ε−2 should be “(n− 2)-dimensional on scales greater
than O(ε)”. Now suppose that our torus M is equipped with a metric of positive
scalar curvature. Consider its universal cover X = M̃ . Then X is also equipped with
a metric of (uniformly) positive scalar curvature and therefore is expected to be
(n − 2)-dimensional on large scale. On the other hand, the large scale geometry
of X is the same as that of the fundamental group Zn = π1(M), or equivalently
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of Rn, and this is n-dimensional. Contradiction! This line of thought leads one to
expect that the torus should not admit a positive scalar curvature metric, a theorem
which was proved first by Schoen and Yau (for n ≤ 7, using minimal hypersurface
methods) and then shortly afterwards by Gromov and Lawson (in all dimensions,
using the Dirac operator). In both cases, the results apply to a much wider family of
examples, but it is helpful for concreteness to focus on the torus.

How are Dirac operator methods to be applied to the torus, where the index of
Dirac clearly vanishes? Observe that an elliptic operator D on a compact manifold
M defines not simply an integer invariant (its index) but in fact an index homomor-
phism

iD : K(M)→ Z, [E] �→ IndexDE

from the K-theory of M to the integers—in the language of Kasparov, this is the
pairing of K-theory with the K-homology class [D] of the operator D. An explicit
representative for DE , the “operator with coefficients”, can be constructed by mak-
ing use of a Hermitian connection on the complex vector bundle E.

Positive scalar curvature implies the ordinary index of the Dirac operator is zero,
but it does not in general imply that the more refined invariant iD is zero. This is
because the Lichnerowicz–Weitzenbock formula for DE ,

(DE)
2 =∇∗∇ + 1

4
κ +RE,

contains an additional term RE which is a contraction of the curvature tensor of E.
What we can therefore see straight away is that iD([E]) vanishes when E is flat.
More generally, if E is “almost” flat—if it has a connection whose curvature is
small enough compared to the lower bound on κ—then iD([E]) will still be zero.

The wonderful idea of Gromov and Lawson is then to exploit the geometry of
covering spaces ofM to produceK-theory representatives that are almost flat in the
appropriate sense. In earlier work they made use of towers of finite covering spaces,
but they soon developed new analytical tools that would permit them to work with
the universal covering directly. That is what I will describe below.

Definition 1 [86, Definition 5.1] A complete oriented Riemannian n-manifold X
is ε-hyperspherical, for some ε > 0, if there is a smooth map f : X→ Sn which
is constant outside a compact set, of nonzero degree, and ε-contracting (that is, the
pull-back T ∗f (x)Sn→ T ∗x X shrinks the length of covectors by a factor at least ε).
A compact manifoldM is enlargeable if for every ε > 0 it admits a covering that is
spin and ε-hyperspherical.

For example, by considering the universal cover one sees that Tn is enlargeable
(in any metric—the property does not depend on the choice of Riemannian metric
and is obviously true in the flat metric). Similarly, any compact manifold that ad-
mits a metric of non-positive sectional curvature is enlargeable (again, consider the
universal cover, and use the inverse of the Riemannian exponential map to build the
desired contractions f ).
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Theorem 34 [86] A compact enlargeable manifold cannot carry a metric of positive
scalar curvature.

To prove this, Gromov and Lawson introduced the notion of the relative index.
Let X be a complete spin manifold carrying a metric of uniformly positive scalar
curvature. Let E be a Hermitian vector bundle that is flat outside a compact set.
Then the Lichnerowicz-Weitzenbock formula shows that D2

E is (uniformly) “pos-
itive outside a compact set”. It turns out that this is enough to ensure that DE is
a Fredholm operator. Moreover, just as we argued above, if the curvature of E is
sufficiently small, then this operator is invertible and thus has index zero.

Suppose now that E0 and E1 are two such hermitian vector bundles and that they
are identified by an isomorphism outside a compact set. In this circumstance, one
can define the relative index

rel Index(D;E0,E1) := IndexDE0 − IndexDE1 .

Gromov–Lawson show that there is a topological expression, analogous to the usual
Atiyah–Singer theorem, for this relative index: it is

rel Index(D;E0,E1)=
〈
Â(M)! ch

([E0)− [E1]
)
, [M]〉,

where ([E0] − [E1]) is the class in K-theory K(X) defined (via the “clutching con-
struction”) by the bundles E0, E1 and the isomorphism between them at ∞. Again,
one can understand this process as a pairing between K-theory and K-homology,
but now one must remember that the relevant homology theory is the “locally fi-
nite” version of K-homology and its dual is the “compactly supported” version of
K-cohomology.

To prove Theorem 34, now, it is enough to show that for each ε > 0 one can find
such a pair of bundles E0, E1 on some covering space X of M , whose curvature is
less than ε, and such that the n-dimensional component of the Chern character

chn
([E0)− [E1]

) ∈Hnc (X;Q)
is a nonzero multiple of the orientation class. And the definitions of “enlargeable”
and “hyperspherical” are set up exactly to permit such bundles to be pulled back
from a fixed “Bott generator” on the sphere Sn.

10.4 Macroscopic Dimension and K-Area

The argument above (which of course has many generalizations and extensions that
I have not discussed) relates the existence of a positive scalar curvature metric on a
compact M to the macroscopic (large scale) geometry of M̃ or equivalently of the
fundamental group π1(M). Other articles in this volume explain how the theme of
macroscopic geometry of groups has recurred throughout Gromov’s work. In fact,
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enlargeability for M can be understood as a formulation of the idea that π1(M) is
large-scale n-dimensional.

There is still a gap between this result, though, and the intuition that if M has
positive scalar curvature then M̃ should have dimension n− 2 (at most) on the large
scale. This intuition suggests that we can allow one “non-large” direction and still
obstruct positive scalar curvature metrics. It is a beautiful fact that the Gromov–
Lawson method described above is exactly adapted to this intuition. Control of the
curvature terms RE in the Bochner–Weitzenbock formula comes from the contrac-
tive property of f ∗ on the cotangent space. But since the curvature is actually a 2-
form, we actually need only the strictly weaker property of contractivity on

∧2
T ∗

to make the arguments work. And this contractivity can be obtained even if f has
one non-contracting direction:

Definition 2 Let us define
∧2-hyperspherical and

∧2-enlargeable in the same way
as in Definition 1, but with the contracting condition on covectors replaced by the
corresponding condition on 2-covectors (elements of

∧2
T ∗Sn).

In contrast to Definition 1, however, it is convenient to consider the possibility
that a non-compact manifold M should be

∧2-enlargeable; in this case the con-
ditions are required to hold for any Riemannian metric on M . A basic example is
N ×R for any enlargeable (compact) manifold N . Using functorial properties one
can create many more examples, e.g., any finite volume hyperbolic manifold is

∧2-
enlargeable.

Analogous to Theorem 34 one has.

Theorem 35 No
∧2-enlargeable manifold can carry a complete metric of positive

scalar curvature.

The proof uses the same idea as that of the earlier theorem. In more recent
work [78], Gromov has reformulated things in terms of a numerical invariant, the
K-area:

Definition 3 LetM be an oriented Riemannian manifold. The K-area ofM is

sup
E

{‖RE‖−1 : E is homologically significant
}
.

Here E is a Hermitian vector bundle over M , ‖RE‖ is the operator norm of its
curvature, and “homologically significant” means that the subring of H ∗(M;Q)
generated by the Chern classes of E contains a nonzero multiple of the fundamental
class.

The K-area has various natural functorial properties and Theorem 35 follows
from these together with the index-theoretic statement that

K-area(M)≤ CnA−1

if A> 0 is a lower bound for the scalar curvature ofM .
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Remark 1 Gromov (and others) have given categorical descriptions of the “large
scale structure” of a space or group and what one might mean by “dimension” in
the context of such structures [77]. It is worth emphasizing that the above methods
do not prove the still-conjectural result that if Mn (compact, spin) admits positive
scalar curvature, then the asymptotic dimension (in Gromov’s sense) of π1(M) is at
most n−2. Indeed, theK-area definition involves the tangent bundle in what seems
to be an unavoidable way. Although Gromov is equipped with a very satisfactory
categorical formulation of what “large scale geometry” is, he is still free to reach
beyond that formulation as the problem at hand demands. As he says in this context
in [78], “one should be ready to modify the definitions if the geometry calls for it”.
The results show how fruitful this approach can be.
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Autobiography

John Tate

What follows is a sketch of some incidents in my education and early career, fol-
lowed by a very brief summary of the last 50 years of my mathematical life to
retirement.

Before beginning, I would like to thank Jim Milne for his willingness to take on
the job of writing about my work, and for the remarkably thorough account he has
given of it, with indications of its place in different aspects of the development of
arithmetic geometry during the last half of the 20th century.

1925–1937

I was born on March 13, 1925, in Minneapolis, an only child. My father was an ex-
perimental physicist at the University of Minnesota who was Dean of the College of
Arts and Sciences for a few years before he was called to lead the US antisubmarine
research effort during WWII. The Physics building at the University of Minnesota
is named the Tate Laboratory of Physics after him. His father was a doctor in rural
Iowa, descended from Scotch Presbyterian ministers who had been in the US for
several generations, moving west with the frontier. I know little about his mother,
except that she was of Irish descent and died when my father was about 12.

My mother had a thorough knowledge of the classics. Before I was born she
taught English in high school. Her father had come to the US from Germany as
a teenager, settled in Lincoln, Nebraska, and eventually became head of the Ger-
manic Languages department at the University of Nebraska. Her mother had come
to Lincoln from Sweden with her family as a child.

I learned about negative numbers at an early age from the mercury thermometer
mounted outside our kitchen window. That instrument also illustrated for me the
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John Tate, age 4

concepts of linear function and coordinate change, for it was marked in Fahrenheit
on one side and in Celcius on the other. The point marked −40 on both sides was
near the bottom of the scale. The mercury was always above that, but it did fall
below −30 F on a few winter mornings, which was a welcome event, for it meant
no school.

I loved puzzles. I liked the Pastime jigsaw puzzles cut from plywood which my
mother rented at a department store. Even more, I liked to read my father’s puzzle
books by Henry Dudeney. Most of the puzzles were too difficult for me to solve, but
I enjoyed just contemplating the questions, which were usually of a mathematical
or logical nature.

From my father I had a good idea of what science was about. He did not push
me, but would sometimes explain some basic fact, such that the distance a body falls
in x seconds is about 16.1x2 feet, or how something worked, like locks in a canal.
I liked math and science, but was not very good at arithmetic, and especially hated
the long division drills in fourth grade.

1937–1946

For my secondary education I attended Saint Paul Academy, a private day school,
where I liked my first math teacher, Max Sporer. Somehow we understood each
other. Once when I asked a question he said “your problem, Tate, is that you are
trying to think”. Another time we were doing a class exercise in which he would
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write a number on the board and ask one of us to declare it prime or to factor
it. I enjoyed this until he gave me 91. By then I was 12 or 13 and my interest
in mathematics was becoming clearer. I still remember Mr. Sporer’s proof of the
quadratic formula, which I thought was quite elegant because he multiplied by 4a
before completing the square.

After I learned that n! means the product of the numbers from 1 to n, I decided
I would privately denote the sum of the numbers from 1 to n by n?. I soon realized
that this was rather silly since my n? is equal to (n2 + n)/2. However, this led
eventually to my first attempt at mathematical research. After learning about the
formulas for the sum of the first N squares and the sum of the first N cubes, and
playing with sequences and their difference sequences for some time, I managed to

convince myself that there were polynomials Pn(x)= xn+1

n+1 + xn

2 + · · · +Cnx such

that
∑N
i=1 i

n = Pn(N), and that these polynomials without constant term could be
computed inductively from the relation P ′n(x)= nPn−1(x)+ Cn, if only one knew
the constants Cn. I assumed that there would be a simple formula for Cn in terms
of n and set out to try to guess it by computing the first few Cn’s. It seemed clear
that Cn = 0 for odd n > 1, but finding C2 = 1

6 , C4 =− 1
30 , C6 = 1

42 , I was baffled,
and gave up. Had I gone farther, I would have been even more baffled, because the
sequence continues −1/30, 5/66, −691/2730, 7/6, . . . . The Cn’s are the Bernoulli
numbers.

E.T. Bell’s book Men of Mathematics, made a big impression on me. Reading it
gave me my first knowledge of the history of mathematics in the West and of some
great theorems. From the chapter on Fermat I learned that if p is a prime, then p
divides np − n for every integer n, and that if p = 4m + 1 then p is the sum of
two squares. From the chapter on Gauss I learned that one could construct a regular
17-gon with ruler and compass, and also learned the law of quadratic reciprocity,
which Bell makes vivid by giving a few explicit examples. This law fascinated me.
I tried to figure out why it was so, of course with no success.

I graduated from S.P.A. in May of 1942, and went with no break to Harvard,
since it was then on a full time schedule, including a summer term, because of
the war. I had five consecutive terms at Harvard, the first three as a civilian, the
last two as an apprentice seaman in the Navy’s V-12 officer training program for
which I volunteered when I became eligible for the draft. I then spent three terms at
M.I.T. being trained as a meteorologist, and a term in midshipman school at Cornell
University, graduating as an Ensign in the US Navy with a special knowledge of
meteorology. But by that time the war in Europe was over, and it had progressed so
far in the Pacific that more meteorologists were no longer needed. I was assigned to
minesweeping research until I was discharged a year later, having been in the Navy
for three years without leaving the east coast of the USA.

1946–1953

During that time I managed to graduate from Harvard. My degree was in mathemat-
ics for convenience, but I decided to go to graduate school in physics. This was a
strange decision. Although I had always liked both subjects, I was really much more
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interested in math and had shown more talent for it. But from reading Bell’s book
I had the idea that to do valuable research in mathematics one had to be a genius
like the people he wrote about, whereas from my father’s example I saw that with
intelligence and hard work one could make a difference in physics. I knew I was no
Gauss or Galois, but thought I was reasonably intelligent and could be diligent.

So I began graduate school in physics in Princeton in fall, 1946. At that time
physics and math shared a common room in the old Fine Hall. One day a fellow
student pointed to a man across the room and said, “That’s Artin!” “Who’s Artin?” I
asked. I was surprised to be told “He’s the great algebraist”, for I had never heard of
him. Only later did I notice that my favorite math book, Moderne Algebra, by Van
der Waerden, was based on lectures by E. Artin and E. Noether.

As a Navy veteran, I took advantage of a feature of the G.I. Bill of Rights. If a
professor certified that a book I wanted would be useful to me in my studies, the
US government paid for it. Early in the spring term I realized that I had acquired
about twenty mathematics books in this way, but only two in physics. Also, in read-
ing Von Neuman’s Mathematical Foundations of Quantum Mechanics, I found the
first part to be a marvellously clear axiomatic characterization of Hilbert space, but
the rest was not clear at all. Deciding finally that I should switch from physics to
mathematics, I asked permission from Lefschetz who was then head of the math
department. He told me that too many people had been wanting to make the change
I requested. Did we think the math prelims, which were oral, were easier than those
in physics, which were written? He said I could put my application in with all the
other applications to the math department and take my chances.

I did so, and also started to sit in on a couple of math courses. One was a course
of Artin’s in which he was developing measure theory. At the end of one lecture he
stated a lemma and challenged us try to prove it. Highly motivated to show I was
a worthy applicant for admission to math, I thought about it many hours with no
success, but finally saw the trick in the middle of the night before the next class. In
the morning when Artin asked who had found a proof I was the only one to raise
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John Tate in his office, Cambridge, MA, 1956

my hand. When he told me to go to the board and explain it to the class I was so
nervous that I could barely speak or write. To my great relief, as soon as he saw that
I did have a proof, he took over and explained it clearly. Soon after, I was happy to
hear that I had been admitted to the math department.

It was a phenomenal bit of luck that I ended up in the department with Emil Artin,
the man who had proved the ultimate generalization of my favorite theorem, the law
of quadratic reciprocity, and who was also a great teacher and mentor. I became his
student, learned a great deal of algebra and number theory from him, and owe to him
the suggestion of a wonderful thesis topic, proving by abstract harmonic analysis on
the adèle ring the functional equation for Hecke’s L-functions which Hecke had
proved by classical Fourier analysis. In a sense this was simply a big exercise, but I
think I gave a good solution. I soon realized that the topic was in the air at the time;
Iwasawa and Weil had the same idea.

After earning my Ph.D. I stayed on at Princeton for three years as an Instructor.
During the second year, 1951–1952, I helped Artin in a seminar doing class field
theory by cohomological methods. We were very fortunate that Serge Lang, who
had just finished his Ph.D. with Artin, took notes and wrote them up into what
eventually became the main part of the book Class Field Theory, by E. Artin and
me, recently republished by AMS Chelsea.

1953–1959

After a year at Columbia University, in which I was very happy to become ac-
quainted with Bernie Dwork, I accepted a tenure track offer at Harvard. Fortu-
nately, Harvard’s enlightened policy of offering sabbatical years to tenure candi-
dates enabled me to spend the year 1957–1958 in Paris. That was a great year
for me. I attended Serre’s lectures, witnessed the birth of the theory of schemes
in Grothendieck’s seminar, and became friends with those two amazing individuals
who were to have such an important influence in my mathematical life. I found new
directions for my research which I will briefly describe.
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I had become interested in the arithmetic of elliptic curves and, thanks to Lang’s
influence, also Abelian varieties. The key results of class field theory are equivalent
to knowing the Galois cohomology of the of the multiplicative group over local and
global fields and their interrelations, in dimensions 1 and 2. I hoped my background
in that area would help me study the local and global Galois cohomology of Abelian
varieties. Just before arriving in Paris, I saw that, over a p-adic field k, there is
a natural pairing between the group of torsors of an elliptic curve over k and the
group of k-rational points on the curve, with values in the Brauer group of k. By
local class field theory that Brauer group is canonically isomorphic to Q/Z, and
I was able to prove that the pairing gives a perfect Pontrjagin duality between the
compact profinite group of points and the discrete group of torsors. Lang, who was
also in Paris that fall, insisted that I should extend the result to Abelian varieties and
taught me what I needed to know in order to do so.

Having such success with the local theory I optimistically started thinking about
the global situation. My optimism was unfounded. It soon became clear that the
cohomological picture would be very nice if the group which is now called the Tate-
Shafarevich group and denoted by Ш, is finite, and would be a mess if it is not.
It also became clear that the global cohomology just gave a very general way of
looking at the classical theory of descent and that the finiteness question was related
to the effectiveness of the descent procedure. My naive hope that the cohomological
machinery might enable me to find a proof of the finiteness of Ш gradually faded.
In fact, it was not until almost 30 years later, with the addition of completely new
methods by Thaine, Rubin, Kolyvagin, Gross, Zagier, that the finiteness was proved
in special situations. The general case is still a complete mystery. Michael Artin has
remarked that the question whether Ш is finite is a special case of a more general
question: Is the Brauer group of every scheme proper over Spec(Z) finite?

From Grothendieck I learned that the most important thing in Galois cohomology
is the cohomology of the absolute Galois group Gk of a field k, rather than that of
the finite Galois groups of which Gk is the projective limit, and that Gk often has
a finite cohomological dimension. For example for global and local fields k the
cohomological dimension of Gk is 2 (with a grain of salt involving the real field
and the prime 2). Thus the salient fact about the higher dimensional groups of class
field theory which I had worked so hard to determine earlier is that they die under
inflation and are trivial for Gk .

During that year in Paris I also tried to learn more about the structure of the group
of points E(k) of an elliptic curve E over a p-adic field k. Results of Dieudonné
and Lazard on formal groups gave information about the subgroup E1(k) of points
reducing to 0 over the residue field. In case of good ordinary reduction, the result
was especially striking. I regret never having published it, but I did think to send the
statement as a challenge to Dwork, who I saw as the world’s greatest p-adic analyst.
Almost by return mail he sent a proof completely different from mine, for the Leg-
endre curve, using the hypergeometric function F( 1

2 ,
1
2 ,1, λ). He saw aspects of the

situation which I had not dreamed of.
That sabbatical year in Paris which was so crucial to my career ended with a

complete surprise, an invitation to collaborate with Bourbaki. This pleased me very
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much, for I admired his work. By the next train I went to the little village of Pelvoux
in the French Alps to join his collaborators at their June congress. Working with
them was a unique privilege.

A year later, still thinking about the E(k) for p-adic k, I was thrilled to real-
ize that some series expansions occurring in the classical theory of theta functions,
which involve only integer coefficients, make sense over any field k complete with
respect to an absolute value function x �→ |x|, and that using them one can construct,
for each q ∈ k such that 0 < |q| < 1, an elliptic curve Eq defined over k, together
with a k-analytic homomorphism k∗ = Gm(k)→ Eq(k) which is surjective, with
kernel qZ. The j invariant of Eq is given by the classical Fourier expansion of the
j -function:

j = q−1 + 744+ 196884q + 21493760q2 + · · ·
For k = C or R, every elliptic curve over k can be obtained in this way, but for k
nonarchimedean, e.g. p-adic, as the displayed formula shows, the j -invariant of Eq
satisfies |j | = |q|−1 > 1, and q = j−1 + 744j−2 + 750420j−3 + · · · is uniquely
determined by j . Moreover, every elliptic curve over k with such a non-integral
j -invariant is a quadratic twist of the curve Eq which has the same j .

1959–1989

In fall 1959 I was given tenure at Harvard. I continued teaching at Harvard for the
next thirty years, except for three more sabbatical years in Paris visiting the I.H.E.S.
and/or Orsay and a half year visit to Berkeley. My research owes much to direct
contact with colleagues in Cambridge and Paris. I think especially of Michael Artin,
A. Grothendieck, David Mumford, J.-P. Serre and, later, Benedict Gross and Barry
Mazur. Above all, an extensive postal correspondence with Serre was invaluable in
helping me get my ideas straight.

Teaching at all levels, from calculus classes to mentoring Ph.D. students, has
always been a pleasure for me. A good way to learn a topic is to teach it. On the
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other hand, giving graduate courses and talking with Ph.D. students is often a source
of new ideas and cannot be separated from research efforts, contrary to the thinking
of those who promote effort reporting. I have had more than 40 Ph.D. students,
several of whom have become good friends.

1989–2009

In the late 1980’s the offer of a Chair at the University of Texas at Austin prompted
me to think about trying something new. This was appealing, for various reasons,
and I felt fortunate to have such an opportunity. The U.T. Math. Department and
the University itself were huge compared with what I had known, but size was the
least of it. Nearly everything was new. I taught there for almost 20 years before
retiring. During that time, although there was a great disparity among positions, the
department was run democratically, and the atmosphere was very positive. I enjoyed
being part of it and working with my colleagues in number theory, Vaaler, Villegas,
and Voloch, from whom I learned a lot.

It was a time of change in Austin as the city grew rapidly, doubling in size in
twenty years. The general spirit of the university seemed to be evolving along with
the skyline of its home city. One sign of this evolution, to my delight, touched me
directly, in connection with the Abel award. The 300 foot tower on the main building
of the university, which is centrally located on high ground, is visible from almost
anywhere in the city. By tradition it is illuminated in UT’s distinctive burnt-orange
color to signal an athletic victory. Under University President Bill Powers, academic
achievement is honored in the same way.

2012

Looking back on my research, I take satisfaction in having proved or helped prove
several important theorems, no one of which is so great that it stands out above the
others. Some of my best ideas have been conjectures on which I could make little
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progress, though others have. I liked trying to imagine what should be true, not only
by making conjectures of my own, but in trying to generalize and clarify those of
others, such as those of Birch and Swinnerton-Dyer, and of Stark.

Although I was born on a Friday the thirteenth, I feel I’ve had more than my share
of good fortune. Two specific examples are my meeting, by pure chance, Emil Artin,
the mentor from whom I learned so much, and my having had the opportunity to
spend an especially valuable year 1958–1959 in Paris, thanks to Harvard’s policy of
offering junior sabbaticals. I did not write easily, and am thankful that my colleagues
included unpublished results of mine in their papers and books, crediting me fully.
More generally, I have had the support of family in spite of my obsession with
mathematics, and have enjoyed good health to date. Finally, I feel fortunate to have
been inclined toward mathematics, a field in which cooperation is so much more
common than competition, and in which I could earn a living by doing what I most
liked to do.



The Work of John Tate

J.S. Milne

Tate helped shape the great reformulation of arithmetic and
geometry which has taken place since the 1950s.

Andrew Wiles.1

This is an exposition of Tate’s work, written on the occasion of the award
to him of the Abel prize. True to the epigraph, I have attempted to explain it
in the context of the “great reformulation”.

Notations

We speak of the primes of a global field where others speak of the places.
MS = S ⊗R M forM an R-module and S and R-algebra.
|S| is the cardinality of S.
Xn =Ker(x �→ nx : X→X) and X(�)=⋃m≥0X�m (�-primary component, � a

prime).
Gal(K/k) or G(K/k) denotes the Galois group of K/k.
μ(R) is the group of roots of 1 in R.
R× denotes the group of invertible elements of a ring R (apologies to Bourbaki).
V ∨ denotes the dual of a vector space or the contragredient of a representation.
Kal, Ksep, Kab, Kun . . . denote an algebraic, separable, abelian, unramified. . .

closure of a field K .
OK denotes the ring of integers in a local or global field K .

1Introduction to Tate’s talk at the conference on the Millenium Prizes (2000).
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1 Hecke L-Series and the Cohomology of Number Fields

1.1 Background

Kronecker, Weber, Hilbert, and Ray Class Groups For every abelian exten-
sion L of Q, there is an integer m such that L is contained in the cyclotomic field
Q[ζm]; it follows that the abelian extensions of Q are classified by the subgroups of
the groups (Z/mZ)× $ G(Q[ζm]/Q) (Kronecker–Weber). On the other hand, the
unramified abelian extensions of a number field K are classified by the subgroups
of the ideal class group C of K (Hilbert). In order to be able to state a common gen-
eralization of these two results, Weber introduced the ray class groups. A modulus
m for a number field K is the formal product of an ideal m0 in OK with a certain
number of real primes of K . The corresponding ray class group Cm is the quotient
of the group of ideals relatively prime to m0 by the principal ideals generated by
elements congruent to 1 modulo m0 and positive at the real primes dividing m. For
m= (m)∞ and K =Q, Cm $ (Z/mZ)×. For m= 1, Cm = C.

Takagi and the Classification of Abelian Extensions Let K be a number field.
Takagi showed that the abelian extensions of K are classified by the ray class
groups: for each modulus m, there is a well-defined “ray class field” Lm with
G(Lm/K)≈ Cm, and every abelian extension of K is contained in a ray class field
for some modulus m. Takagi also proved precise decomposition rules for the primes
in an extension L/K in terms of the associated ray class group. These would follow
from knowing that the map sending a prime ideal to its Frobenius element gives an
isomorphism Cm→G(Lm/K), but Takagi didn’t prove that.

Dirichlet, Hecke, and L-Series For a character χ of (Z/mZ)×, Dirichlet intro-
duced the L-series

L(s,χ)=
∏

(p,m)=1

1

1− χ(p)p−s =
∑

(n,m)=1

χ(n)n−s

in order to prove that each arithmetic progression, a, a + m, a + 2m, . . . with a
relatively prime to m has infinitely many primes. When χ is the trivial character,
L(s,χ) differs from the zeta function ζ(s) by a finite number of factors, and so
has a pole at s = 1. Otherwise L(s,χ) can be continued to a holomorphic function
on the entire complex plane and satisfies a functional equation relating L(s,χ) and
L(1− s, χ̄).

Hecke proved that the L-series of characters of the ray class groups Cm had
similar properties to Dirichlet L-series, and noted that his methods apply to the
L-series of even more general characters, now called Hecke characters (Hecke 1918,
1920). The L-series of Hecke characters are of fundamental importance. For ex-
ample, Deuring (1953) showed that the L-series of an elliptic curve with complex
multiplication is a product of two Hecke L-series.
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Artin and the Reciprocity Law Let K/k be an abelian extension of number
fields, corresponding to a subgroup H of a ray class group Cm. Then

ζK(s)/ζk(s)=
∏

χ

L(s,χ) (up to a finite number of factors) (1)

where χ runs through the nontrivial characters of Cm/H . From this and the results
of Dirichlet and Hecke, it follows that ζK(s)/ζk(s) is holomorphic on the entire
complex plane. In the hope of extending this statement to nonabelian extensions
K/k, Artin (1923) introduced what are now called Artin L-series.

Let K/k be a Galois extension of number fields with Galois group G, and let
ρ : G→ GL(V ) be a representation of G on a finite dimensional complex vector
space V . The Artin L-series of ρ is

L(s,ρ)=
∏

p

1

det(1− ρ(σp)NP−s | V IP)

where p runs through the prime ideals of K , P is a prime ideal of K lying over p,
σp is the Frobenius element of P, NP= (OK : P), and IP is the inertia group.

Artin observed that his L-series for one-dimensional representations would coin-
cide with the L-series of characters on ray class groups if the following “theorem”
were true:

for the field L corresponding to a subgroup H of a ray class group Cm, the
map p �→ (p,L/K) sending a prime ideal p not dividing m to its Frobenius
element induces an isomorphism Cm/H →G(L/K).

Initially, Artin was able to prove this statement only for certain extensions. After
Chebotarev had proved his density theorem by a reduction to the cyclotomic case,
Artin (1927) proved the statement in general. He called it the reciprocity law be-
cause, when K contains a primitive mth root of 1, it directly implies the classical
mth power reciprocity law.

Artin noted that L(s,ρ) can be analytically continued to a meromorphic function
on the whole complex plane if its character χ can be expressed in the form

χ =
∑

i

ni Indχi, ni ∈ Z, (2)

with the χi one-dimensional characters on subgroups of G, because then

L(s,ρ)=
∏

i

L(s,χi)
ni

with the L(s,χi) abelian L-series. Brauer (1947) proved that the character of a
representation can always be expressed in the form (1), and Brauer and Tate found
what is probably the simplest known proof of this fact (see p. 323).

To complete his program, Artin conjectured that, for every nontrivial irreducible
representation ρ, L(s,ρ) is holomorphic on the entire complex plane. This is called
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the Artin conjecture. It is known to be true if the character of ρ can be expressed in
the form (2) with ni ≥ 0, and in a few other cases.

Chevalley and Idèles Chevalley gave a purely local proof of local class field
theory, and a purely algebraic proof of global class field theory, but probably his
most lasting contribution was to reformulate class field theory in terms of idèles.

An idèle of a number field K is an element (av)v of
∏
v K

×
v such that av ∈O×

v

for all but finitely many primes v. The idèles form a group JK , which becomes a
locally compact topological group when endowed with the topology for which the
subgroup

∏

v|∞
K×v ×

∏

v finite

O×
v

is open and has the product topology.2

Let K be number field. In Chevalley’s reinterpretation, global class field theory
provides a homomorphism φ : JK/K× →G(Kab/K) that induces an isomorphism

JK/
(
K× ·NmJL

)−→G(L/K)

for each finite abelian extensionL/K . For each prime v ofK , local class field theory
provides a homomorphism φv : K×v →G(Kab

v /Kv) that induces an isomorphism

K×v /NmL× →G(L/Kv)

for each finite abelian extension L/Kv . The maps φv and φ are related by the dia-
gram:

K×v
φv−−−−→ G(Kab

v /Kv)⏐⏐'iv
⏐⏐'

JK
φ−−−−→ G(Kab/K).

Beyond allowing class field theory to be stated for infinite extensions, Chevalley’s
idèlic approach greatly clarified the relation between the local and global reciprocity
maps.

1.2 Tate’s Thesis and the Local Constants

The modern definition is that a Hecke character is a quasicharacter of J/K×, i.e.,
a continuous homomorphism χ : J → C× such that χ(x) = 1 for all x ∈ K×. We

2The original topology defined by Chevalley is not Hausdorff. It was Weil who pointed out the
need for a topology in which the Hecke characters become the characters on J (Weil 1936). By the
time of Tate’s thesis, the correct definition seems to have been common knowledge.
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explain how to interpret χ as a map on a group of ideals, which is the classical
definition.

For a finite set S of primes, including the infinite primes, let J S denote the sub-
group of JK consisting of the idèles (av)v with av = 1 for all v ∈ S, and let IS

denote the group of fractional ideals generated by those prime ideals not in S. There
is a canonical surjection J S→ IS . For each Hecke character χ , there exists a finite
set S such that χ factors through J S

can.−→ IS , and a homomorphism ϕ : IS → C×
arises from a Hecke character if and only if there exists an integral ideal m with
support in S, complex numbers (sσ )σ∈Hom(K,C), and integers (mσ )σ∈Hom(K,C) such
that

ϕ
(
(α)
)=

∏

σ∈Hom(K,C)

σ (α)mσ
∣∣σ(α)

∣∣sσ

for all α ∈K× with (α) ∈ IS and α ≡ 1 (mod m).

Hecke’s Proof The classical proof uses that Rn is self-dual as an additive topo-
logical group, and that the discrete subgroup Zn of Rn is its own orthogonal comple-
ment under the duality. The Poisson summation formula follows easily3 from this:
for any Schwartz function f on Rn and its Fourier transform f̂ ,

∑

m∈Zn
f (m)=

∑

m∈Zn
f̂ (m).

Write the L-series as a sum over integral ideals, and decompose it into a finite family
of sums, each of which is over the integral ideals in a fixed element of an ideal class
group. The individual series are Mellin transforms of theta series, and the functional
equation follows from the transformation properties of the theta series, which, in
turn, follow from the Poisson summation formula.

Tate’s Proof An adèle of K is an element (av)v of
∏
Kv such that av ∈Ov for

all but finitely many primes v. The adèles form a ring A, which becomes a locally
compact topological ring when endowed with its natural topology.

Tate proved that the ring of adèles A of K is self-dual as an additive topological
group, and that the discrete subgroup K of A is its own orthogonal complement un-
der the duality. As in the classical case, this implies an (adèlic) Poisson summation
formula: for any Schwartz function f on A and its Fourier transform f̂

∑

γ∈K
f (γ )=

∑

γ∈K
f̂ (γ ).

3Let f be a Schwartz function on R, and let f̂ be its Fourier transform on R̂ = R. Let φ be

the function x + Z �→∑
n∈Z f (x + n) on R/Z, and let φ̂ be its Fourier transform on R̂/Z = Z.

A direct computation shows that f̂ (n) = φ̂(n) for all n ∈ Z. The Fourier inversion formula says
that φ(x) =∑n∈Z φ̂(n)χ(x); in particular, φ(0) =∑n∈Z φ̂(n) =

∑
n∈Z f̂ (n). But, by definition,

φ(0)=∑n∈Z f (n).
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Let χ be a Hecke character of K , and let χv be the quasicharacter χ ◦ iv on K×v .
Tate defines local L-functions L(χv) for each prime v of K (including the infinite
primes) as integrals over Kv , and proves functional equations for them. He writes
the global L-function as an integral over J , which then naturally decomposes into
a product of local L-functions. The functional equation for the global L-function
follows from the functional equations of the local L-functions and the Poisson sum-
mation formula.

Although, the two proofs are superficially similar, in the details they are quite
different. Once Tate has developed the harmonic analysis of the local fields and of
the adèle ring, including the Poisson summation formula, “an analytic continuation
can be given at one stroke for all of the generalized ζ -functions, and an elegant
functional equation can be established for them . . . without Hecke’s complicated
theta-formulas”(Tate 1967b, pp. 305–306).

One consequence of Tate’s treating all primes equally, is that the Γ -factors arise
naturally as the local zeta functions of the infinite primes. By contrast, in the classi-
cal treatment, their appearance is more mysterious.

As Kudla (2003) writes:

Tate provides an elegant and unified treatment of the analytic continuation
and functional equation of Hecke L-functions. The power of the methods of
abelian harmonic analysis in the setting of Chevalley’s adèles/idèles provided
a remarkable advance over the classical techniques used by Hecke. . . . In
hindsight, Tate’s work may be viewed as giving the theory of automorphic
representations and L-functions of the simplest connected reductive group
G= GL(1), and so it remains a fundamental reference and starting point for
anyone interested in the modern theory of automorphic representations.

Tate’s thesis completed the re-expression of the classical theory in terms of idèles.
In this way, it marked the end of one era, and the start of a new.

Notes Tate completed his thesis in May 1950. It was widely quoted long before its
publication in 1967. Iwasawa obtained similar results about the same time as Tate,
but published nothing except for the brief notes Iwasawa (1952, 1992).

Local Constants Let χ be a Hecke character, and let Λ(s,χ) be its completed
L-series. The theorem of Hecke and Tate says that Λ(s,χ) admits a meromorphic
continuation to the whole complex plane, and satisfies a functional equation

Λ(1− s,χ)=W(χ) ·Λ(s, χ̄)

with W(χ) a complex number of absolute value 1. The number W(χ) is called the
root number or the epsilon factor. It is a very interesting number. For example, for
a Dirichlet character χ with conductor f , it equals τ(χ)/

√±f where τ(χ) is the
Gauss sum

∑f

a=1 χ(a)e(a/f ). An importance consequence of Tate’s description of
the global functional equation as a product of local functional equations is that he
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obtains an expression

W(χ)=
∏

v

W(χv) (3)

of W(χ) as a product of (explicit) local root numbersW(χv).
Langlands pointed out4 that his conjectural correspondence between degree n

representations of the Galois groups of number fields and automorphic representa-
tions of GLn requires that there be a similar decomposition for the root numbers of
Artin L-series, or, more generally, for the Artin-Hecke L-series that generalize both
Artin and Hecke L-series (see p. 268). For a Hecke character, the required decom-
position is just that of Tate. Every expression (2), p. 261, of an Artin character χ as
a sum of monomial characters gives a decomposition of its root number W(χ) as
a product of local root numbers—the problem is to show that the decomposition is
independent of the expression of χ as a sum.5

For an Artin character χ , Dwork (1956) proved that there exists a decomposition
(3) of W(χ) well-defined up to signs; more precisely, he proved that there exists a
well-defined decomposition for χ(−1)W(χ)2. Langlands completed Dwork’s work
and thereby found a local proof that there exists a well-defined decomposition for
W(χ). However, he abandoned the writing up of his proof when Deligne (1973)
found a simpler global proof.

Tate (1977b) gives an elegant exposition of these questions, including a proof
of (3) for Artin root numbers by a variant of Deligne’s method, and a proof of
a theorem of Fröhlich and Queyrut that W(χ) = 1 when χ is the character of a
representation that preserves a quadratic form.

1.3 The Cohomology of Number Fields

Tate Cohomology With the action of a groupG on an abelian groupM , there are
associated homology groups Hr(G,M), r ≥ 0, and cohomology groups Hr(G,M),
r ≥ 0. When G is finite, the map m �→∑

σ∈G σm defines a homomorphism

H0(G,M)
def= MG NmG−→MG def= H 0(G,M),

4See his “Notes on Artin L-functions” and the associated comments at http://publications.ias.edu/
rpl/section/22.
5In fact, this is not quite true, but is true for “virtual representations” with “virtual degree 0”. The
decomposition of the root number of the character χ of a Galois representation is obtained by
writing it as χ = (χ − dimχ · 1)+ dimχ · 1.

http://publications.ias.edu/rpl/section/22
http://publications.ias.edu/rpl/section/22
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and Tate defined cohomology groups Ĥ r (G,M) for all integers r by setting

Ĥ r (G,M)
def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H−r−1(G,M) r <−1

Ker(NmG) r =−1

Coker(NmG) r = 0

Hr(G,M) r > 0.

The diagram

Ĥ−1(G,M ′) Ĥ−1(G,M) Ĥ−1(G,M ′′)

· · · H1(G,M
′′) H0(G,M

′) H0(G,M) H0(G,M
′′) 0

0 H 0(G,M ′) H 0(G,M) H 0(G,M ′′) H 1(G,M ′) · · ·

Ĥ 0(G,M ′) Ĥ 0(G,M) Ĥ 0(G,M ′′)

NmG NmG NmG

shows that a short exact sequence of G-modules gives an exact sequence of co-
homology groups infinite in both directions. These groups are now called the Tate
cohomology groups. Most of the usual constructions for cohomology groups (except
the inflation maps) extend to the Tate groups.

Notes Tate’s construction was included in Serre (1952/1953), Cartan and Eilenberg
(1956), and elsewhere. Farrell (1977/78) extended Tate’s construction to infinite
groups having finite virtual cohomological dimension (Tate-Farrell cohomology),
and others have defined an analogous extension of Hochschild cohomology (Tate-
Hochschild cohomology).

The Cohomology Groups of Algebraic Number Fields Let G be a finite
group, let C be a G-module, and let u be an element of H 2(G,C). Assume that
H 1(H,C) = 0 for all subgroups H of G and that H 2(H,C) is cyclic of order
(H : 1) with generator the restriction of u. Then Tate (1952c) showed that cup prod-
uct with u defines an isomorphism

x �→ x ∪ u : Ĥ r (G,Z)→ Ĥ r+2(G,C) (4)

for all r ∈ Z. He proves this by constructing an exact sequence

0→ C→ C(ϕ)→ Z[G]→ Z→ 0,

depending on the choice of a 2-cocycle ϕ representing u, and showing that

Ĥ r
(
G,C(ϕ)

)= 0= Ĥ r(G,Z[G])
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for all r ∈ Z. Now the double boundary map is an isomorphism Ĥ r (G,Z)→
Ĥ r+2(G,C).

On takingG to be the Galois group of a finite extension L/K of number fields, C
to be the idèle class group of L, and u the fundamental class of L/K ,6 one obtains
for r =−2 the inverse of the Artin reciprocity map

G/[G,G] $−→ CG.

Let L/K be a finite Galois extension of global fields (e.g., number fields) with
Galois group G. There is an exact sequence of G-modules

1→ L× → JL→ CL→ 1 (5)

where JL is the group of idèles of L and CL is the idèle class group. Tate determined
the cohomology groups of the terms in this sequence by relating them to those in
the much simpler sequence

0→X→ Y → Z→ 0. (6)

Here Y is the free abelian group on the set of primes of L (including the infinite
primes) withG acting through its action on the primes, and Z is just Z withG acting
trivially; the map Y → Z is

∑
nPP �→∑

nP , and X is its kernel. Tate proved that
there is a canonical isomorphism of doubly infinite exact sequences

· · · −−→ Ĥ r (G,X) −−→ Ĥ r (G,Y ) −−→ Ĥ r (G,Z) −−→ · · ·
⏐⏐'$

⏐⏐'$
⏐⏐'$

· · · −−→ Ĥ r+2(G,L×) −−→ Ĥ r+2(G,JL) −−→ Ĥ r+2(G,CL) −−→ · · · .
(7)

Tate announced this result in his Short Lecture at the 1954 International Congress,
but did not immediately publish the proof.

The Tate-Nakayama Theorem Nakayama (1957) generalized Tate’s isomor-
phism (4) by weakening the hypotheses—it suffices to require them for Sylow
subgroups—and strengthening the conclusion—cup product with u defines an iso-
morphism

x �→ x ∪ u : Ĥ r (G,M)→ Ĥ r+2(G,C ⊗M)
provided C or M is torsion-free. Building on this, Tate (1966c) proved that the
isomorphism (7) holds with each of the sequences (5) and (6) replaced by its tensor
product with M . In other words, he replaced the torus Gm implicit in (7) with an
arbitrary torus defined over K . He also proved the result for any “suitably large” set
of primes S—the module L× is replaced with the group of S-units in L and JL is

6Which had been discovered by Nakayama and Weil, cf. Artin and Tate, 2009, p. 189.
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replaced by the group of idèles whose components are units outside S. This result is
usually referred to as the Tate-Nakayama theorem, and is widely used, for example,
throughout the Langlands program including in the proof of the fundamental lemma.

Abstract Class Field Theory: Class Formations Tate’s theorem (see (4) above)
shows that, in order to have a class field theory over a field k, all one needs is, for
each system of fields

ksep ⊃ L⊃K ⊃ k, [L : k]<∞, L/K Galois,

a G(L/K)-module CL and a “fundamental class” uL/K ∈ H 2(G(L/K),CL) sat-
isfying Tate’s hypotheses; the pairs (CL,uL/K) should also satisfy certain natural
conditions when K and L vary. Then Tate’s theorem then provides “reciprocity”
isomorphisms

CGL
$−→G/[G,G], G=G(L/K),

Artin and Tate (1961, Chap. 14) formalized this by introducing the abstract notion
of a class formation.

For example, for any nonarchimedean local field k, there is a class formation
with CL = L× for any finite extension L of k, and for any global field, there is a
class formation with CL = JL/L×. In both cases, uL/K is the fundamental class.

Let k be an algebraic function field in one variable with algebraically closed
constant field. Kawada and Tate (1955a) show that there is a class formation for
unramified extensions of K with CL the dual of the group of divisor classes of L.
In this way they obtain a “pseudo class field theory” for k, which they examine in
some detail when k =C.

The Weil Group Weil was the first to find a common generalization of Artin L-
series and Hecke L-series. For this he defined what is now known as the Weil group.
The Weil group of a finite Galois extension of number fields L/K is an extension

1→ CL→WL/K→Gal(L/K)→ 1

corresponding to the fundamental class in H 2(GL/K,CL). Each representation of
WL/K has an L-series attached to it, and the L-series arising in this way are called
Artin-Hecke L-series. Weil (1951) constructed these groups, thereby discovering
the fundamental class, and proved the fundamental properties of Weil groups. Artin
and Tate (1961, Chap. XV) developed the theory of the Weil groups in the abstract
setting of class formations, basing their definition on the existence of a fundamental
class. In the latest (2009) edition of the work, Tate expanded their presentation and
included a sketch of Weil’s original construction (pp. 185–189).

Summary The first published exposition of class field theory in which full use of
the cohomology theory is made is Chevalley (1954). There Chevalley writes:
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One of the most baffling features of classical class field theory was that
it appeared to say practically nothing about normal extensions that are not
abelian. It was discovered by A. Weil and, from a different point of view,
T. Nakayama that class field theory was actually much richer than hitherto
suspected; in fact, it can now be formulated in the form of statements about
normal extensions without any mention whatsoever of abelian extensions. Of
course, it is true that it is only in the abelian case that these statements lead
to laws of decomposition for prime ideals of the subfield and to the law of
reciprocity. Nevertheless, it is clear that, by now, we know something about
the arithmetic of non abelian extensions. In fact, since the work of J. Tate,
it may be said that we know almost everything that may be formulated in
terms of cohomology in the idèle class group, and generally a great deal about
everything that can be formulated in cohomological terms.

Notes Tate was not the first to make use of group cohomology in class field theory.
In a sense it had always been there, since crossed homomorphisms and factor sys-
tems had long been used. Weil and Nakayama independently discovered the funda-
mental class, Weil by constructing the Weil group, and Nakayama as a consequence
of his work (partly with Hochschild) to determine the cohomology groups of num-
ber fields in degrees 1 and 2. Tate’s contribution was to give a remarkably simple
description of all the basic cohomology groups of number fields, and to construct
a general isomorphism that, in the particular case of an abelian extension and in
degree −2, became the Artin reciprocity isomorphism.

1.4 The Cohomology of Profinite Groups

Krull (1928) showed that, when the Galois group of an infinite Galois extension of
fieldsΩ/F is endowed with a natural topology, there is a Galois correspondence be-
tween the intermediate fields ofΩ/F and the closed subgroups of the Galois group.
The topological groups that arise as Galois groups are exactly the compact groupsG
whose open normal subgroups U form a fundamental system N of neighbourhoods
of 1. Tate described such topological groups as being “of Galois-type”, but we now
say they are “profinite”.

For a profinite group G, Tate (1958d) considered the G-modules M such that
M =⋃U∈N MU . These are the G-modules M for which the action is continuous
relative to the discrete topology onM . For such a module, Tate defined cohomology
groups Hr(G,M), r ≥ 0, using continuous cochains, and he showed that

Hr(G,M)= lim−→
U∈N

Hr
(
G/U,MU

)

where Hr(G/U,MU) denotes the usual cohomology of the (discrete) finite group
G/U acting on the abelian groupMU . In particular, Hr(G,M) is torsion for r > 0.
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The cohomological dimension and strict cohomological dimension of a profinite
group G relative to a prime number p are defined by the conditions:

cdp(G)≤ n ⇐⇒ Hr(G,M)(p)= 0 whenever r > n andM is torsion;

scdp(G)≤ n ⇐⇒ Hr(G,M)(p)= 0 whenever r > n.

Here (p) denotes the p-primary component. The (strict) cohomological dimen-
sion of a field is the (strict) cohomological dimension of its absolute Galois group.
Among Tate’s theorems are the following statements:

(a) A pro p-groupG is free if and only if cdp(G)= 1. (A pro p-group is a profinite
group G such that G/U is a p-group for all U ∈N ; it is free if it is of the form
lim←−F/N where F is the free group on symbols (ai)i∈I , say, and N runs through
the normal subgroups of G containing all but finitely many of the ai and such
G/N is a finite p-group.)

(b) If k is a local field other than R or C, then scdp(k)= 2 for all p �= char(k).
(c) Let K ⊃ k be an extension of fields of transcendence degree n. Then

cdp(K)≤ cdp(k)+ n,
with equality ifK is finitely generated over k, cdp(k) <∞, and p �= char(k). In
particular, if k is algebraically closed, then the p-cohomological dimension of a
finitely generated K is equal to its transcendence degree over k (p �= char(k)).

According to Tate (1958d), statement (c) “historically arose at [the theory’s] begin-
ning. Its conjecture and the sketch of its proof are due to Grothendieck”. Indeed,
from Grothendieck’s point of view, the cohomology of the absolute Galois group
of a field k should be interpreted as the étale cohomology of Speck, and the last
statement of (c) is suggested by the weak Lefschetz theorem in étale cohomology.

Notes Tate explained the above theory in his 1958 seminar at Harvard.7 Douady
reported on Tate’s work in a Bourbaki seminar in 1959, and Lang included Tate’s
unpublished article (1958d) as Chap. VII of his 1967 book (Lang 1967). Serre in-
cluded the theory in his course at the Collège de France, 1962–1963; see Serre
(1964a). Tate himself published only the brief lectures Tate (2001).

1.5 Duality Theorems

In the early 1960s, Tate proved duality theorems for modules over the absolute Ga-
lois groups of local and global fields that have become an indispensable tool in
Iwasawa theory, the theory of abelian varieties, and in other parts of arithmetic ge-
ometry. The main global theorem was obtained independently by Poitou, and is now
referred to as the Poitou-Tate duality theorem.

7See Shatz, Math Reviews 0212073.



The Work of John Tate 271

Throughout, K is a field, K̄ is a separable closure of K , and G is the absolute
Galois group Gal(K̄/K). All G-modules are discrete (i.e., the action is continu-
ous for the discrete topology on the module). The dual M ′ of such a module is
Hom(M, K̄×).

Local Results Let K be a nonarchimedean local field, i.e., a finite extension of
Qp or Fp((t)). Local class field theory provides us with a canonical isomorphism
H 2(G, K̄×)$Q/Z. Tate proved that, for every finite G-moduleM whose order m
is not divisible by characteristic of K , the cup-product pairing

Hr(G,M)×H 2−r(G,M ′)→H 2(G,K̄×
)$Q/Z (8)

is a perfect duality of finite groups for all r ∈ N. In particular, Hr(G,M) = 0 for
r > 2. Moreover, the following holds for the Euler-Poincaré characteristic ofM :

|H 0(G,M)||H 2(G,M)|
|H 1(G,M)| = 1

(OK : mOK) .

A G-module M is said to be unramified if the inertia group I in G acts trivially
on M . When M is unramified and its order is prime to the residue characteristic,
Tate proved that the submodules H 1(G/I,M) and H 1(G/I,M ′) of H 1(G,M) and
H 1(G,M ′) are exact annihilators in the pairing (8).

Let K =R. In this case, there is a canonical isomorphism H 2(G, K̄×)$ 1
2Z/Z.

For any finite G-moduleM , the cup-product pairing of Tate cohomology groups

Ĥ r (G,M)× Ĥ 2−r(G,M ′)→H 2(G,K̄×
)$ 1

2
Z/Z

is a perfect pairing for all r ∈ Z. Moreover, Ĥ r (G,M) is a finite group, killed by 2,
whose order is independent of r .

Global Results Let K be a global field, and let M be a finite G-module whose
order is not divisible by the characteristic of K . Let

Hr(Kv,M)=
{
Hr(GKv ,M) if v is nonarchimedean

Ĥ r (GKv ,M) otherwise.

The local duality results show that
∏
v H

0(Kv,M) is dual to
⊕
v H

2(Kv,M
′) and

that
∏′
v H

1(Kv,M) is dual to
∏′
v H

1(Kv,M
′)—the ′ means that we are taking the

restricted product with respect to the subgroups H 1(GKv/Iv,M
Iv ).

In the table below, the homomorphisms at right are the duals of the homo-
morphisms at left with M replaced by M ′, i.e., βr(M) = α2−r (M ′)∗ with −∗ =
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Hom(−,Q/Z):

H 0(K,M)
α0−→∏

v H
0(Kv,M)

⊕
v H

2(Kv,M)
β2

−→H 0(K,M ′)∗

H 1(K,M)
α1−→∏′

v H
1(Kv,M)

∏′
v H

1(Kv,M)
β1

−→H 1(K,M ′)∗

H 2(K,M)
α2−→⊕

v H
2(Kv,M)

∏
v H

0(Kv,M)
β0

−→H 2(K,M ′)∗.

The Poitou-Tate duality theorem states that there is an exact sequence

0 −−−→ H 0(K,M)
α0−−−→

∏
v
H 0(Kv,M)

β0

−−−→ H 2(K,M ′)∗
⏐⏐'

H 1(K,M ′)∗ β1

←−−−
∏′

v
H 1(Kv,M)

α1←−−− H 1(K,M)
⏐⏐'

H 2(K,M)
α2−−−→

⊕
v
H 2(Kv,M)

β2

−−−→ H 0(K,M ′)∗ −−−→ 0

(9)

(with explicit descriptions for the unnamed arrows). Moreover, for r ≥ 3, the map

Hr(K,M)→
∏

v real

Hr(Kv,M)

is an isomorphism. In fact, the statement is more general in that one replaces the
set of all primes with a nonempty set S containing the archimedean primes in the
number field case (there is then a restriction on the order ofM).

For the Euler-Poincaré characteristic, Tate proved that

|H 0(G,M)||H 2(G,M)|
|H 1(G,M)| = 1

|M|r1+2r2

∏

v|∞

∣∣MGv
∣∣ (10)

where r1 and r2 are the numbers of real and complex primes.

Notes Tate announced the above results (with brief indications of proof) in his
talk at the 1962 International Congress except for the last statement on the Euler-
Poincaré characteristic, which was announced in Tate (1966e). Tate’s proofs of the
local statements were included in Serre (1964b). Later Tate (1966f) proved a duality
theorem for an abstract class formation, which included both the local and global
duality results, and in which the exact sequence (9) arises as a sequence of Exts.
This proof, as well as proofs of the formulas for the Euler-Poincaré characteristics,
are included in Milne (1986).
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1.6 Expositions

The notes of the famous Artin-Tate seminar on class field theory have been a stan-
dard reference on the topic since they first became available in 1961. They have
recently been republished in slightly revised form by the American Mathematical
Society. Tate made important contributions, both in his article on global class field
theory and in the exercises, to another classic exposition of algebraic number the-
ory, namely, the proceeding of the 1965 Brighton conference (Cassels and Fröhlich
1967). His talk on Hilbert’s ninth problem, which asked for “a proof of the most
general reciprocity law in any number field”, illuminates the problem and the work
done on it (Tate 1976a). Tate’s contribution to the proceedings of the Corvallis con-
ference, gave a modern account of the Weil group and an explanation of the hypo-
thetical nonabelian reciprocity law in terms of the more general Weil-Deligne group
(Tate 1979).

2 Abelian Varieties and Curves

In the course of proving the Riemann hypothesis for curves and abelian varieties in
the 1940s, Weil rewrote the foundations of algebraic geometry, including the theory
of abelian varieties. This made it possible to do algebraic geometry in a rigorous
fashion over arbitrary base fields. In the late 1950s, Grothendieck rewrote the foun-
dations again, developing the more natural and flexible language of schemes.

2.1 The Riemann Hypothesis for Curves

After Hasse proved the Riemann hypothesis for elliptic curves over finite fields in
1930, he and Deuring realized that, in order to extend the proof to curves of higher
genus, one should replace the endomorphisms of the elliptic curve by correspon-
dences. However, they regarded correspondences as objects in a double field, and
this approach didn’t lead to a proof until Roquette (1953) (Roquette was a student
of Hasse). In the meantime Weil had realized that everything needed for the proof
could be found already in the work of the Italian geometers on correspondences,
at least in characteristic zero. In order to give a rigorous proof, he laid the founda-
tions for algebraic geometry over arbitrary fields,8 and completed the proof of the
Riemann hypothesis for all curves over finite fields in 1945 (Weil 1945).9

8The main lacunae at the time were a rigorous intersection theory taking account of the phe-
nomenon of pure inseparability and the construction of the Jacobian variety in nonzero charac-
teristic.
9Much has been written on these events. I’ve found the following particularly useful: Schappacher
(2006).
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The key point of Weil’s proof is that the inequality of Castelnuovo-Severi contin-
ues to hold in characteristic p, i.e., for a divisor D on the product of two complete
nonsingular curves C and C′ over an algebraically closed field,

[D ·D] ≤ 2dd ′ (11)

where d = [D · (P ×C′)] and d ′ = [D · (C ×P ′)] are the degrees of D over C and
C′ respectively. Mattuck and Tate (1958a) showed that it is possible to derive (11)
directly and easily from the Riemann-Roch theorem for surfaces, for which they
were able to appeal to Zariski (1952) or to a sheaf-theoretic proof of Serre which is
sketched in Zariski (1956).

The Mattuck-Tate proof is the most attractive geometric proof of Weil’s theorem.
Grothendieck (1958) simplified it further by showing that the Castelnuovo-Severi
inequality can most naturally be derived from the Hodge index theorem for surfaces,
which itself can be derived directly from the Riemann-Roch theorem.

Hodge proved his index theorem for smooth projective varieties over C. That it
should hold for such varieties in nonzero characteristic is known as Grothendieck’s
“Hodge standard conjecture”, whose proof Grothendieck calls one of the “most ur-
gent tasks in algebraic geometry” (Grothendieck 1969). In the more than forty years
since Grothendieck formulated the conjecture, almost no progress has been made
towards its proof—even in characteristic zero, there exists no algebraic proof in
dimensions greater than 2.

The Tate Module of an Abelian Variety Let A be an abelian variety over a

field k. For a prime l, let A(l) =⋃A(ksep)ln where A(ksep)ln = Ker(A(ksep)
ln−→

A(ksep)). Then A� A(l) is a functor from abelian varieties over k to l-divisible
groups equipped with an action of Gal(ksep/k). When l �= char(k), A(l) $
(Q�/Z�)

2 dimA, and Weil used A(l) to study the endomorphisms of A. Tate observed
that it is more convenient to work with

TlA= lim←−A
(
ksep)

ln
,

which is a free Zl-module of rank 2 dimA when l �= char(k)—this is now called the
Tate module of A.

2.2 Heights on Abelian Varieties

The Néron-Tate (Canonical) Height Let K be a number field, and normalize
the absolute values | · |v of K so that the product formula holds:

∏

v

|a|v = 1 for all v ∈K×.
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The logarithmic height of a point P = (a0 : . . . : an) of Pn(K) is defined to be

h(P )= log

(∏

v

max
{|a0|v, . . . , |an|v

})
.

The product formula shows that this is independent of the representation of P .
Let X be a projective variety. A morphism f : X→ Pn from X into projective

space defines a height function hf (P )= h(f (P )) on X. In a Short Communication
at the 1958 International Congress, Néron conjectured that, in certain cases, the
height is given by a quadratic form.10 Tate proved this for abelian varieties by a
simple direct argument.

Let A be an abelian variety over a number field K . A nonconstant map f : A→
Pn of A into projective space is said to be symmetric if the inverse image D of a
hyperplane is linearly equivalent to (−1)∗D. For a symmetric embedding f , Tate
proved that there exists a unique quadratic map ĥ : A(K)→ R such that ĥ(P ) −
hf (P ) is bounded on A(K). To say that ĥ is quadratic means that ĥ(2P)= 4ĥ(P )
and that the function

P,Q �→ 1

2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)) (12)

is bi-additive on A(K)×A(K).
Note first that there exists at most one function ĥ : A(K)→ R such that (a)

ĥ(P ) − hf (P ) is bounded on A(K), and (b) ĥ(2P) = 4ĥ(P ) for all P ∈ A(K).
Indeed, if ĥ satisfies (a) with bound B , then

∣∣ĥ
(
2nP

)− hf
(
2nP

)∣∣≤ B
for all P ∈A(K) and all n≥ 0. If in addition it satisfies (b), then

∣∣∣∣ĥ(P )−
hf (2nP )

4n

∣∣∣∣≤
B

4n

for all n, and so

ĥ(P )= lim
n→∞

hf (2nP )

4n
. (13)

Tate used Eq. (13) to define ĥ, and applied results of Weil on abelian varieties to
verify that it is quadratic.

Let A′ be the dual abelian variety to A. For a map f : A→ Pn corresponding
to a divisor D, let ϕf : A(K)→ A′(K) be the map sending P to the point on A

10Only the title, Valeur asymptotique du nombre des points rationnels de hauteur bornée sur une
courbe elliptique, of Néron’s communication is included in the Proceedings. The sentence para-
phrases one from: Lang, Serge. Les formes bilinéaires de Néron et Tate. Séminaire Bourbaki,
1963/64, Fasc. 3, Exposé 274.
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represented by the divisor (D + P) − D. Tate showed that there is a unique bi-
additive pairing

〈 , 〉: A′(K)×A(K)→R (14)

such that, for every symmetric f , the function 〈ϕf (P ),P 〉+ 2hf (P ) is bounded on
A(K).

Néron (1965) found his own construction of ĥ, which is much longer than Tate’s,
but which has the advantage of expressing ĥ as a sum of local heights. The height
function ĥ, is now called the Néron-Tate, or canonical, height. It plays a fundamental
role in arithmetic geometry.

Notes Tate explained his construction in his course on abelian varieties at Harvard
in the fall of 1962, but did not publish it. However, it was soon published by others
(Lang 1964; Manin 1964).11

Variation of the Canonical Height of a Point Depending on a Parameter Let
T be an algebraic curve over Qal, and let E→ T be an algebraic family of elliptic
curves parametrised by T . Let P : T → E be a section of E/T , and let ĥt be the
Néron-Tate height on the fibre Et of E/T over a closed point t of T . Tate (1983a)
proves that the map t �→ ĥt (Pt ) is a height function on the curve T for a certain
divisor class q(P ) on T ; moreover, the degree of q(P ) is the Néron-Tate height of
P regarded as a point on the generic fibre of E/T .

As Tate noted “The main obstacle to extending the theorem in this paper to
abelian varieties seems to be the lack of a canonical compactification of the Néron
model in higher dimensions.” After Faltings compactified the moduli stack of
abelian varieties (Faltings 1985), one of his students, William Green, extended
Tate’s theorem to abelian varieties (Green 1989).

Height Pairings Via Biextensions Let A be an abelian variety over a number
field K , and let A′ be its dual. The classical Néron-Tate height pairing is a pairing

A(K)×A′(K)→R

whose kernels are precisely the torsion subgroups of A(K) and A′(K). In order, for
example, to state a p-adic version of the conjecture of Birch and Swinnerton-Dyer,
it is necessary to define a Qp-valued height pairing,

A(K)×A′(K)→Qp.

When A has good ordinary or multiplicative reduction at the p-adic primes, Mazur
and Tate (1983b) use the expression of the duality between A and A′ in terms of
biextensions, and exploit the local splittings of these biextensions, to define such
pairings. They compare their definition with other suggested definitions. It is not
known whether the pairings are nondegenerate modulo torsion.

11Also see footnote 10.
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2.3 The Cohomology of Abelian Varieties

The Local Duality for Abelian Varieties Let A be an abelian variety over a
field k. A principal homogeneous space over A is a variety V over k together with a
regular mapA×V → V such that, for every fieldK containing k for which V (K) is
nonempty, the pairing A(K)×V (K)→ V (K) makes V (K) into a principal homo-
geneous space for A(K) in the usual sense. The isomorphism classes of principal
homogeneous spaces form a group, which Tate (1958b) named the Weil-Châtelet
group, and denoted WC(A/k).

For a finite extension k of Qp , local class field theory provides a canonical
isomorphism H 2(k,Gm) $ Q/Z. Tate (ibid.) defines an “augmented” cup-product
pairing

Hr(k,A)×H 1−r(k,A′
)→H 2(k,Gm)$Q/Z, (15)

and proves that it is a perfect duality for r = 1. In other words, the discrete group
WC(A/k) is canonically dual to the compact group A′(k). Later, he showed that
(15) is a perfect duality for all r . In the case k = R, he proved that H 1(R,A) is
canonically dual to A′(R)/A′(R)◦ = π0(A

′(R)).

Notes The above results are proved in Tate (1958b, 1959b, or 1962d). The analo-
gous statements for local fields of characteristic p are proved in Milne (1970).

Principal Homogeneous Spaces over Abelian Varieties Lang and Tate (1958c)
explain the relation between the set WC(A/k) of isomorphism classes of princi-
pal homogeneous spaces over a group variety A and the Galois cohomology group
H 1(k,A). Briefly, there is a canonical injective map WC(A/k)→H 1(k,A) which
Weil’s descent theorems show to be surjective. This generalizes results of Châtelet.

LetK be a field complete with respect to a discrete valuation with residue field k,
and let A be an abelian variety over K with good reduction to an abelian variety Ā
over k. Then, for any integerm prime to the characteristic of k, Lang and Tate (ibid.)
prove that there is a canonical exact sequence

0→H 1(k, Ā)m→H 1(k,A)m→Hom
(
μm(k), Ā

(
ksep)

m

)→ 0.

In the final section of the article, they study abelian varieties over global fields. In
particular, they prove the weak Mordell-Weil theorem.

As Cassels wrote,12 the article Tate (1962b) provides “A laconic but useful review
of the existing state of knowledge [on principal homogeneous spaces for abelian
varieties] for different types of groundfield.”

The Conjecture of Birch and Swinnerton-Dyer For an elliptic curve A over Q,
Mordell showed that the group A(Q) is finitely generated. It is easy to compute the

12See his Math. Reviews 0138625.
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torsion subgroup of A(Q), but there is at present no proven algorithm for computing
its rank r(A). Computations led Birch and Swinnerton-Dyer to conjecture that r(A)
is equal to the order of the zero at 1 of the L-series of A, and further work led to a
more precise conjecture. Tate (1966e) formulated the analogues of their conjectures
for an abelian variety A over a global field K .

Let v be a nonarchimedean prime ofK , and let κ(v) be the corresponding residue
field. If A has good reduction at v, then it gives rise to an abelian variety A(v) over
κ(v). The characteristic polynomial of the Frobenius endomorphism of A(v) is a
polynomial Pv(T ) of degree 2d with coefficients in Z such that, when we factor it
as Pv(T ) =∏i (1− aiT ), then

∏
i (1− ami ) is the number of points on A(v) with

coordinates in the finite field of degree m over κ(v). For any finite set S of primes
of K including the archimedean primes and those where A has bad reduction, we
define the L-series LS(s,A) by the formula

LS(A, s)=
∏

v /∈S
Pv
(
A,Nv−s

)−1

where Nv = [κ(v)]. The product converges for ((s) > 3/2, and it is conjectured
that LS(A, s) can be analytically continued to a meromorphic function on the whole
complex plane. This is known in the function field case, and over Q for elliptic
curves. The analogue of the first conjecture of Birch and Swinnerton-Dyer for A is
that

LS(A, s) has a zero of order r(A) at s = 1. (16)

Let ω be a nonzero global differential d-form on A. As Γ (A,ΩdA) has dimen-
sion 1, ω is uniquely determined up to multiplication by an element ofK×. For each
nonarchimedean prime v of K , let μv be the Haar measure on Kv for which Ov has
measure 1, and for each archimedean prime, take μv to be the usual Lebesgue mea-
sure on Kv . Define

μv(A,ω)=
∫

A(Kv)

|ω|vμdv
Let μ be the measure

∏
μv on the adèle ring AK of K , and set |μ| = ∫

AK/K
μ.

For any finite set S of primes of K including all archimedean primes and those
nonarchimedean primes for which A has bad reduction or such that ω does not
reduce to a nonzero differential d-form on A(v), we define

L∗S(s,A)= LS(s,A)
|μ|d∏

v∈Sμv(A,ω)
.

The product formula shows that this is independent of the choice of ω. The asymp-
totic behaviour of L∗S(s,A) as s → 1, which is all we are interested in, doesn’t
depend on S. The analogue of the second conjecture of Birch and Swinnerton-Dyer
is that

lim
s→1

L∗S(s,A)
(s − 1)r(A)

= [X(A)] · |D|
[A′(K)tors] · [A(K)tors] (17)
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where X(A) is the Tate-Shafarevich group of A,

X(A)
def= Ker

(
H 1(K,A)→

∏

v

H 1(Kv,A)

)
,

which is conjectured to be finite, and D is the discriminant of the height pairing
(14), which is known to be nonzero.

Global Duality In his talk at the 1962 International Congress, Tate stated the local
duality theorems reviewed above (p. 277), and he announced some global theorems
which we now discuss.

In their computations, Birch and Swinnerton-Dyer found that the order of the
Tate-Shafarevich group predicted by (17) is always a square. Cassels and Tate con-
jectured independently that the explanation for this is that there exists an alternating
pairing

X(A)×X(A)→Q/Z (18)

that annihilates only the divisible subgroup of X(A). Cassels (1962) proved this for
an elliptic curve over a number field. For an abelian variety A and its dual abelian
variety A′, Tate proved that there exists a canonical pairing

X(A)×X
(
A′
)→Q/Z (19)

that annihilates only the divisible subgroups; moreover, for a divisorD on A and the
homomorphism ϕD : A→ A′, a �→ [Da −D], it defines, the pair (α,ϕD(α)) maps
to zero under (19) for all α ∈X(A). The pairing (19), or one of its several variants,
is now called the Cassels-Tate pairing.

For an elliptic curve A over a number field k such that X(A) is finite, Cassels
determined the Pontryagin dual of the exact sequence

0→X(A)→H 1(k,A)→
⊕

v

H 1(kv,A)→B(A)→ 0 (20)

(regarded as a sequence of discrete groups). Assume that X(A) is finite. Using
Tate’s local duality theorem (see p. 277) for an elliptic curve, Cassels (1964) showed
that the dual of (20) takes the form

0←X←Θ←
∏

v

A(kv)
′ ← Ã(k)← 0 (21)

for a certain explicit Θ and with Ã(k) equal to the closure of A(k) in
∏
v A(kv)

′.
Tate proved the same statement for abelian varieties over number fields, except that,
in (21), it is necessary to replace A with its dual A′. So modified, the sequence (21)
is now called the Cassels-Tate dual exact sequence.

Let A and B be isogenous elliptic curves over a number field. Then LS(s,A)=
LS(s,B) and r(A) = r(B), and so the first conjecture of Birch and Swinnerton-
Dyer is true for A if and only if it is true for B . Cassels (1965) proved the same
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statement for the second conjecture. This amounts to showing that a certain product
of terms doesn’t change in passing from A to B (even though the individual terms
may change). Using his duality theorems and the formula (10), p. 272, for the Euler-
Poincaré characteristic, Tate (1966e, 2.1) proved the same result for abelian varieties
over number fields.

Tate’s global duality theorems were widely used, even before there were pub-
lished proofs. Since 1994, the duality theorems have been used in cryptography.

Notes Tate’s results are more general and complete than stated above; in particular,
he works with a nonempty set S of primes of k (not necessarily the complete set).
Proofs of the theorems of Tate in this subsection can be found in Milne (1986).

2.4 Serre-Tate Liftings of Abelian Varieties

In a talk at the 1964 Woods Hole conference, Tate discussed some results of his and
Serre on the lifting of abelian varieties from characteristic p.

For an abelian scheme A over a ring R, let An denote the kernel of A
pn−→ A

regarded as a finite group scheme over R, and let A(p) denote the direct system

A1 ↪→A2 ↪→ ·· · ↪→An ↪→ ·· ·
of finite group schemes. Let R be an artinian local ring with residue field k of char-
acteristic p �= 0. An abelian scheme A over R defines an abelian variety Ā over k
and a system of finite group schemes A(p) over R. Serre and Tate prove that the
functor

A�
(
Ā,A(p)

)

is an equivalence of categories (Serre-Tate theorem). In particular, to lift an abelian
variety A from k to R amounts to lifting the system of finite group schemes A(p).

This has many important consequences.

• Let A and B be abelian schemes over a complete local noetherian ring R with
residue field a field k of characteristic p �= 0. A homomorphism f : Ā→ B̄ of
abelian varieties over k lifts to a homomorphism A→ B of abelian schemes over
R if and only if f (p) : Ā(p)→ B̄(p) lifts to R. For the artinian quotients of R,
this is part of the above statement, and the statement for R follows by passing to
the limit over the artinian quotients of R and applying a theorem of Grothendieck.

• Let A be an abelian variety over a perfect field k of characteristic p �= 0. If A is
ordinary, then

An ≈
(
Z/pnZ

)dimA × (μpn)dimA,

and so each An has a canonical lifting to a finite group scheme over the ring
W(k) of Witt vectors of k. Thus A has a canonical lifting to an abelian scheme
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over W(k) (at least formally, but the existence of polarizations implies that the
formal abelian scheme is an abelian scheme). Deligne (1969) has used this to
give a “linear algebra” description of the category of ordinary abelian varieties
over a finite field similar to the classical description of abelian varieties over C.

• Over a ring R in which p is nilpotent, the infinitesimal deformation theory of A
is equivalent to the infinitesimal deformation theory of A(p). For example, when
A is ordinary, this implies that the local deformation space of an ordinary abelian
variety A over k has a natural structure of a formal torus over W(k) of relative
dimension dim(A)2.

Notes Lifting results were known to Hasse and Deuring for elliptic curves. The
canonical lifting of an ordinary abelian variety was found by Serre, prompting Tate
to prove the general result. Lubin, Serre, and Tate (1964b) contains a sketch of the
proofs. The liftings of A obtained from liftings of the system A(p) are sometimes
called Serre-Tate liftings, especially in the ordinary case. Messing (1972) includes
a proof of the Serre-Tate theorem.

2.5 Mumford-Tate Groups and the Mumford-Tate Conjecture

In 1965, Mumford gave a talk at the AMS Summer Institute (Mumford 1966) whose
results he described as being “partly joint work with J. Tate”. In it, he attached a
reductive group to an abelian variety, and stated a conjecture. The first is now called
the Mumford-Tate group, and the second is the Mumford-Tate conjecture.

Let A be a complex abelian variety of dimension g. Then V
def= H1(A,Q) is a

Q-vector space of dimension 2g whose tensor product with R acquires a complex
structure through the canonical isomorphism

H1(A,Q)R $ Tgt0(A).

Let u : U1 → GL(VR) be the homomorphism describing this complex structure,
where U1 = {z ∈ C | |z| = 1}. The Mumford-Tate group of A is defined to be the
smallest algebraic subgroup H of GLV such that H(R) contains u(U1).13 Then H
is a reductive algebraic group over Q, which acts on H ∗(Ar,Q), r ∈N, through the
isomorphisms

H ∗(Ar,Q
)$

∗∧
H 1(Ar,Q

)
,

H 1(Ar,Q
)$ rH 1(A,Q),

H 1(A,Q)$Hom(V ,Q).

13Better, it should be thought of as the pair (H,u).
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It can be characterized as the algebraic subgroup of GLV that fixes exactly the
Hodge tensors in the spaces H ∗(Ar,Q), i.e., the elements of the Q-spaces

H 2p(Ar,Q
)∩
⊕

Hp,p
(
Ar
)
.

Let A be an abelian variety over a number field k, and, for a prime number l, let

VlA=Ql ⊗Zl
TlA

where TlA is the Tate module of A (p. 274). Then

VlA$Ql ⊗Q H1(AC,Q).

The Galois group G(kal/k) acts on A(kal), and hence there is a representation

ρl : G
(
kal/k

)→GL(VlA)

The Zariski closure Hl(A) of ρl(G(kal/k)) is an algebraic group in GLVlA. Al-
though Hl(A) may change when k is replaced by a finite extension, its identity
component Hl(A)◦ does not and can be thought of as determining the image of ρl
up to finite groups. The Mumford-Tate conjecture states that

Hl(A)
◦ = (Mumford–Tate group of AC)Ql inside GLVlA $ (GLH1(AC,Q))Ql .

In particular, it posits that the Ql-algebraic groups Hl(A)◦ are independent of l in
the sense that they all arise by base change from a single algebraic group over Q. In
the presence of the Mumford-Tate conjecture, the Hodge and Tate conjectures for A
are equivalent. Much is known about the Mumford-Tate conjecture.

Let H be the Mumford-Tate group of an abelian variety A, and let u : U1 →
H(R) be the above homomorphism. The centralizer K of u in H(R) is a maximal
compact subgroup of H(R), and the quotient manifold X =H(R)/K has a unique
complex structure for which u(z) acts on the tangent space at the origin as multipli-
cation by z. With this structure X is isomorphic to a bounded symmetric domain,
and it supports a family of abelian varieties whose Mumford-Tate groups “refine”
that of A. The quotients of X by congruence subgroups of H(Q) are connected
Shimura varieties.

The notion of a Mumford-Tate group has a natural generalization to an arbitrary
polarizable rational Hodge structure. In this case the quotient space X is a homo-
geneous complex manifold, but it is not necessarily a bounded symmetric domain.
The complex manifolds arising in this way were called Mumford-Tate domains by
Green et al. (2010). As these authors say: “Mumford-Tate groups have emerged as
the principal symmetry groups in Hodge theory.”
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2.6 Abelian Varieties over Finite Fields (Weil, Tate, Honda Theory)

Consider the category whose objects are the abelian varieties over a field k and
whose morphisms are given by

Hom0(A,B)
def= Hom(A,B)⊗Q.

Weil’s results (Weil 1946) imply that this is a semisimple abelian category whose
endomorphism algebras are finite dimensional Q-algebras. Thus, to describe the
category up to equivalence, it suffices to list the isomorphism classes of simple
objects and, for each class, describe the endomorphism algebra of an object in the
class. This the theory of Weil, Tate, and Honda does when k is finite. Briefly: Weil
showed that there is a well-defined map from isogeny classes of simple abelian
varieties to conjugacy classes of Weil numbers, Tate proved that the map is injective
and determined the endomorphism algebra of each simple class, and Honda used
the theory of Shimura and Taniyama to prove that the map is surjective.

In more detail, let k be a field with q = pa elements. Each abelian variety A
over k admits a Frobenius endomorphism πA, which acts on the kal-points of A as
(a0 : a1 : . . .) �→ (a

q

0 : aq1 : . . .). Weil proved that the image of πA in C under any
homomorphism Q[πA] → C is a Weil q-integer, i.e., it is an algebraic integer with

absolute value q
1
2 (this is the Riemann hypothesis). Thus, attached to every simple

abelian variety A over k, there is a conjugacy class of Weil q-integers. Isogenous
simple abelian varieties give the same conjugacy class.

Tate (1966b) proved that a simple abelian A is determined up to isogeny by the
conjugacy class of πA, and moreover, that Q[πA] is the centre of End0(A). Since
End0(A) is a division algebra with centre the field Q[πA], class field theory shows
that its isomorphism class is determined by its invariants at the primes v of Q[πA].
These Tate determined as follows:

invv
(
End0(A)

)=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if v is real,
ordv(πA)
ordv(q)

[Q[πA]v : Qp] if v|p,
0 otherwise.

Moreover,

2 dimA= [End0(A) : Q[πA]
] 1

2 · [Q[πA] : Q
]
.

The abelian varieties of CM-type over C are classified up to isogeny by their CM-
types, and every such abelian variety has a model over Qal. When we choose a p-
adic prime of Qal, an abelian varietyA of CM-type over Qal specializes to an abelian
variety Ā over a finite field of characteristic p. The Shimura-Taniyama formula
determines πĀ up to a root of 1 in terms of the CM-type of A. Using this, Honda
(1968) proved that every Weil q-number arises from an abelian variety, possibly
after a finite extension of the base field. An application of Weil restriction of scalars
completes the proof.
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2.7 Good Reduction of Abelian Varieties

The language of Weil’s foundations of algebraic geometry is ill-suited to the study
of algebraic varieties in mixed characteristic. For example, it makes it cumbersome
to prove even that an algebraic variety over a number field has good reduction at
almost all primes of the field (Shimura 1955, Theorem 26). Serre and Tate (1968a)
use schemes and Néron’s theory of minimal models (Néron 1964) to simplify and
sharpen known results for abelian varieties, and to extend some statements from
elliptic curves to abelian varieties.

Let R be a discrete valuation ring with field of fractions K and perfect residue
field k. For an abelian variety A over K , Néron proved that the functor sending a
smooth R-scheme X to Hom(XK,A) is represented by a smooth group scheme Ã
of finite type over R. Using this, Serre and Tate prove the following criterion:

If A has good reduction, then the Gal(Ksep/K)-module A(Ksep)m is un-
ramified for all integers m prime to char(k); conversely, if A(Ksep)m is un-
ramified for infinitely many m prime to char(k), then A has good reduction.

The necessity was known earlier, and the sufficiency was known to Ogg and Sha-
farevich. in the case of elliptic curves. Because it is a direct consequence of the
existence of Néron’s models, Serre and Tate call it the “Néron-Ogg-Shafarevich cri-
terion”. It is of fundamental importance.

Serre and Tate say that an abelian variety has potential good reduction if it ac-
quires good reduction after a finite extension of the base field, and they prove a
number of results about such varieties. For example, when R is strictly henselian,
there is a smallest extension L of K in Kal over which such an abelian variety A
has good reduction, namely, the extension of K generated by the coordinates of the
points of order m for any m ≥ 3 prime to char(k). Moreover, just as for elliptic
curves, the notion of the conductor of an abelian variety is well defined.

Let (A, i) be an abelian variety over a number field K with complex multiplica-
tion by E. By this we mean that E is a CM field of degree 2 dimA over Q, and that i
is a homomorphism of Q-algebras E→ End0(A). Serre and Tate apply their earlier
results to show that such an abelian variety A acquires good reduction everywhere
over a cyclic extension L of K ; moreover, L can be chosen to have degree m or 2m
where m is the least common multiple of the images of the inertia groups acting on
the torsion points of A.

Let (A, i) and E be as in the last paragraph, and let CK be the idèle class group
of K . Shimura and Taniyama (1961, 18.3) show there exists a (unique) homomor-
phism ρ : CK → (R⊗Q E)

× with the following property: for each σ : E→ C, let
χσ be the Hecke character

χσ : CK ρ−→ (R⊗Q E)
× 1⊗σ−→C×;

then the L-series L(s,A) coincides with the product
∏
σ L(s,χσ ) of the L-series of

the χσ , except possibly for the factors corresponding to a finite number of primes
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of K .14 Serre and Tate make this more precise by showing that the conductor of A
is the product of the conductors of the χσ (which each equals the conductor of ρ).
In particular, the support of the conductor of each χσ equals the set of primes where
A has bad reduction, from which it follows that L(s,A) and

∏
σ L(s,χσ ) coincide

exactly.

2.8 CM Abelian Varieties and Hilbert’s Twelfth Problem

A CM-type on a CM field E is a subset Φ of Hom(E,C) such that Φ � Φ̄ =
Hom(E,C). For σ ∈Aut(C), let σΦ = {σ ◦ϕ | ϕ ∈Φ}. Then σΦ is also a CM-type
on E. The reflex field of (E,Φ) is the subfield F of C such that an automorphism
σ of C fixes F if and only if σΦ =Φ . It is easy to see that F is a CM-subfield of
Qal ⊂C.

Let (A, i) be an abelian variety over C with complex multiplication by E. Then
E acts on the tangent space ofA at 0 through a CM-typeΦ , and (A, i) is said to be of
CM-type (E,Φ). For σ ∈Aut(C/Q), σ(A, i) is of CM-type σΦ , and it follows that
σ(A, i) is isogenous to (A, i) if and only if σ fixes the reflex field F . Fix a polariza-
tion λ of A whose Rosati involution acts as complex multiplication on E. For an in-
teger m≥ 1, let S(m) be the set of isomorphism classes of quadruples (A′, λ′, i′, η)
such that (A′, λ′, i′) is isogenous to (A,λ, i) and η is a level m-structure on (A′, i′).
According to the preceding observation, Aut(C/F ) acts on the set S(m). Shimura
and Taniyama prove that this action factors through Aut(F ab/F ), and they describe
it explicitly. In this way, they generalized the theory of complex multiplication from
elliptic curves to abelian varieties, and they provided a partial solution to Hilbert’s
twelfth problem for F .

In one respect the result of Shimura and Taniyama falls short of generalizing the
elliptic curve case: for an elliptic curve, the reflex field F is a complex quadratic ex-
tension of Q; since one knows how complex conjugation acts on CM elliptic curves
and their torsion points, the elliptic curve case provides a description of how the full
group Aut(C/Q) acts on CM elliptic curves and their torsion points. Shimura asked
whether there was a similar result for abelian varieties, but concluded rather pes-
simistically that “In the higher-dimensional case, however, no such general answer
seems possible” (Shimura 1977).

Grothendieck’s theory of motives suggests the framework for an answer. The
Hodge conjecture implies the existence of Tannakian category of CM-motives
over Q, whose motivic Galois group is an extension

1→ S→ T →Gal
(
Qal/Q

)→ 1

of Gal(Qal/Q) (regarded as a pro-constant group scheme) by the Serre group S (a
certain pro-torus). Étale cohomology defines a section λ of T → Gal(Qal/Q) over

14Rather, this is Serre and Tate’s interpretation of what they prove; Shimura and Taniyama express
their results in terms of ideals.
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the finite adèles. The pair (T ,λ) (tautologically) describes the action of Aut(C/Q)
on the CM abelian varieties and their torsion points. Deligne’s theorem on Hodge
classes on abelian varieties allows one to construct the pair (T ,λ) without assuming
the Hodge conjecture. To answer Shimura’s question, it remains to give a direct
explicit description of (T ,λ).

Langlands’s work on the zeta functions of Shimura varieties led him to define a
certain explicit cocycle (Langlands 1979, §5), which Deligne recognized as conjec-
turally being that describing the pair (T ,λ).

Tate was inspired by this to commence his own investigation of Shimura’s ques-
tion. He gave a simple direct construction of a map f that he conjectured describes
how Aut(C/Q) acts on the CM abelian varieties and their torsion points, and proved
this up to signs. More precisely, he proved it up to a map e with values in an adèlic
group such that e2 = 1. See Tate (1981c).

It was soon checked that Langlands’s and Tate’s conjectural descriptions of how
Aut(C/Q) acts on the CM abelian varieties and their torsion points coincided, and
a few months later Deligne (1982) proved that their conjectural descriptions are
indeed correct.

3 Rigid Analytic Spaces

After Hensel introduced the p-adic number field Qp in the 1890s, there were at-
tempts to develop a theory of analytic functions over Qp , the most prominent being
that of Krasner. The problem is that every disk D in Qp can be written as a dis-
joint union of arbitrarily many open-closed smaller disks, and so there are too many
functions on D that can be represented locally by power series. Outside a small
group of mathematicians, p-adic analysis attracted little attention until the work of
Dwork and Tate in late 1950s. In February, 1958, Tate sent Dwork a letter in which
he stated a result concerning elliptic curves, and challenged Dwork to find a proof
using p-adic analysis. In answering the letter, Dwork found “the first suggestion
of a connection between p-adic analysis and the theory of zeta functions” (Dwork
1963).15 By November, 1959, Dwork had found his famous proof of the rational-
ity of the zeta function Z(V,T ) of an algebraic variety V over a finite field, a key
point of which is to express Z(V,T ), which initially is a power series with integer
coefficients, as a quotient of two p-adically entire functions (Dwork 1960).

In 1959 also, Tate discovered that, suitably normalized, certain classical formulas
allow one to express many elliptic curves E over a nonarchimedean local field K as
a quotient E(K) =K×/qZ. This persuaded him that there should exist a category
in which E itself, not just its points, is a quotient; in other words, that there exists
a category in which E, as an “analytic space”, is the quotient of K×, as an “ana-
lytic space”, by the discrete group qZ. Two years later, Tate constructed the correct
category of “rigid analytic spaces”, thereby founding a new subject in mathematics
(with its own Math. Reviews number 14G22).

15Katz and Tate (1999, p. 343).
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3.1 The Tate Curve

Let E be an elliptic curve over C. The choice of a differential ω realizes E(C) as the
quotient C/Λ$E(C) of C by the lattice of periods of ω. More precisely, it realizes
the complex analytic manifold Ean as the quotient of the complex analytic manifold
C by the action of the discrete group Λ.

For an elliptic curve E over a p-adic field K , there is no similar description
of E(K) because there are no nonzero discrete subgroups of K (if λ ∈ K , then
pnλ→ 0 as n→∞). However, there is an alternative uniformization of elliptic
curves over C. Let Λ be the lattice Z+Zτ in C. Then the exponential map e : C→
C× sends C/Λ isomorphically onto C×/qZ where q = e(τ ), and so C×/qZ $ Ean

(as analytic spaces). If Im(τ ) > 0, then |q|< 1, and the elliptic curve Eq is given by
the equation

Y 2Z +XYZ =X3 − b2XZ
2 − b3Z

3, (22)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b2 = 5
∞∑

n=1

n3qn

1− qn = 5q + 45q2 + 140q3 + · · ·

b3 =
∞∑

n=1

7n5 + 5n3

12

qn

1− qn = q + 23q2 + 154q3 + · · ·
(23)

are power series with integer coefficients. The discriminant and modular invariant
of Eq are given by the usual formulas

"= q
∏

n≥1

(
1− qn)24 (24)

j (Eq)= (1+ 48b2)
3

q
∏
n≥1(1− qn)24

= 1

q
+ 744+ 196884q + · · · . (25)

Now let K be a field complete with respect to a nontrivial nonarchimedean valu-
ation with residue field of characteristic p �= 0, and let q be an element of K× with
|q|< 1. The series (23) converge in K , and Tate discovered16 that (22) is an elliptic
curve Eq such that K ′/qZ $ Eq(K ′) for all finite extension K ′ of K . It follows
from certain power series identities, valid over Z, that the discriminant and modular
invariant of Eq are given by (24) and (25). Every j ∈K× with |j |< 1 arises from
a q (determined by (25), which allows q to be expressed as a power series in 1/j
with integer coefficients). The function field K(Eq) of Eq consists of the quotients

16“I still remember the thrill and amazement I felt when it occurred to me that the classical formulas
for such an isomorphism over C made sense p-adically when properly normalized.” Tate (2008).
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F/G of Laurent series

F =
∞∑

−∞
anz

n, G=
∞∑

−∞
bnz

n, an, bn ∈K,

converging for all nonzero z in Cp , such that the F/G is invariant under qZ:

F(qz)/G(qz)= F(z)/G(z).
The elliptic curves E overK with |j (E)|< 1 that arise in this way are exactly those
whose reduced curve has a node with tangents that are rational over the base field.
They are now called Tate (elliptic) curves.

Tate’s results were contained in a 1959 manuscript, which he did not publish until
1995, but there soon appeared several summaries of his results in the literature, and
Roquette (1970) gave a very detailed account of the theory. The Tate curve has
found many applications, for example, to Tate’s isogeny conjecture (Serre 1968a;
Tate 1995, p. 180) and to the study of elliptic modular curves near a cusp (Deligne
and Rapoport 1973). Mumford (1972) generalized Tate’s construction to curves of
higher genus, and McCabe (1968) and Raynaud (1971) generalized it to abelian
varieties of higher dimension.

3.2 Rigid Analytic Spaces

Tate’s idea that his p-adic uniformization of elliptic curves indicated the existence
of a general theory of p-adic analytic spaces was radically new. For example,
Grothendieck was initially very negative.17 However, when Tate began to work out
his theory in the fall of 1961, Grothendieck, who was visiting Harvard at the time,
became very optimistic,18 and was very supportive.

Let K be a field complete with respect to a nontrivial nonarchimedean valuation,
and let K̄ be its algebraic closure. Tate began by introducing a new class of K-
algebras. The Tate algebra Tn =K{X1, . . . ,Xn} consists of the formal power series
in K[[X1, . . . ,Xn]] that are convergent on the unit ball,

Bn = {(ci)1≤i≤n ∈ K̄ | |ci | ≤ 1
}
.

17“Tate has written to me about his elliptic curve stuff, and has asked me if I had any ideas for a
global definition of analytic varieties over complete valuation fields. I must admit that I have abso-
lutely not understood why his results might suggest the existence of such a definition, and I remain
skeptical. Nor do I have the impression of having understood his theorem at all; it does nothing
more than exhibit, via brute formulas, a certain isomorphism of analytic groups.” Grothendieck,
letter to Serre, August 18, 1959.
18“Sooner or later it will be necessary to subsume ordinary analytic spaces, rigid analytic spaces,
formal schemes, and maybe even schemes themselves into a single kind of structure for which all
these usual theorems will hold.” Grothendieck, letter to Serre, October 19, 1961.
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Thus the elements of Tn are the power series

f =
∑
ai1···inX

i1
1 · · ·Xinn , ai1···in ∈K, such that ai1···in → 0 as (i1, . . . , in)→∞.

Tate (1962c) shows that Tn is a Banach algebra for the norm ‖f ‖ = sup |ai1···in |, and
that the ideals a of Tn are closed and finitely generated. A quotient Tn/a of Tn is
a Banach algebra whose topology is independent of its presentation (because every
homomorphism of such algebras is continuous). Such quotients are called affinoid
(or Tate) K-algebras, and the category of affine rigid analytic spaces is the opposite
of the category of affinoid K-algebras.

We need a geometric interpretation of this category. Tate showed that Tn is
Jacobson (i.e., every prime ideal is an intersection of maximal ideals), and that
the map A �→ max(A) sending an affinoid algebra to its set of maximal ide-
als is a functor: a homomorphism ϕ : A→ B of affinoid algebras defines a map
ϕ◦ : max(B)→ max(A). The set max(A) has the Zariski topology, which is very
coarse, and a canonical topology induced from that of K . When K is algebraically
closed, max(Tn)$ Bn, and, by definition, max(A) can be realized as a closed subset
of max(Tn) for some n.

Let X =max(A). One would like to define a sheaf OX on X such that, for every
open subset U isomorphic to Bn, OX(U)$ Tn. As noted at the start of this section,
this is impossible. However, Tate’s realized that it is possible to achieve something
like this by allowing only certain “admissible” open subsets and certain “admis-
sible” coverings. He defined an affine subset of X to be a subset Y such that the
functor of affinoid K-algebras

B�
{
ϕ : A→ B | ϕ◦(max(B)

)⊂ Y}

is representable (say, by A→ A(Y)). A subset Y of X is a special affine subset of
X if there exist two finite families (fi) and (gj ) of elements of A such that

Y = {x ∈X ∣∣ ∣∣fi(x)
∣∣≤ 1,

∣∣gj (x)
∣∣≥ 1, all i, j

}
.

Every special affine subset is affine. Tate’s acyclicity theorem (Tate 1962c, 8.2) says
that, for every finite covering (Xi)i∈I of X by special affines, the C̆ech complex of
the presheaf Y �→A(Y),

0→A→
∏

i0

A(Xi0)→
∏

i0<i1

A(Xi0 ∩Xi1)→ ·· ·

→
∏

i0<···<ip
A(Xi0 ∩ · · · ∩Xip)→ ·· · ,

is exact. In particular, Y �→A(Y) satisfies the sheaf condition on such coverings.
Using Tate’s acyclicity theorem it is possible to define a collection of admissible

open subsets of X = max(A) and admissible coverings of them for which there
exists a functor OX satisfying the sheaf conditions and such that OX(Y ) = A(Y)
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for any affine subset. Although the admissible open subsets and coverings don’t
form a topology in the usual sense, they satisfy the conditions necessary for them
to support a sheaf theory—in fact, they form a Grothendieck topology. So, in this
sense, Tate recovers analytic continuation.

For the final step, extending the category of affine rigid analytic spaces to a cat-
egory of global rigid analytic spaces, Tate followed suggestions of Grothendieck.
This step has since been clarified and simplified; see, for example, Bosch (2005),
especially 1.12.

Tate reported on his work in a series of letters to Serre, who had them typed by
IHES as the notes Tate (1962c). These notes were distributed to a number of math-
ematicians and libraries. They soon attracted the attention of the German school of
complex analytic geometers, who were able to transfer many of their arguments and
results to the new setting (e.g., Kiehl 1967). Already by 1984 to give a comprehen-
sive account of the theory required a book of over 400 pages (Bosch et al. 1984).
Tate did not publish his work, but eventually the editors of “Mir” published a Rus-
sian translation of his notes (Tate 1969a), and the editors of “Inventiones” published
the original (Tate 1971).

There have been a number of extensions of Tate’s theory. For example, following
a suggestion of Grothendieck, Raynaud showed that it is possible to realize a rigid
analytic space over a field K as the “generic fibre” of a formal scheme over the
valuation ring of K . One problem with rigid analytic spaces is that, while they are
adequate for the study of coherent sheaves, they have too few points for the study
of locally constant sheaves—for example, there exist nonzero such sheaves whose
stalks are all zero. Berkovich found a solution to this problem by enlarging the
underlying set of a rigid analytic space without altering the sheaf of functions so
that the spaces now support an étale cohomology theory (Berkovich 1990, 1993).

Rigid analytic spaces are now part of the landscape of arithmetic geometry: just
as it is natural to regard the R-points of a Q-variety as a real analytic space, it has
become natural to regard the Qp-points of the variety as a rigid analytic space. They
have found numerous applications, for example, in the solution by Harbater and
Raynaud of Abyhankar’s conjecture on the étale fundamental groups of curves, and
in the Langlands program (see Sect. 5.1).

4 The Tate Conjecture

This stuff is too beautiful not to be
true

Tate19

The Hodge conjecture says that a rational cohomology class on a nonsingular
projective variety over C is algebraic if it is of type (p,p). The Tate conjecture says

19As a thesis topic, Tate gave me the problem of proving a formula that he and Mike Artin had
conjectured concerning algebraic surfaces over finite fields (Conjecture C below). One day he ran
into me in the corridors of 2 Divinity Avenue and asked how it was going. “Not well” I said, “In
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that an �-adic cohomology class on a nonsingular projective variety over a finitely
generated field k is in the span of the algebraic classes if it is fixed by the Galois
group. (A field is finitely generated if it is finitely generated as a field over its prime
field.)

4.1 Beginnings

In the last section of his talk at the 1962 International Congress, Tate states several
conjectures.

4.1.1 For every abelian variety A over a global field k and prime � �= char(k),
X(A/k)(�) is finite.

Let k be a global function field, and let k0 be its finite field of constants, so that
k = k0(C) for a complete nonsingular curve C over k0. An elliptic curve A over k is
the generic fibre of a map X→ C with X a complete nonsingular surface over k0,
which may be taken to be a minimal. Tate showed that, in this case, 4.1.1 is

X A

C Spec(k)

equivalent to the following conjecture.

4.1.2 Let q = |k0|. The Z�-submodule of H 2
et(Xkal

0
,Z�) on which the Frobenius map

acts as multiplication by q is exactly the submodule generated by the algebraic
classes.

one example, I computed the left hand side and got p13; for the other side, I got p17; 13 is not
equal to 17, and so the conjecture is false.” For a moment, Tate was taken aback, but then he broke
into a grin and said “That’s great! That’s really great! Mike and I must have overlooked some small
factor which you have discovered.” He took me off to his office to show him. In writing it out in
front of him, I discovered a mistake in my work, which in fact proved that the conjecture is correct
in the example I considered. So I apologized to Tate for my carelessness. But Tate responded:
“Your error was not that you made a mistake—we all make mistakes. Your error was not realizing
that you must have made a mistake. This stuff is too beautiful not to be true.” Benedict Gross tells
of a similar experience, but as he writes: “John was so encouraging, saying that everyone made
mistakes, and the key was to understand them and to keep thinking about the problem. I felt that
one of his greatest talents as an advisor was to make his students feel like we were partners in a
great enterprise, modern number theory.”
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As Tate notes, 4.1.2 makes sense for any complete nonsingular surface over k0,
and that, so generalized, it is equivalent to the following statement.20

4.1.3 Let X be a complete nonsingular surface over a finite field. The order of the
pole of ζ(X, s) at s = 1 is equal to the number of algebraically independent divisors
on X.

Mumford pointed out that 4.1.3 implies that elliptic curves over a finite field
are isogenous if and only if they have the same zeta function, and he proved this
using results of Deuring (1941) on the lifting to characteristic 0 of the Frobenius
automorphism.

In his talk at the 1964 Woods Hole conference, Tate vastly generalized these
conjectures.

4.2 Statement of the Tate Conjecture

For a connected nonsingular projective variety V over a field k, we let Zr (V ) denote
the Q-vector space of algebraic cycles on V of codimension r , i.e., the Q-vector
space with basis the irreducible closed subsets of V of dimension dimV − r . We
let Hret(V ,Q�(s)) denote the étale cohomology group of V with coefficients in the
“Tate twist” Q�(s) of Q�. There are cycle maps

cr : Zr (V )→H 2r
et

(
V,Q�(r)

)
.

Assume that � �= char(k). Let k̄ be an algebraically closed field containing k,
and let G(k̄/k) be the group of automorphisms of k̄ fixing k. Then G(k̄/k) acts on
H 2r

et (Vk̄,Q�(r)), and the Tate conjecture21 (Tate 1964a, Conjecture 1) is the follow-
ing statement:22

T r(V ): When k is finitely generated, the Q�-space spanned by cr(Zr (Vk̄))
consists of the elements of H 2r

et (Vk̄,Q�(r)) fixed by some open subgroup of
G(k̄/k).

20Assuming the Weil conjectures, which weren’t proved until 1973.
21In the literature, a number of variants of T r (V ), not obviously equivalent to it, are also called the
Tate conjecture. It is not always easy to discern what an author means by the “Tate conjecture”.
22Since Atiyah and Hirzebruch had already found their counterexample to an integral Hodge con-
jecture, Tate was not tempted to state his conjecture integrally.
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Suppose for simplicity that k̄ is an algebraic closure of k. For any finite extension k′
of k in k̄, there is a commutative diagram

Zr (Vk̄)
cr−−−−→ H 2r

et (Vk̄,Q�(r))-⏐⏐
-⏐⏐

Zr (Vk′)
cr−−−−→ H 2r

et (Vk′ ,Q�(r)),

and the image of the right hand map is H 2r
et (Vk̄,Q�(r))

G(k̄/k′). As Zr (Vk̄) =⋃
k′ Zr (Vk′), we see that

cr
(
Zr (Vk̄)

)⊂
⋃

k′
H 2r

et

(
Vk̄,Q�(r)

)G(k̄/k′)
.

The content of the Tate conjecture is that the first set spans the space on the right.
If an element of Zr (Vk̄) is fixed by G(k̄/k′), then it lies in Zr (Vk′), and so T r(V )
implies that

cr
(
Zr (Vk′)

)
Q� =H 2r

et

(
Vk̄,Q�(r)

)G(k̄/k′); (26)

conversely, if (26) holds for all (sufficiently large) k′, then T r(V ) is true.
When asked about the origin of the Tate conjecture, Tate responded (Tate 2011):

Early on I somehow had the idea that the special case about endomor-
phisms of abelian varieties over finite fields might be true. A bit later I real-
ized that a generalization fit perfectly with the function field version of the
Birch and Swinnerton-Dyer conjecture. Also it was true in various particu-
lar examples which I looked at and gave a heuristic reason for the Sato-Tate
distribution. So it seemed a reasonable conjecture.

I discuss each of these motivations in turn.

4.3 Homomorphisms of Abelian Varieties

Let A be an abelian variety over a field k, let k̄ be an algebraically closed field
containing k, and let G(k̄/k) denote the group of automorphisms of k̄ over k. For
� �= char(k),

A� T�A= lim←−A(k̄)�n
is a functor from abelian varieties over k to Z�-modules equipped with an action of
G(k̄/k). The (Tate) isogeny conjecture is the following statement:

H(A,B): For abelian varieties A,B over a finitely generated field k, the
canonical map

Z� ⊗Hom(A,B)→Hom(T�A,T�B)
G(k̄/k)



294 J.S. Milne

is an isomorphism.

It follows from Weil’s theory of correspondences and the interpretation of divisorial
correspondences as homomorphisms, that, for varieties V and W ,

NS(V ×W)$NS(V )⊕NS(W)⊕Hom(A,B) (27)

where A is the Albanese variety of V , B is the Picard variety ofW , and NS denotes
the Néron-Severi group. On comparing (27) with the decomposition of H 2(V ×W,
Q(1)) given by the Künneth formula, we find that, for varieties V and W over a
finitely generated field k,

T 1(V ×W) ⇐⇒ T 1(V )+ T 1(W)+H(A,B). (28)

When V is a curve, T 1(V ) is obviously true, and so, for elliptic curves E and E′,

T 1(E ×E′) ⇐⇒ H
(
E,E′

)
.

At the time Tate made his conjecture, H(E,E′) was known for elliptic curves
over a finite field as a consequence of work of Deuring (see above), and H(E,E)
was known for elliptic curves over number fields with at least one real prime (Serre
1964b).

Tate (1966b) proved H(A,B) for all abelian varieties over finite fields (see be-
low). As we discussed in (2.6), this has implication for the classification of abelian
varieties over finite fields (and even cryptography).

Zarhin extended Tate’s result to fields finitely generated over Fp , and Faltings
proved H(A,B) for all abelian varieties over number fields in the same article in
which he proved Mordell’s conjecture. In fact, H(A,B) has now been proved in all
generality (Faltings and Wüstholz 1984).

Tate’s theorem proves that T 1 is true for surfaces over finite fields that are a
product of curves (by (28)). When Artin and Swinnerton-Dyer (1973) proved T 1

for elliptic K3 surfaces over finite fields, there was considerable optimism that T 1

would soon be proved for all surfaces over finite fields. However, there has been
little progress in the years since then. By contrast, the Hodge conjecture is easily
proved for divisors.

Tate’s Proof of H(A,B) over a Finite Field It suffices to prove the statement
with A= B . As the map

Z� ⊗ End(A)→ End(T�A)
G(k̄/k)

is injective, the problem is to construct enough endomorphisms of A. I briefly out-
line Tate’s proof.

(a) IfH(A,A) is true for one prime � �= char(k), then it is true for all. This allows
Tate to choose an � that is well adapted to his arguments.
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(b) A polarization on A defines a skew-symmetric pairing V�A×V�A→Q�. Let
W be a maximal isotropic subspace of V�A that is stable under G(k̄/k), and let

Xn = (T�A∩W)+ �nT�A.
There is an infinite sequence of isogenies

· · ·→ Bn→ Bn−1 → ·· ·→ B1 → B0 =A
such that the image of T�Bn in T�A is Xn. Using a theorem of Weil, Tate shows that
each Bn has a polarization of the same degree as the original polarization on A. As
k is finite, this implies that the Bn fall into finitely many isomorphism classes. An
isomorphism Bn→ Bn′ , n �= n′, gives a nontrivial isogeny A→A.

(c) Having constructed one endomorphism of A not in Z, Tate makes adroit use
of the semisimplicity of the rings involved (and his choice of �) to complete the
proof.

4.4 Relation to the Conjectures of Birch and Swinnerton-Dyer

The original conjectures of Birch and Swinnerton-Dyer were stated for elliptic
curves over Q. Tate re-stated them more generally (see Sect. 2.3).

(A) For an abelian variety A over a global field K , the function L(s,A) has a zero
of order r = rankA(K) at s = 1.

(B) Moreover,

L∗(s,A)∼ |X(A)| · |D|
|A(K)tors| · |A′(K)tors| (s − 1)r as s→ 1.

Let f : V → C be a proper map with fibres of dimension 1, where V (resp. C)
is a nonsingular projective surface (resp. curve) over a finite field k. The generic
fibre of f is a curve over the global field k(C), and we let A(f ) denote its Jacobian
variety (an abelian variety over k(C)). A comparison of the invariants of V with the
invariants of A(f ) yields the following statement:

Conjecture T 1 holds for V ⇐⇒ Conjecture (A) holds for A(f ).

In examining the situation further, Artin and Tate (Tate 1966e) were led to make the
following (Artin-Tate) conjecture:

(C) For a projective smooth geometrically-connected surface V over a finite field k,
the Brauer group Br(V ) of V is finite, and

P2
(
q−s
)∼ |Br(V )| · |D|

qα(X)|NS(V )tors|2
(
1− q1−s)ρ(V ) as s→ 1
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where P2(T ) is the characteristic polynomial of the Frobenius automor-
phism acting on H 2(Vkal ,Q�), D is the discriminant of the intersection pair-
ing on NS(V ), ρ(V ) is the rank of NS(V ), and α(V ) = χ(X,OX) − 1 +
dim(PicVar(V )).

Naturally, they also conjectured:

(d) Let f : V → C be a proper map, as above, and assume that f has connected ge-
ometric fibres and a smooth generic fibre. Then Conjecture (B) holds for A(f )
over k(C) if and only if Conjecture (C) holds for V over k.

Tate explains that he gave this conjecture “only a small letter (d) as label, because
it is of a more elementary nature than (B) and (C)”, and indeed, it has been proved.
Artin and Tate checked it directly when f is smooth and has a section, Gordon
(1979) checked it when the generic fibre has a rational cycle of degree 1, and Milne
(1982) checked it when this condition holds only locally. However, ultimately the
proof of (d) came from a different direction, by combining the following two state-
ments:

• Conjecture C holds for a surface V over a finite field if and only if Br(V )(�) is
finite for some prime � (Tate (1966e) ignoring the p part; Milne (1975) complete
statement);

• Conjecture A holds for an abelian variety A over a global field of nonzero char-
acteristic if and only if X(A)(�) is finite for some � (Kato and Trihan 2003).

In the situation of (d), Br(V )(�) is finite if and only if X(A(f ))(�) is finite (Liu
et al. 2005).

The known cases of Conjecture B over function fields have proved useful in the
construction of lattice packings.23

4.5 Poles of Zeta Functions

Throughout this subsection, V is a nonsingular projective variety over a field k. We
regard algebraic cycles on V as elements of the Q-vector spaces Zr (V ).

Algebraic cycles D and D′ are said to be numerically equivalent if D · E =
D′ · E for all algebraic cycles E on V of complementary dimension, and they are
�-homologically equivalent if they have the same class in H 2r (Vkal ,Q�(r)). In his
Woods Hole talk, Tate asked whether the following statement is always true:

Er(V ): Numerical equivalence coincides with �-homological equivalence for
algebraic cycles on V of codimension r .

23“One of the most exciting developments has been Elkies’ (sic) and Shioda’s construction of
lattice packings from Mordell-Weil groups of elliptic curves over function fields. Such lattices
have a greater density than any previously known in dimensions from about 54 to 4096.” Preface
to Conway, J.H.; Sloane, N.J.A. Sphere packings, lattices and groups. Second edition. Springer-
Verlag, New York, 1993.
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This is now generally regarded as a folklore conjecture (it is also a consequence of
Grothendieck’s standard conjectures). Note that, like the Tate conjecture, Er(V ) is
an existence statement for algebraic cycles: for an algebraic cycle D, it says that
there exists an algebraic cycle E of complementary dimension such that D ·E �= 0
if there exists a cohomological cycle with this property.

Let Ar denote the image of Zr (V ) in H 2r (V ,Q�(r)), and let N r denote the
subspace of classes numerically equivalent to zero. Thus, Ar (resp. Ar/N r ) is the
Q-space of algebraic classes of codimension r modulo homological equivalence
(resp. modulo numerical equivalence). In particular, Ar/N r is independent of �.

Now assume that k is finitely generated. We need to consider also the following
statement:

Sr(V ): The map H 2r (Vkal ,Q�(r))
G(kal/k) → H 2r (Vkal ,Q�(r))G(kal/k) in-

duced by the identity map is bijective.

When k is finite, this means that 1 occurs semisimply (if at all) as an eigenvalue of
the Frobenius map acting on H 2r (Vkal ,Q�(r)).

An elementary argument suffices to prove that the following three statements are
equivalent (for a fixed variety V , integer r , and prime �):

(a) T r +Er ;
(b) T r + T dimV−r + Sr ;
(c) dimQ(Ar/N r )= dimQl

H 2r (Vkal ,Q�(r))
G(kal/k).

When k is finite, each statement is equivalent to:

(d) the order of the pole of ζ(V, s) at s = r is equal to dimQ(Ar/N r ).

See Tate (1979, 2.9). Note that (d) is independent of �.
Tate (1964a, Conjecture 2) conjectured the following general version of (d):

P r(V ): Let V be a nonsingular projective variety over a finitely generated
field k. Let d be the transcendence degree of k over the prime field, augmented
by 1 if the prime field is Q. Then the 2r th component ζ 2r (V , s) of the zeta
function of V has a pole of order dimQ(Ar (V )) at the point s = d + r .

This is also known as the Tate conjecture. For a discussion of the known cases of
P r(V ), see Tate (1964a, 1994a).

When k is a global function field, statements (a), (b), (c) are independent of �,
and are equivalent to the statement that ζ 2r

S (V , s) has a pole of order dimQ(Ar (V ))
at the point s = d + r ; here ζ 2r

S (V , s) omits the factors at a suitably large finite set S
of primes. This follows from Lafforgue’s proof of the global Langlands correspon-
dence and other results in Langlands program by an argument that will, in principle,
also work over number fields.—see Lyons (2009).

In the presence of Er , Conjecture T r(V ) is equivalent to P r(V ) if and only if
the order of the pole of ζ 2r (V , s) at s = r is dimQl

H 2r (Vkal ,Q�(r))
G(kal/k). This is

known for some Shimura varieties.
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The Sato-Tate Conjecture Let A be an elliptic curve over Q. For a prime p of
good reduction, the number Np of points on A mod p can be written

Np = p+ 1− ap
ap = 2

√
p cos θp, 0≤ θp ≤ π.

When A has complex multiplication over C, it is easily proved that the θp are
uniformly distributed in the interval 0 ≤ θ ≤ π as p→∞. In the opposite case,
Mikio Sato found computationally that the θp appeared to have a density distribu-
tion 2

π
sin2 θ .

Tate proved that, for a power of an elliptic curve, the Q-algebra of algebraic
cycles is generated modulo homological equivalence by divisor classes. Using this,
he computed that, for an elliptic curve A over Q without complex multiplication,

rank
(
Ai
(
Am
))=

(
m

i

)2

−
(
m

i − 1

)(
m

i + 1

)
,

from which he deduced that Sato’s distribution is the only symmetric density distri-
bution for which the zeta functions of the powers of A have their zeros and poles in
agreement with the Conjecture P r(V ).

The conjecture that, for an elliptic curve over Q without complex multiplication,
the θp are distributed as 2

π
sin2 θ is known as the Sato-Tate conjecture. It has been

proved only recently, as the fruit of a long collaboration (Richard Taylor, Michael
Harris, Laurent Clozel, Nicholas Shepherd-Barron, Thomas Barnet-Lamb, David
Geraghty). As did Tate, they approach the conjecture through the analytic properties
of the zeta functions of the powers of A (Barnet-Lamb et al. 2011).24

Needless to say, the Sato-Tate conjecture has been generalized to motives. Lang-
lands (2011) has pointed out that his functoriality conjecture contains a very general
form of the Sato-Tate conjecture.

4.6 Relation to the Hodge Conjecture

For a variety V over C, there is a well-defined cycle map

cr : Zr (V )→H 2r (V ,Q)

(cohomology with respect to the complex topology). Hodge proved that there is a
decomposition

H 2r (V ,Q)C =
⊕

p+q=2r

Hp,q, Hp,q =Hq,p.

24For expository accounts, see: Carayol (2008) and Clozel (2008).
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In Hodge (1952), he observed that the image of cr is contained in

H 2r (V ,Q)∩ V r,r

and asked whether this Q-module is exactly the image of cr . This has become known
as the Hodge conjecture.25

In his original article (Tate 1964), Tate wrote:

I can see no direct logical connection between [the Tate conjecture] and
Hodge’s conjecture that a rational cohomology class of type (p,p) is alge-
braic. . . . However, the two conjectures have an air of compatibility.

Pohlmann (1968) proved that the Hodge and Tate conjectures are equivalent for
CM abelian varieties, Piatetski-Shapiro (1971) proved that the Tate conjecture for
abelian varieties in characteristic zero implies the Hodge conjecture for abelian va-
rieties, and Milne (1999) proved that the Hodge conjecture for CM abelian varieties
implies the Tate conjecture for abelian varieties over finite fields.

The relation between the two conjectures has been greatly clarified by the work
of Deligne. He defines the notion of an absolute Hodge class on a (complete smooth)
variety over a field of characteristic zero, and conjectures that every Hodge class on
a variety over C is absolutely Hodge. The Tate conjecture for a variety implies that
all absolute Hodge classes on the variety are algebraic. Therefore, in the presence of
Deligne’s conjecture, the Tate conjecture implies the Hodge conjecture. As Deligne
has proved his conjecture for abelian varieties, this gives another proof of Piatetski-
Shapiro’s theorem.

The twin conjectures of Hodge and Tate have a status in algebraic and arith-
metic geometry similar to that of the Riemann hypothesis in analytic number theory.
A proof of either one for any significantly large class of varieties would be a major
breakthrough. On the other hand, whether or not the Hodge conjecture is true, it is
known that Hodge classes behave in many ways as if they were algebraic (Deligne
1982; Cattani et al. 1995). There is some fragmentary evidence that the same is true
for Tate classes in nonzero characteristic (Milne 2009).

5 Lubin-Tate Theory and Barsotti-Tate Group Schemes

5.1 Formal Group Laws and Applications

Let R be a commutative ring. By a formal group law over R, we shall always mean
a one-parameter commutative formal group law, i.e., a formal power series F ∈
R[[X,Y ]] such that

• F(X,Y )=X+ Y + terms of higher degree,

25Hodge actually asked the question with Z-coefficients.
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• F(F(X,Y ),Z)= F(X,F (Y,Z))
• F(X,Y )= F(Y,X).
These conditions imply that there exists a unique iF (X) ∈ X · R[[X]] such that
F(X, iF (X)) = 0. A homomorphism F → G of formal group laws is a formal
power series f ∈XR[[X]] such that f (F (X,Y ))=G(f (X),f (Y )).

The formal group laws form a Z-linear category. Let c(f ) be the first-degree
coefficient of an endomorphism f of F . If R is an integral domain of characteristic
zero, then f �→ c(f ) is an injective homomorphism of rings EndR(F )→ R. See
Lubin (1964).

Let F be a formal group law over a field k of characteristic p �= 0. A nonzero
endomorphism f of F has the form

f = aXph + terms of higher degree, a �= 0,

where h is a nonnegative integer, called the height of f . The height of the
multiplication-by-p map is called the height of F .

Lubin-Tate Formal Group Laws and Local Class Field Theory Let K be a
nonarchimedean local field, i.e., a finite extension of Qp or Fp((t)). Local class
field theory provides us with a homomorphism (the local reciprocity map)

recK : K× →Gal
(
Kab/K

)

such that, for every finite abelian extension L of K in Kab, recK induces an isomor-
phism

(−,L/K) : K×/NmL× →Gal(L/K);
moreover, every open subgroup K× of finite index arises as the norm group of a
(unique) finite abelian extension. This statement shows that the finite abelian exten-
sions of K are classified by the open subgroups of K× of finite index, but leaves
open the following problem:

Let L/K be the abelian extension corresponding to an open subgroupH of
K× of finite index; construct generators for L and describe how K×/H acts
on them.

Lubin and Tate (1965a) found an elegantly simple solution to this problem.
The choice of a prime element π determines a decomposition K× =O×

K × 〈π〉,
and hence (by local class field theory) a decompositionKab =Kπ ·Kun. HereKπ is
a totally ramified extension ofK with the property that π is a norm from every finite
subextension. Since Kun is well understood, the problem then is to find generators
for the subfields of Kπ and to describe the isomorphism

(−,Kπ/K) : O×
K→Gal(Kπ/K)

given by reciprocity map. Let O =OK , let p= (π) be the maximal ideal in O, and
let q = (O : p).
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Let f ∈O[[T ]] be a formal power series such that

{
f (T ) = πT + terms of higher degree

f (T ) ≡ T q modulo πO[[T ]],

for example, f = πT + T q is such a power series. An elementary argument shows
that, for each a ∈O, there is a unique formal power series [a]f ∈OK [[T ]] such that

{
[a]f (T ) = aT + terms of higher degree

[a]f ◦ f = f ◦ [a]f .

Let

Xm =
{
x ∈Kal | |x|< 1,

m︷ ︸︸ ︷
(f ◦ · · · ◦ f )(x)= 0

}
.

Then Lubin and Tate (1965a) prove:

(a) the field K[Xm] is the totally ramified abelian extension of K with norm group
Um × 〈π〉 where Um = 1+ pmK ;

(b) the map

O×/Um→Gal
(
K[Xm]/K

)

u �→ (
x �→ [

u−1]
f
(x)
)

is an isomorphism.

For example, if K =Qp , π = p, and f (T )= (1+ T )p − 1, then

Xm =
{
ζ − 1 | ζpm = 1

}$ μpm
(
Kal)

and [u]f (ζ − 1)= ζ u−1 − 1.
Lubin and Tate (1965a) show that, for each f as above, there is a unique formal

group law Ff admitting f as an endomorphism. ThenXm can be realized as a group
of “torsion points” on Ff , which endows it with the structure of an O-module for
which it is isomorphic to O/pm. From this the statements follow in a straightforward
way.

The proof of the above results does not use local class field theory. Using the
Hasse-Arf theorem, one can show that Kπ · Kun = Kab, and deduce local class
field theory. Alternatively, using local class field theory, one can show that Kπ ·
Kun = Kab, and deduce the Hasse-Arf theorem. In either case, one finds that the
isomorphism in (b) is the local reciprocity map.

The Ff are called Lubin-Tate formal group laws, and the above theory is called
Lubin-Tate theory.
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Deformations of Formal Group Laws (Lubin-Tate Spaces) Let F be a formal
group law of height h over a perfect field k of characteristic p �= 0. We consider
local artinian k-algebras A with residue field k. A deformation of F over such an
A is a formal group law FA over A such that FA ≡ F mod mA. An isomorphism
of deformations is an isomorphism of ϕ : FA→GA of formal group laws such that
ϕ(T )≡ T mod mA.

LetW denote the ring of Witt vectors with residue field k. Lubin and Tate (1966d)
prove that there exists a formal group F(t1, . . . , th−1)(X,Y ) over W [[t1, . . . , th−1]]
with the following properties:

• F(0, . . . ,0)≡ F mod mW ;
• for any deformation FA of F , there is a unique homomorphismW [[t1, . . . , th−1]]
→A sending F to FA.

The results of Lubin and Tate are actually stronger, but this seems to be the form in
which they are most commonly used.

In particular, the above result identifies the space of deformations of F with
the formal scheme Spf(W [[t1, . . . , th−1]]). These spaces are now called Lubin-Tate
deformation spaces. Drinfeld showed that, by adding (Drinfeld) level structures,
it is possible to construct towers of deformation spaces, called Lubin-Tate towers
(Drinfeld 1974). These play an important role in the study of the moduli varieties of
abelian varieties with PEL-structure and in the Langlands program. For example, it
is known that both the Jacquet-Langlands correspondence and the local Langlands
correspondence for GLn can be realized in the étale cohomology of a Lubin-Tate
tower (or, more precisely, in the étale cohomology of the Berkovich space that is
attached to the rigid analytic space which is the generic fibre of the Lubin-Tate
tower) (Carayol 1990; Boyer 1999; Harris and Taylor 2001).

5.2 Finite Flat Group Schemes

A group scheme G over a scheme S is finite and flat if G = Spec(A) with A lo-
cally free of finite rank as a sheaf of OS -modules. When A has constant rank r ,
G is said to have order r . A finite flat group scheme of prime order is necessarily
commutative.

In his course on Formal Groups at Harvard in the fall of 1966, Tate discussed the
following classification problem:

let R be a local noetherian ring with residue field of characteristic p �= 0;
assume that R contains the (p− 1)st roots of 1, i.e., that R× contains a cyclic
subgroup of order p − 1; determine the finite flat group schemes of order p
over R.

When R is complete, Tate found that such group schemes correspond to pairs of
elements (a, c) of R such that ac ∈ p ·R×; two pairs (a, c) and (a1, c1) correspond
to isomorphic groups if and only if a1 = up−1a and c1 = u1−pc for some u ∈R×.
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These results were extended and completed in Tate and Oort (1970a). Let

Λp = Z

[
ζ,

1

p(p− 1)

]
∩Zp

where ζ is a primitive (p − 1)st root of 1 in Zp . Tate and Oort define a sequence
w1 = 1,w2, . . . ,wp of elements of Λp in which w1, . . . ,wp−1 are units and wp =
pwp−1. Then, given an invertible OS -module L and sections a of L⊗(p−1) and b of
L⊗(1−p) such that a ⊗ b = wp , they show that there is a group scheme GLa,b such
that, for every S-scheme T ,

GLa,b(T )=
{
x ∈ Γ (T ,L⊗OS OT ) | x⊗p = a ⊗ x

}
,

and the multiplication on GLa,b(T ) is given by

x1 · x2 = x1 + x2 + b

wp−1
⊗Dp(x1 ⊗ 1,1⊗ x2),

where

Dp(X1,X2)= wp−1

1− p
p−1∑

i=1

Xi1

wi

X
p−i
2

wp−i
∈Λp[X1,X2].

Every finite flat group scheme of order p over S is of the form GLa,b for some triple

(L,a, b), andGLa,b is isomorphic toGL1
a1,b1

if and only if there exists an isomorphism

from L to L1 carrying a to a1 and b to b1. The Cartier dual of GLa,b is GL
−1

b,a . The
proofs of these statements make ingenious use of the action of F×p on OG.

Tate and Oort apply their result to give a classification of finite flat group schemes
of order p over the ring of integers in a number field in terms of idèle class char-
acters. In particular, they show that the only such group schemes over Z are the
constant group scheme Z/pZ and its dual μp .

In the years since Tate and Oort wrote their article, the classification of finite
flat commutative group schemes over various bases has been intensively studied,
and some of the results were used in the proof of the modularity conjecture for
elliptic curves (hence of Fermat’s last theorem). Tate (1997a) has given a beautiful
exposition of the basic theory of finite flat group schemes, including the results of
Raynaud (1974) extending the above theory to group schemes of type (p, . . . ,p).

5.3 Barsotti-Tate Groups (p-Divisible Groups)

Let A be an abelian variety over a field k. In his study of abelian varieties and
their zeta functions, Weil used the �-primary component A(�) of the group A(ksep)

for � a prime distinct from char(k). This is an �-divisible group isomorphic to
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(Q�/Z�)
2 dimA equipped with an action of Gal(ksep/k). For p = char(k), it is natural

to replace A(�) with the direct system

A(p): A1 ↪→A2 ↪→ ·· · ↪→Aν ↪→Aν+1 ↪→ ·· ·
where Aν is the finite group scheme Ker(pν : A→A).

In the mid sixties, Serre and Tate26 defined a p-divisible group of height h over
a ring R to be a direct system G= (Gν, iν)ν∈N where, for each ν ≥ 0, Gν is a finite
group scheme over R of order pνh and the sequence

0−→Gν
iν−→Gν+1

pν−→Gν+1

is exact. An abelian scheme A over R defines a p-divisible group A(p) over R of
height 2 dim(A).

The dual of a p-divisible group G= (Gν, iν) is the system G′ = (G′ν, i′ν) where

G′ν is the Cartier dual of Gν and i′ν is the Cartier dual of the map Gν+1
p−→Gν . It

is again a p-divisible group.
Tate developed the basic theory p-divisible group in his article for the proceed-

ings of the 1966 Driebergen conference (Tate 1967c) and in a series of ten lec-
tures at the Collège de France in 1965–1966 (see Serre 1968b). He showed that
p-divisible groups generalize formal Lie groups in the following sense: let R be a
complete noetherian local ring with residue field k of characteristic p > 0; an n-
dimensional commutative formal Lie group Γ over R can be defined to be a family
f (Y,Z) = (fi(Y,Z))1≤i≤n of n power series in 2n variables satisfying the con-
ditions in the first paragraph of this section; if such a group Γ is divisible (i.e.,
p : Γ → Γ is an isogeny), then one can define the kernel Gν of pν : Γ → Γ as
a group scheme over R; Tate shows that Γ (p) = (Gν)ν≥1 is a p-divisible group
Γ (p), and that the functor Γ � Γ (p) is an equivalence from the category of divisi-
ble commutative formal Lie groups over R to the category of connected p-divisible
groups over R.

The main theorem of Tate (1967c) states the following:

Let R be an integrally closed, noetherian, integral domain whose field of
fractions K is of characteristic zero, and let G and H be p-divisible groups
over R. Then every homomorphism GK →HK of the generic fibres extends
uniquely to a homomorphism G→H .

In other words, the functor G�GK is fully faithful. This was extended to rings R
of characteristic p �= 0 by de Jong (1998).

Since their introduction, p-divisible groups have become an essential tool in
the study of abelian schemes. We have already seen in (2.4) one application of p-
divisible groups to the problem of lifting abelian varieties. Another application was
to the proof of the Mordell conjecture (Faltings 1983).

26Usually this is credited to Tate alone, but Tate writes: “We were both contemplating them. I think
it was probably Serre who first saw clearly the simple general definition and its relation to formal
groups of finite height.” The dual of a p-divisible group is often called the Serre dual.
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In his talk at the 1970 International Congress, Grothendieck renamed p-divisible
groups “Barsotti-Tate groups”. Today, both terms are used.

5.4 Hodge-Tate Decompositions

Now let R be a complete discrete valuation ring of unequal characteristics, and let
K be its field of fractions. Let Kal be an algebraic closure of K , and let C be the
completion of Kal. As Serre noted (Serre 1968b, p. 322):

One of the most surprising results of Tate’s theory is the fact that the prop-
erties of p-divisible groups are intimately related to the structure of C as a
Galois module over Gal(Kal/K).

Let G =Gal(Kal/K), and let V be a C-vector space on which G acts semi-linearly.
The Tate twist V (i), i ∈ Z, is V with G acting by

(σ, v) �→ χ(σ)i · σv, χ the p-adic cyclotomic character.

Tate proved that H 0(G,C)=K and H 1(G,C)≈K , and that Hq(G,C(i))= 0 for
q = 0,1 and i �= 0.27 Using these statements, he proved that, for a p-divisible group
G over R, there is a canonical isomorphism

Hom(T G,C)$ tG′(C)⊕ t∨G(C)(−1), (29)

where TG= lim←−ν Gν(Kal) is the Tate module of G, tG is the tangent space to G at
zero, and G′ is the dual p-divisible group. In particular TG determines the dimen-
sion of G, a fact that is used in the proof of the main theorem in the last subsection.

When G is the p-divisible group of an abelian scheme A over R, (29) can be
written as:

H 1
et(AC,Qp)⊗C $H 1(AC,Ω0

AC/C

)⊕H 0(AC,Ω1
AC/C

)
(−1).

This result led Tate to make the following (Hodge-Tate) conjecture:28

For every nonsingular projective variety X overK , there exists a canonical
(Hodge-Tate) decomposition

Hnet(XC,Qp)⊗Qp
C $

⊕

p+q=n
Hp,q(XC)(−p) (30)

where Hp,q(XC)=Hq(X,ΩpX/K)⊗K C. This decomposition is compatible

with the action of Gal(Kal/K).

27Sen and Ax simplified and generalized Tate’s proof that CG =K , and the result is now known
as the Ax-Sen-Tate theorem.
28Tate 1967c, p. 180; see also Serre’s summary of Tate’s lectures (Serre 1968b, p. 324).
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Tate’s conjecture launched a new subject in mathematics, called p-adic Hodge
theory. The isomorphism (30) can be regarded as a statement about the étale coho-
mology of XC regarded as a module over Gal(Kal/K). About 1980, Fontaine stated
a series of successively stronger conjectures, beginning with the Hodge-Tate con-
jecture, that describe the structure of these Galois modules (Fontaine 1982).29 Most
of Fontaine’s conjectures have now been proved. The Hodge-Tate conjecture itself
was proved by Faltings (1988).

6 Elliptic Curves

Although elliptic curves are just abelian varieties of dimension one, their study
is quite different. Throughout his career, Tate has returned to the study of elliptic
curves.

6.1 Ranks of Elliptic Curves over Global Fields

Mordell proved that, for an elliptic curve E over Q, the group E(Q) is finite gener-
ated. At one time, it was widely conjectured that the rank of E(Q) is bounded, but,
as Cassels 1966 pointed out, this is implausible.30 Tate and Shafarevich (1967d)31

made it even less plausible by proving that, for elliptic curves over the global field
Fp(t), the ranks are unbounded. Their examples are quadratic twists of a supersin-
gular elliptic curve with coefficients in Fp; in particular, they are isotrivial (i.e., have
j ∈ Fp). More recently, it has been shown that the ranks are unbounded even among
the nonisotrivial elliptic curves over Fp(t) (Ulmer 2002). Meanwhile, the largest
known rank for an elliptic curve over Q is 28.32

29See Fontaine (1982) and many other articles.
30“It has been widely conjectured that there is an upper bound for the rank depending only on the
groundfield. This seems to me implausible because the theory makes it clear that an abelian variety
can only have high rank if it is defined by equations with very large coefficients.” Cassels (1966,
p. 257).
31For a long time I was puzzled as to how this article came to be written, because I was not aware
that Shafarevich had been allowed to travel to the West, but Tate writes: “sometime during the year
1965–1966, which I spent in Paris, Shafarevich appeared. There must have been a brief period
when the Soviets relaxed their no-travel policy. . . . Shafarevich was in Paris for a month or so, and
the paper grew out of some discussion we had. We both liked the idea of our having a joint paper,
and I was happy to have it in Russian.”
32Elkies, see http://web.math.hr/~duje/tors/tors.html.

http://web.math.hr/~duje/tors/tors.html


The Work of John Tate 307

6.2 Torsion Points on Elliptic Curves over Q

Beppo Levi constructed elliptic curves E over Q having each of the groups

Z/nZ n= 1,2, . . . ,10,12,
Z/2Z×Z/nZ n= 2,4,6,8,

as the torsion subgroup of E(Q), and he conjectured that this exhausted the list of
possible such groups (Levi 1909).

Consistent with this, Mazur and Tate (1973c) show that there is no elliptic curve
over Q with a rational point of order 13, or, equivalently, that the curve X1(13) that
classifies the elliptic curves with a chosen point of order 13 has no rational points
(except for its cusps). Ogg found a rational point of order 19 on the Jacobian J of
X1(13), and Mazur and Tate show that J has exactly 19 rational points. They then
deduce that X1(13) has no noncuspidal rational point by examining how it sits in its
Jacobian.

The interest of their article is more in its methods than in the result itself.33 The
ring Z[ 3

√
1] acts on J , and Mazur and Tate perform a 19-descent by studying the flat

cohomology of the exact sequence of group schemes

0→ F → J
π−→ J → 0

on SpecZ\(13), where π is one of the factors of 19 in Z[ 3
√

1]. In a major work,
Mazur developed these methods further, and completely proved Levi’s conjecture
(Mazur 1977).

The similar problem for an arbitrary number field K is probably beyond reach,
but, following work of Kamienny, Merel (1996) proved that, for a fixed number
field K , the order of the torsion subgroup of E(K) for E an elliptic curve over K is
bounded by a constant that depends only the degree of K over Q.

6.3 Explicit Formulas and Algorithms

The usual Weierstrass form of the equation of an elliptic curve is valid only in char-
acteristics �= 2,3. About 1965 Tate wrote out the complete form, valid in all char-
acteristics, and even over Z. For an elliptic curve over a nonarchimedean local field
with perfect residue field, he wrote out an explicit algorithm (known as Tate’s algo-
rithm) for computing the minimal model of the curve and determining the Kodaira
type of the special fibre. Ogg’s formula then gives the conductor of the curve. The
handwritten manuscript containing these formulas was invaluable to people work-
ing in the field. A copy, which had been sent to Cassels, was included, essentially
verbatim, in the proceedings of the Antwerp conference (Tate 1975b).34

33About the same time, J. Blass found a more elementary proof of the same result.
34Tate writes: “Early in that summer [1965], Weil had told me of the idea that all elliptic curves
over Q are modular [and that the conductor of the elliptic curve equals the conductor of the cor-
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6.4 Analogues at p of the Conjecture of Birch and
Swinnerton-Dyer

For an elliptic curve E over Q, the conjecture of Birch and Swinnerton-Dyer states
that

L(s,E)∼Ω
∏

p bad

cp
|X(E)| ·R
|E(Q)tors|2 (s − 1)r as s→ 1

where r is the rank of E(Q), X(E) is the Tate-Shafarevich group, R is the dis-
criminant of the height pairing on E(Q), Ω is the real period of E, and the
cp = (E(Qp) : E0(Qp)). When E has good ordinary or multiplicative reduction
at p, there is a p-adic zeta function Lp(s,E), and Mazur, Tate, and Teitelbaum
(1986) investigated whether the behaviour of Lp(s,E) near s = 1 is similarly re-
lated to the arithmetic invariants of E.35 They found it is, but with one major sur-
prise: there is an “exceptional” case in which Lp(s,E) is related to an extended
version of E(Q) rather than E(Q) itself. Supported by numerical evidence, they
conjectured:

BSD(p). When E has good ordinary or nonsplit multiplicative reduction at
a prime p, the function Lp(s,E) has a zero at s = 1 of order at least r =
rankE(Q), and L(r)p (1,E) is equal to a certain expression involving |X(E)|
and a p-adic regulator Rp(E). When E has split multiplicative reduction, it is
necessary to replace r with r + 1.

The L-function Lp(s,E) is the p-adic Mellin transform of a p-adic measure ob-
tained from modular symbols. The p-adic regulator is the discriminant of the canon-
ical p-adic height pairing (augmented in the exceptional case). Much more is known
about BSD(p) than the original conjecture of Birch and Swinnerton-Dyer. For ex-
ample, Kato (2004) has proved the following statement:

The function Lp(s,E) has a zero at s = 1 of order at least r (at least r + 1
in the exceptional case). When the order of the zero equals its conjectured
value, then the p-primary component of X(E) is finite and Rp(E) �= 0.

In the exceptional case, EQp
is a Tate elliptic curve and Lp(1,E) = 0. On com-

paring their conjecture in this case with the original conjecture of Birch and
Swinnerton-Dyer, the authors were led to the conjecture

L(1)p (1,E)=
logp(q)

ordp(q)

L(1,E)

Ω

responding modular form]. That motivated Swinnerton-Dyer to make a big computer search for
elliptic curves over Q with not too big discriminant, in order to test Weil’s idea. But of course it
was necessary to be able to compute the conductor to do that test. That was my main motivation.”
35The authors assume that E is modular—at the time, it was not known that all elliptic curves over
Q are modular.
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where q is the period of the Tate curve EQp
and Ω is the real period of E. This be-

came known as the Mazur-Tate-Teitelbaum conjecture. It was proved by Greenberg
and Stevens (1993) for p �= 2,3, and by several authors in general.

Mazur and Tate (1987) state “refined” conjectures that avoid any mention of
p-adic L-functions and, in particular, avoid the problem of constructing these func-
tions. Let E be an elliptic curve over Q. For a fixed integerM > 0, they use modular
symbols to construct an element θ in the group algebra Q[(Z/MZ)×/{±1}]. Let R
be a subring of Q containing the coefficients of θ and such that the order the tor-
sion subgroup of E(Q) is invertible in R. The analogue of an L-function having a
zero of order r at s = 1 is that θ lie in the r th power of the augmentation ideal I
of the group algebra R[(Z/MZ)×/{±1}]. Assume thatM is not divisible by p2 for
any prime p at which E has split multiplicative reduction. Then Mazur and Tate
conjectured:

Let r be the rank of E(Q), and let r ′ be the number of primes dividing M
at which E has split multiplicative reduction. Then θ ∈ I r+r ′ , and there is a
formula (involving the order of X(E)) for the image of θ in I r+r ′/I r+r ′+1.

Again, the authors provide numerical evidence for their conjecture. Tate’s student,
Ki-Seng Tan, restated the Mazur-Tate conjecture for an elliptic curve over a global
field, and he proved that part of the new conjecture is implied by the conjecture of
Birch and Swinnerton-Dyer (Tan 1995).

In the first article discussed above, Mazur, Tate, Teitelbaum gave explicit formu-
las relating the canonical p-adic height pairings to a p-adic sigma function, and used
the sigma function to study the height pairings. Mazur and Tate (1991), present a
detailed construction of the p-adic sigma function for an elliptic curve E with good
ordinary reduction over a p-adic field K , and they prove the properties used in the
earlier article. In contrast to the classical sigma function, which is defined on the
universal covering of E, the p-adic sigma function is defined on the formal group
of E.

Finally, the article Mazur, Stein, and Tate (2006) studies the problem of effi-
ciently computing of p-adic heights for an elliptic curve E over a global field K .
This amounts to efficiently computing the sigma function, which in turn amounts to
efficiently computing the p-adic modular form E2.

6.5 Jacobians of Curves of Genus One

For a curve C of genus one over a field k, the Jacobian variety J of C is an elliptic
curve over k. The problem is to compute a Weierstrass equation for J from an
equation for C.

Weil (1954) showed that, when C is defined by an equation Y 2 = f (X), degf =
4, then the Weierstrass equation of J can be computed using the invariant theory of
the quartic of f , which goes back to Hermite.
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An et al. (2001) showed how formulas from classical invariant theory give Weier-
strass equations for J and for the map C→ J when char(k) �= 2,3 and C is a double
cover of P1, a plane cubic, or a space quartic.

Tate and Rodrigues-Villegas found the Weierstrass equations over fields of char-
acteristic 2 and 3, where the classical invariant theory no longer applies. To-
gether with Artin they extended their result to an arbitrary base scheme S (Artin,
Rodriguez-Villegas, Tate 2005). Specifically, let C be the family of curves over a
scheme S defined, as a subscheme of P2

S , by a cubic f ∈ Γ (S,OS)[X,Y,Z], and
assume that the ten coefficients of f have no common zero. Then there is a Weier-
strass equation

g: Y 2Z+ a1XYZ+ a3YZ
2 =X3 + a2X

2Z+ a4XZ
2 + a6Z

3, ai ∈ Γ (S,OS),
whose coefficients are given explicitly in terms of the coefficients of f , such that the
functor Pic0

C/S is represented by the smooth locus of the subscheme of P2
S defined

by g. A key ingredient of the proof is a characterization, over sufficiently good
base schemes, of the group algebraic spaces that can be described by a Weierstrass
equation.

6.6 Expositions

In 1961, Tate gave a series of lectures at Haverford College titled “Rational Points
on Cubic Curves” intended for bright undergraduates in mathematics. Notes were
taken of the lectures, and these were distributed in mimeographed form. The book,
Silverman and Tate 1992, is a revision, and expansion, of the notes.

In the spring of 1960, the fall of 1967, 1975, . . . , Tate gave courses on the arith-
metic of elliptic curves, whose informal notes have influenced later expositions.

7 The K-Theory of Number Fields

7.1 K-Groups and Symbols

Grothendieck definedK0(X) for X a scheme in order to be able to state his general-
ization of the Riemann-Roch theorem. The topologists soon adapted Grothendieck’s
definition to topological spaces, and extended it to obtain groups Kn for all n ∈N.

For a commutative ring R, K0(R) is just the Grothendieck group of the category
of finitely generated projective R-modules. In 1962, Bass and Schanuel defined
K1(R), and in 1967, Milnor36 defined K2(R). In the early 1970s, several authors
suggested definitions for the higher K-groups, which largely coincided when this

36During a course at Princeton University; published as: Milnor (1971).



The Work of John Tate 311

could be checked. Quillen’s definition (Quillen 1973) was the most flexible, and it
is his that has been adopted.

The Steinberg group ST(R) of a ring R is the group with generators

xij (r), i, j = 1,2,3, . . . , i �= j, r ∈R
and relations

xij (r)xij (s)= xij (r + s)
[
xij (r), xkl(s)

]=
{

1 if i �= l and j �= k
xil(rs) if i �= l and j = k.

The elementary matrices Eij (r)= I + reij in GL(R) satisfy these relations, and so
there is a homomorphism xij (r) �→ Eij (r) : ST(R)→ GL(R). The groups K1(R)

and K2(R) can be defined by the exact sequence

1→K2(R)→ ST(R)→GL(R)→K1(R)→ 1.

Let F be a field. A symbol on F with values in a commutative group C is defined
to be a bimultiplicative map

( , ) : F× × F× → C

such that (a,1 − a) = 1 whenever a �= 0,1. Matsumoto (1969) showed that the
natural map

{ , } : F× × F× →K2F

is a universal symbol, i.e., that K2(F ) is the free abelian group on the pairs {a, b},
a, b ∈ F×, subject only to the relations

{
aa′, b

} = {a, b}{a′, b} all a, a′, b ∈ F×
{
a, bb′

} = {a, b}{a, b′} all a, b, b′ ∈ F×
{a,1− a} = 1 all a �= 0,1 in F×.

Examples of Symbols

(a) The tame (Hilbert) symbol. Let v be a discrete valuation of F , with residue field
κ(v). Then

(a, b)v = (−1)v(a)v(b)
av(b)

bv(a)
mod mv

is a symbol on F with values in κ(v)×.
(b) The Galois symbol (Tate 1970b, §1). For m not divisible by char(F ),
H 1(F,μm)$ F×/F×m, and the cup-product pairing

H 1(F,μm)×H 1(F,μm)→H 2(F,μm ⊗μm)
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gives a symbol on F with values inH 2(F,μm⊗μm). When F contains themth
roots of 1,

H 2(F,μm ⊗μm)$H 2(F,μm)⊗μm $ Br(F )m ⊗μm
and the symbol was known classically.

(c) The differential symbol (Tate ibid.). For p = char(F ),

f,g �→ df

f
∧ dg
g
: F× × F× →Ω2

F/Fp

is a symbol.
(d) On C there are no continuous symbols, but on R there is the symbol

(a, b)∞ =
{

1 if a > 0 or b > 0
−1 otherwise.

7.2 The Group K2F for F a Global Field

Tate recognized that the study of theK2 of a global field is related to classical objects
in number fields, and sheds new light on them. He largely initiated the study of the
K-groups of global fields and their rings of integers.

For a field F , K0F $ Z is without particular interest. On the other hand, K1F $
F×. For a number field, there is an exact sequence

0→UF → F× (ordv)−→
⊕

v

Z→ CF → 0

where v runs over the finite primes of F . Dirichlet proved that UF ≈ μ(F) ×
Zr1+r2−1, where r1 and r2 are the numbers of real and complex primes, and
Dedekind proved that the class group CF is finite. Thus understanding K1F in-
volves understanding the two basic objects in classical algebraic number theory.

Let F be a global field. For a noncomplex prime v of F , let μv = μ(Fv) and
let mv = |μv|. For a finite prime v of F , Br(Fv)$Q/Z, and so the Galois symbol
with m = mv gives a homomorphism λv : K2Fv → μv . Similarly, ( , )∞ gives a
homomorphism λv : K2Fv→ μv when v is real. The λv can be combined with the
obvious maps K2F →K2Fv to give the homomorphism λF in the sequence

0→Ker(λF )→K2F
λF−→
⊕

v

μv→ μF → 0;

the direct sum is over the noncomplex primes of F , and the map from it sends (xv)v
to
∏
v
mv
mF
xv where mF = |μ(F)|. A product formula,

∏
(a, b)

mv
mF
v = 1
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shows that the sequence is a complex, and Moore (1968) showed that the cokernel
of λF is μF . Thus, to compute K2F , it remains to identify Ker(λF ).

For Q, Tate proved that Ker(λF ) is trivial, and then observed that most of his
argument was already contained in Gauss’s first proof of the quadratic reciprocity
law.

For a global field F , Bass and Tate proved that Ker(λF ) is finitely generated, and
that it is finite of order prime to the characteristic in the function field case. Garland
(1971) proved that it is also finite in the number field case.

In the function field case, Tate proved that
∣∣Ker(λF )

∣∣= (q − 1) · (q2 − 1
) · ζF (−1). (31)

For a number field, the Birch-Tate conjecture says that
∣∣Ker(λF )

∣∣=±w2(F ) · ζF (−1) (32)

where w2(F ) is the largest integer m such Gal(F al/F ) acts trivially on μm(F al)⊗
μm(F

al) (Birch 1971; Tate 1970b). The odd part of this conjecture was proved by
Wiles (1990).

When Quillen defined the higher K-groups, he proved that

K2(OF )=Ker

(
K2(F )→

⊕

v finite

μv

)

and so there is an exact sequence

0→Ker(λF )→K2(OF )→
⊕

v real

μv.

Thus the computation of Ker(λF ) is closely related to that of K2(OF ). Lichten-
baum (1972) generalized the Birch-Tate conjecture to the following statement: for
all totally real number fields F 37

|K4i−2(OF )|
|K4i−1(OF )| =

∣∣ζF (1− 2i)
∣∣, all i ≥ 1.

The Galois Symbol Tate proved (31) by using Galois symbols. For a global
field F , he proved that the map

K2F →H 2(F,μ⊗2
m

)
(33)

37The first test of the conjecture was for F =Q and i = 1. Since ζQ(−1)=−1/12 and K2(Z)=
Z/2Z, the conjecture predicts that |K3(Z)| has 24 elements, but Lee and Szczarba showed that it
has 48 elements. When a seminar speaker at Harvard mentioned this, and scornfully concluded that
the conjecture was false, Tate responded from the audience “Only for 2”. In fact, Lichtenbaum’s
conjecture is believed to be correct up to a power of 2.
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defined by the Galois symbol induces an isomorphism

K2F/(K2F)
m $H 2(F,μ⊗2

m

)
(34)

when m is not divisible by char(F ), and wrote “I don’t know whether . . . this holds
for all fields” Tate (1970b, p. 208). Merkurjev and Suslin (1982) proved that it does
hold for all fields.

Tate noted that the isomorphism (34) gives little information on Ker(λF ) because⋂
m(K2F)

m is a subgroup of Ker(λF ) of index at most 2, and Ker(λF )⊂ (K2F)
m

for allm not divisible by 8. He then defined more refined Galois symbols, which are
faithful.

Fix a prime � �= char(F ), and let Z�(1)= lim←−n μ�n(F al). This is a free Z�-module

of rank 1 with an action of Gal(F al/F ), and we let Hr(F,Z�(1)⊗2) denote the
Galois cohomology group defined using continuous cocycles (natural topology on
both Gal(F al/F ) and Z�(1)⊗2). Tate proves that the maps (33) with m= �n lift to a
map

K2F →H 2(F,Z�(1)⊗2),

and that this map induces an isomorphism

K2F(�)→H 2(F,Z�(1)⊗2)
tors.

As K2F is torsion, with no char(F )-torsion, this gives a purely cohomological de-
scription of K2F .

Notes The results of Tate in this subsection were announced in Tate (1970b), and
proved in Tate (1973b, 1976b), or in Tate’s appendix to Bass and Tate (1973a).

7.3 The Milnor K-Groups

Milnor (1969/1970) defines the (Milnor) K-groups of a field F as follows: regard
F× as a Z-module; then KM∗ F is the quotient of the tensor algebra of F× by the
ideal generated by the elements

a⊗ (1− a), a �= 0,1.

This means that, for n ≥ 2, KMn F is the quotient of (K1F)
⊗n by the subgroup

generated by the elements

a1 ⊗ · · · ⊗ an, ai + ai+1 = 1 for some i.

There is a canonical homomorphism K∗F → KM∗ F which induces isomorphisms
KiF →KMi F for i ≤ 2. In the same article, Milnor defined for each discrete valu-
ation v on F , a homomorphism

∂v : K∗F →K∗κ(v)
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of degree −1, where κ(v) is the residue field.
Milnor (ibid.) quotes a theorem of Tate: for a global field F ,

KMn F/2K
M
n F $

⊕

v

KMn Fv/2K
M
n Fv, n≥ 3,

which implies that KMn F/2K
M
n F $ (Z/2Z)r1 (n ≥ 3) where r1 is the number of

real primes of F . Bass and Tate (1973a) improve this statement by showing that

KMn F $ (Z/2Z)r1 for n≥ 3.

The proof makes essential use of the “transfer maps”

Tr : K∗E→K∗F,

defined whenever E is a finite field extension of F . Since these had only been de-
fined for n≤ 2, a major part of the article is taken up with proving results on K∗F
for a general field, including the existence of the transfer maps.

The theorem of Bass and Tate completes the determination of the Milnor K-
groups of a global field, except for K1 and K2.

7.4 Other Results on K2F

Let F be a field containing a primitive mth root ζ of 1 for some m> 1. Tate (1976)
showed that, when F is a global field, every element of K2F killed by m can be
represented as {ζ, a} for some a ∈ F×. Tate (1977b) examines whether this holds
for other fields and obtains a number of positive results.

For a finite extension of fields E ⊃ F , there is a transfer (or trace) map
TrE/F : K2E→K2F . As K2E is generated by symbols {a, b}, in order to describe
TrE/F it suffices to describe its action on each symbol. This Rosset and Tate (1983c)
do.

8 The Stark Conjectures

In a series of four papers, Stark examined the behaviour of Artin L-series near s = 0
(equivalently, s = 1), and stated his now famous conjectures (Stark 1971). Tate gave
a seminar at Harvard on Stark’s conjectures in the spring of 1978, after Stark had
given some talks on the subject in the number theory seminar in the fall of 1977.
In 1980/81 Tate gave a course at the Université de Paris-Sud (Orsay) in which he
clarified and extended Stark’s work in important ways. The notes of Tate’s course,
when published in 1984, included most of the results known at that date, and became
the basic reference for the Stark conjectures.
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Let ζk(s) be the zeta function of a number field k. A celebrated theorem of
Dedekind shows that

ζk(s)∼− R

(e/h)
sr1+r2−1 as s→ 0, (35)

where h is the class number of k, R is its regulator, e = |μ(k)|, and r1 + r2 − 1 is
the rank of the group of units in k.

Let K be a finite Galois extension of k, with Galois group G=G(K/k). Stark’s
insight was that the decomposition of ζK(s) into a product of Artin L-series indexed
by the irreducible characters of G should induce an interesting decomposition of
(35).

Stark’s Main Conjecture Let χ : G→C be the character of a finite-dimensional
complex representation ρ : G→ GL(V ) of G. For a finite set S of primes of k
containing the infinite primes, let

L(s,χ)=
∏

p/∈S

1

det(1− ρ(σp)Np−s |V IP)

(Artin L-function relative to S; cf. 1.1). Let SK be the set of primes of K lying over
a prime in S, let Y be the free Z-module on SK , and let X be the submodule of Y of
elements

∑
nww such that

∑
nw = 0. Then L(s,χ) has a zero of multiplicity r(χ)

at s = 0, where

r(χ)= dimC HomG
(
V ∨,XC

)
.

Let U be the group of SK -units in K . The unit theorem provides us with an isomor-
phism

λ: UR→XR, u �→
∑

w∈SK
log |u|ww.

For each choice of an isomorphism ofG-modules f : XQ→UQ, Tate (1984, p. 26)
defines the Stark regulator, R(χ,f ), to be the determinant of the endomorphism of
HomG(V ∨,XC) induced by λC ◦ fC. Then

L(s,χ)∼ R(χ,f )
A(χ,f )

sr(χ) as s→ 0

for a complex number A(χ,f ). The main conjecture of Stark, as formulated by Tate
(1984, p. 27), says that

A(χ,f )α =A(χα,f ) for all automorphisms α of C,

where χα = α ◦χ . In particular, A(χ,f ) is an algebraic number, lying in the cyclo-
tomic field Q(χ). Tate proves that the validity of the conjecture is independent of
both f and S, and that it suffices to prove it for irreducible characters χ of dimen-
sion 1 (application of Brauer’s theorem p. 323).
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Characters with Values in Q When the character χ takes its values in Q, Stark’s
conjecture predicts thatA(χ,f ) ∈Q for all f . If, in addition, χ is a Z-linear combi-
nation of characters induced from trivial characters, then the proof of the conjecture
comes down to the case of a trivial character, where it follows from (35). Some mul-
tiple of χ has this form, and so this shows that some power of A(χ,f ) is in Q (Stark
1975). Tate proves (1984, Chap. II) that A(χ,f ) itself lies in Q. His proof makes
heavy use of the cohomology of number fields, including the theorems in Sect. 1.3.

The Case that L(s,χ) is Nonzero at s = 0 When r(χ)= 0, the Stark regulator
R(χ,f )= 1, and Stark’s conjecture becomes the statement:

L(0, χ)α = L(0, χα) for all automorphisms α of C.

This special case of Stark’s conjecture is also a special case of Deligne’s conjecture
on the critical values of motives (Deligne 1979, §6). Using a refinement of Brauer’s
theorem (cf. p. 323), Tate writes L(s,χ) as a sum of partial zeta functions:

L(s,χ)=
∑

σ∈G(K/k)
χ(σ ) · ζ(s, σ ), ζ(s, σ )=

∑

(a,K/k)=σ
Na

−s

(Tate 1984, III 1). According to an important theorem of Siegel (1970), ζ(0, σ ) ∈Q,
which proves Stark’s conjecture in this case.

The Case that L(s,χ) Has a First Order Zero at s = 0 By contrast, when
r(χ)= 1, the conjecture is still unknown, but it has remarkable consequences. Let
C[G] be the group algebra of G, and let

eχ = χ(1)|G|
∑

σ∈G
χ
(
σ−1) · σ

be the idempotent in C[G] that projects every representation of G onto its χ -
component. For an a ∈Q(χ) and a character χ with r(χ)= 1, let

π(a,χ)=
∑

α∈G(Q(χ)/Q)
aα ·L′(0, χα) · eχ̄α ∈C[G].

The character χ is realized on a Q[G]-submodule UW of UQ, and Stark’s conjecture
is true for χ if and only if

π(a,χ)XQ = λ(UW) (inside XC)

(Tate 1984, III 2.1). More explicitly, let Ψ be a set of irreducible characters χ �= 1
ofG such that r(χ)= 1, and assume that Ψ is stable under Aut(C). Let (aχ )χ∈Ψ be
a family of complex numbers such that aχα = (aχ )α for all α ∈ Aut(C). If Stark’s
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conjecture holds for the χ ∈ Ψ , then for each prime v of S and extension of v to a
prime w of K , there exists an integer m> 0 and an S-unit ε of K such that

λ(ε)=m
∑

χ∈Ψ
aχ ·L′(0, χ) · eχ̄ ·w; (36)

once m has been fixed, ε is unique up to a root of 1 in K (ibid. III §3). The units ε
arising (conjecturally) in this way are called Stark units. They are analogous to the
cyclotomic units in cyclotomic fields.

Finer Conjectures when K/k is Abelian When K/k is abelian, (36) can be
made into a more precise form of Stark’s conjecture, which Tate denotes St(K/k,S)
(Stark 1980; Tate 1984, IV 2). For a real prime w of K and certain hypotheses on S,
St(K/k,S) predicts the existence of a unit ε(K,S,w) ∈U such that

ε(K,S,w)σ = exp
(−2ζ ′(0, σ )

)
, all σ ∈G.

When we use w to embed K in R, the ε(K,S,w) lie in the abelian closure of k
in R. In the case that k is totally real, Tate (1984, 3.8) determines the subfield they
generate; for example, when [K : Q] = 2, they generate the abelian closure of k
in R. This has implications for Hilbert’s 12th problem. To paraphrase Tate (ibid.
p. 95):

If the conjecture St(K/k,S) is true in this situation, then the formula

ε = exp
(−2ζ ′(0,1)

)

gives generators of abelian extensions of k that are special values of tran-
scendental functions. Finding generators of class fields of this shape is the
vague form of Hilbert’s 12th problem, and the Stark conjecture represents an
important contribution to this problem. However, it is a totally unexpected
contribution: Hilbert asked that we discover the functions that play, for an ar-
bitrary number field, the same role as the exponential function for Q and the
elliptic modular functions for a quadratic imaginary field. In contrast, Stark’s
conjecture, by using L-functions directly, bypasses the transcendental func-
tions that Hilbert asked for. Perhaps a knowledge of these last functions will
be necessary for the proof of Stark’s conjecture.

Remarkably, St(K/k,S) is useful for the explicit computation of class fields, and
has even been incorporated into the computer algebra system PARI/GP.

For an abelian extension K/k, Tate introduced another conjecture, combining
ideas of Brumer and Stark, and which he calls the Brumer-Stark conjecture. Let S
be a set of primes of k including a finite prime p that splits completely in K , and let
T = S\{p}. Assume that T contains the infinite primes and the primes that ramify
in K . Let

θT (0)=
∑

χ irreducible

L(0, χ)eχ̄ ∈C[G].
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Brumer conjectured that, for every ideal A of K , AeθT (0) is principal; the Brumer-
Stark conjecture BS(K/k,T ) says that AeθT (0) = (α) for an α satisfying certain

conditions on the absolute values |α|w (w ∈ T ) and that K(α
1
e ) is an abelian exten-

sion of k (Tate 1984, 6.2).38 Tate proved this conjecture for k = Q (ibid. 6.7) and
for quadratic extensions K/k (Tate 1981b).

Function Fields All of the conjectures make sense for a global field k of charac-
teristic p �= 0. In this case, the Artin L-series are rational functions in q−s , where
q is the order of the field of constants, and Stark’s main conjecture follows easily
from the known properties of these functions. However, as Mazur pointed out, the
Brumer-Stark conjecture is far from trivial for function fields. Tate gave a seminar
in Paris in early fall 1980 in which he discussed the conjecture and some partial
results he had obtained. Deligne attended the seminar, and later gave a proof of the
conjecture using his one-motives. This proof is included in Chap. V of Tate (1984).

p-Adic Analogues Tate’s reformulation of Stark’s conjecture helped inspire two
p-adic analogues of his main conjecture, one for s = 0 (Gross) and one for s = 1
(Serre)—the absence of a functional equation for the p-adic L-series makes these
distinct conjectures. In a 1997 letter, Tate proposed a refinement of Gross’s conjec-
ture. This letter was published, with additional comments, as Tate 2004.

There is much numerical evidence for the Stark conjectures, found by Stark and
others. As Tate (1981a, p. 977) notes: “Taken all together, the evidence for the con-
jectures seems to me to be overwhelming”.

9 Noncommutative Ring Theory

The Tate conjecture for divisors on a variety is related to the finiteness of the Brauer
group of the variety, which is defined to be the set of the similarity classes of sheaves
of (noncommutative) Azumaya algebras on the variety. This connection led M. Artin
to an interest in noncommutative rings, which soon broadened beyond Azumaya
algebras. Tate wrote a number of articles on noncommutative rings in collaboration
with Artin and others.

9.1 Regular Algebras

A ring A is said to have finite global dimension if there exists an integer d such that
every A-module has a projective resolution of length at most d . The smallest such
d is then called the global dimension of A. Serre (1965) showed that a commutative
ring is noetherian of finite global dimension if and only if it is regular.

38Recall that e= |μ(k)|.
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Let k be a field. Artin and Schelter (1987) defined a finitely generated k-algebra
to be regular if it is of the form

A= k⊕A1 ⊕A2 ⊕ · · · , (37)

and

(a) A has finite global dimension (defined in terms of graded A-modules),
(b) A has polynomial growth (i.e., dimAn is bounded by a polynomial function

in n), and
(c) A is Gorenstein (i.e., the k-vector space ExtiA(k,A) has dimension 1 when i is

the global dimension of A, and is zero otherwise).

The only commutative graded k-algebras satisfying these conditions and generated
in degree 1 are the polynomial rings. It is expected that the regular algebras have
many of the good properties of polynomial rings. For example, Artin and Schelter
conjecture that they are noetherian domains. The dimension of a regular algebra is
its global dimension.

In collaboration with Artin and others, Tate studied regular algebras, especially
the classification of those of low dimension.

From now on, we require regular k-algebras to be generated in degree 1. Such an
algebra is a quotient of a tensor algebra by a homogeneous ideal.

A regular k-algebra of dimension one is a polynomial ring, and one of dimension
two is the quotient of the free associative algebra k〈X,Y 〉 by a single quadratic
relation, which can be taken to be XY − cYX (c �= 0) or XY − YX− Y 2. Thus, the
first interesting dimension is three. Artin and Schelter (ibid.) showed that a regular
k-algebra of dimension three either has three generators and three relations of degree
two, or two generators and two relations of degree three. Moreover, they showed that
the algebras fall into thirteen families. While the generic members of each family
are regular, they were unable to show that all the algebras in the families are regular.
Artin, Tate, Van den Bergh (1990a) overcame this problem, and consequently gave
a complete classification of these algebras. Having found an explicit description of
all the algebras, they were able to show that they are all noetherian.

These two articles introduced new geometric techniques into noncommutative
ring theory. They showed that the regular algebras of dimension 3 correspond to
certain triples (E,L, σ ) where E is a one-dimensional scheme of arithmetic genus
1 which is embedded either as a cubic divisor in P2 or as a divisor of bidegree (2,2)
in P1×P1, L=OE(1) is an invertible sheaf on E, and σ is an automorphism of E.
The scheme E parametrizes the point modules for A, i.e., the graded cyclic right
A-modules, generated in degree zero, such that dimk(Mn) = 1 for all n ≥ 0. The
geometry of (E,σ ) is reflected in the structure of the point modules, and Artin,
Tate, van den Bergh (1991a) exploit this relation to prove that the 3-dimensional
regular algebra corresponding to a triple (E,L, σ ) is finite over its centre if and
only if the automorphism σ has finite order. They also show that noetherian regular
k-algebras of dimension ≤ 4 are domains.
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9.2 Quantum Groups

A bialgebra A over a field k is a k-module equipped with compatible structures of
an associative algebra with identity and of a coassociative coalgebra with coiden-
tity. A bialgebra is called a Hopf algebra if it admits an antipodal map (linear map
S : A→A such that certain diagrams commute).

A bialgebra is said to be commutative if it is commutative as a k-algebra. The
commutative bialgebras (resp. Hopf algebras) over k are exactly the coordinate rings
of affine monoid schemes (resp. affine group schemes) over k.

Certain Hopf algebras (not necessarily commutative) are called quantum groups.
For example, there is a standard one-parameter family O(GLn(q)), q ∈ k×, of Hopf
algebras that takes the value O(GLn) for q = 1. This can be regarded as a one-
parameter deformation of O(GLn) by Hopf algebras, or of GLn by quantum groups.

Artin, Schelter, and Tate (1991b) construct a family of deformations of O(GLn),
depending on 1+ (n2

)
parameters, which includes the family O(GLn(q)). The alge-

bras in the family are all twists of O(GLn(q)) by 2-cocycles. They first construct a
family of deformations of O(Mn) by bialgebras that are graded algebras generated
in degree 1, have the same Hilbert series as the polynomial ring in n2 variables, and
are noetherian domains. The family of deformations of O(GLn) is then obtained by
inverting the quantum determinant. The algebras in the family of deformations of
O(Mn) are regular in the sense of (9.1), and so this gives a large class of regular
algebras with the expected good properties.

9.3 Sklyanin Algebras

As noted in (9.1), regular algebras of degree 3 over a field k correspond to certain
triples (E,L, σ ) with E a curve, L an invertible sheaf of degree 3 on E, and σ an
automorphism of E. When E is a nonsingular elliptic curve and σ is translation by
a point P in E(k), the algebra A(E,L, σ ) is called a Sklyanin algebra. Let U =
Γ (E,L). This is a 3-dimensional k-vector space, and we can identify U ⊗U with
Γ (E,L�L). The algebra A(E,L, σ ) is the quotient of the tensor algebra T (U) of
U by {f ∈ U ⊗ U | f (x, x + P) = 0}. It is essentially independent of L, because
any two invertible sheaves of degree 3 differ by a translation. More generally, there
is a Sklyanin algebra A(E,L, σ ) for every triple consisting of a nonsingular elliptic
curve, an invertible sheaf L of degree d on E, and a translation by a point in E(k).
The algebra A(E,L, σ ) has dimension d .

Artin, Schelter, and Tate (1994c) give a precise description of the centres of
Sklyanin algebras of dimension three, and Smith and Tate (1994d) extend the de-
scription to those of dimension four.

Tate and van den Bergh (1996) prove that every d-dimensional Sklyanin algebra
A(E,L, σ ) is a noetherian domain, is Koszul, has the same Hilbert series as a poly-
nomial ring in d variables, and is regular in the sense of (9.1); moreover, if σ has
finite order, then A(E,L, σ ) is finite over its centre.
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10 Miscellaneous Articles

1951a Tate, John. On the relation between extremal points of convex sets and
homomorphisms of algebras. Comm. Pure Appl. Math. 4, (1951). 31–32 Tate
considers a convex set K of linear functionals on a commutative algebra A over R.
Under certain hypotheses on A and K , he proves that the extremal points of K are
exactly the homomorphisms from A into R.

1951b Artin, Emil; Tate, John T. A note on finite ring extensions. J. Math. Soc.
Japan 3, (1951). 74–77 Artin and Tate prove that if S is a commutative finitely
generated algebra over a noetherian ring R, and T is a subalgebra of S such that
S is finitely generated as a T -module, then T is also finitely generated over R.
This statement generalizes a lemma of Zariski, and is now known as the Artin-Tate
lemma. There are various generalizations of it to noncommutative rings.

S

T

R noetherian

finite

⇒ fg

fg

1952a Tate, John. Genus change in inseparable extensions of function fields.
Proc. Amer. Math. Soc. 3, (1952). 400–406 Let C be a complete normal geo-
metrically integral curve over a field k of characteristic p, and let C′ be the curve
obtained from C by an extension of the base field k→ k′. If k′ is inseparable over k,
then C′ need not be normal, and its normalization C̃′ may have genus g(C̃′) less
than the genus g(C) of C. However, Tate proves that

p− 1

2
divides g(C)− g(C̃′). (38)

In particular, the genus of C can’t change if g(C) < (p − 1)/2 (which implies that
C is smooth in this case).

Statement (38) is widely used. Tate derives it from a “Riemann-Hurwitz formula”
for purely inseparable coverings, which he proves using the methods of the day
(function fields and repartitions). A modern proof has been given of (38) (Schröer
2009), but not, as far as I know, of the more general formula.

1952b Lang, Serge; Tate, John. On Chevalley’s proof of Luroth’s theorem.
Proc. Amer. Math. Soc. 3, (1952). 621–624 Chevalley (1951, p. 106) proved
Lüroth’s theorem in the following form: let k0 be a field, and let k = k0(X) be the
field of rational functions in the symbol X (i.e., k is the field of fractions of the
polynomial ring k0[X]); then every intermediate field k′, k0 � k

′ ⊂ k, is of the form
k0(f ) for some f ∈ k.
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A classical proof of Lüroth’s theorem uses the Riemann-Hurwitz formula. Let k
be a function field in one variable over a field k0, and let k′ be an intermediate field;
the Riemann-Hurwitz formula shows that, if k/k′ is separable, then

g
(
k′
)≤ g(k).

Therefore, if k has genus zero, so also does k′; if, in addition, k has a prime of degree
1, so also does k′, and so k′ is a rational field (by a well-known criterion).

However, if k/k′ is not separable, it may happen that g(k′) > g(k). Chevalley
proved Lüroth’s theorem in nonzero characteristic by showing directly that, when
k = k0(X), every intermediate field k has genus zero. Lang and Tate generalized
Chevalley’s argument to prove:

Let k be a function field in one variable over a field k0, and let k′ be an
intermediate field; if k is separably generated over k0, then g(k′)≤ g(k).

In other words, they showed that Chevalley’s argument doesn’t require that k =
k0(X) but only that it be separably generated over k0. They also prove a converse
statement:

A field of genus zero that is not separably generated over its field of con-
stants contains subfields of arbitrarily high genus.

Finally, to complete their results, they exhibit a field of genus zero, not separably
generated over its field of constants.

1955b Brauer, Richard; Tate, John. On the characters of finite groups. Ann. of
Math. (2) 62, (1955). 1–7 Recall (p. 261) that Brauer’s theorem says that every
character χ of a finite group G can be expressed in the form

χ =
∑

i

ni Indχi, ni ∈ Z,

with the χi one-dimensional characters on subgroups ofG (as conjectured by Artin).
Brauer and Tate found what is probably the simplest known proof of Brauer’s the-
orem. Recall that a group is said to be elementary if it can be expressed as the
product of a cyclic group with a p-group for some prime p. An elementary group is
nilpotent, and so every irreducible character of it is induced from a one-dimensional
character on a subgroup. Let G be a finite group, and let H be a set of subgroups
of G. Consider the following three Z-submodules of the space of complex-valued
functions on G:

X(G)= span{irreducible characters of G} (module of virtual characters)

Y = span{characters of G induced from an irreducible character of an H in H}
U = {class functions χ on G such that χ |H ∈X(H) for all H in H

}
.

Brauer and Tate show that

U ⊃X(G)⊃ Y,
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that U is a ring, and that Y is an ideal of U . Using this, they show that if H consists
of the elementary subgroups of G, then U = Y , thereby elegantly proving not only
Artin’s conjecture (the equality X(G) = Y ), but also the main theorem of Brauer
(1953) (the equality U =X(G)).
1957 Tate, John. Homology of Noetherian rings and local rings. Illinois J. Math.
1 (1957), 14–27 Tate makes systematic use of the skew-commutative graded dif-
ferential algebras over a noetherian commutative ring R to obtain results concern-
ing R and its quotient rings. The differential of such an R-algebra allows it to be
regarded as a complex, and Tate proves that every quotient R/a of R has a free res-
olution that is an R-algebra (in the above sense). Such resolutions are now called
Tate resolutions.

Let R be a local noetherian ring with maximal ideal m. The Betti series of R is
defined to be the formal power series R =∑r≥0 brZ

r with br equal to the length
of TorRr (R/m,R/m). Serre (1956) showed that R is regular if and only if R is
a polynomial, in which case R = (1 + Z)d with d = dim(R). Tate showed that
R= (1+Z)d/(1−Z2)b1−d if R is a complete intersection. In general, he showed
that the natural homomorphism

∗∧
TorR1 (R/m,R/m)→ TorR(R/m,R/m)

is injective and realizes TorR(R/m,R/m) as a free module over
∧∗ TorR1 (R/m,

R/m) with a homogeneous basis. If R is regular, then the homomorphism is an
isomorphism; conversely, if the homomorphism is an isomorphism on one homoge-
neous component of degree ≥ 2, then R is regular.

1962a Fröhlich, A.; Serre, J.-P.; Tate, J. A different with an odd class. J. Reine
Angew. Math. 209 (1962) 6–7 Let A be a Dedekind domain with field of frac-
tions K , and let B be the integral closure of A in a finite separable extension of K .
The different D of B/A is an ideal in B , and its norm d is the discriminant ideal
of B/A. The ideal class of d is always a square, and Hecke (1954, §63) proved that
the ideal class of D is a square when K is a number field, but the authors show that
it need not be a square otherwise. Specifically, they construct examples of affine
curves over perfect fields whose coordinate rings A have extensions B for which
the ideal class of the different is not a square.39

This is not a major result. However, Martin Taylor (2006) writes:

[This article and Fröhlich’s earlier work on discriminants] seems to have
marked the start of [his] interest in parity questions. He would go on to be
interested in whether conductors of real-valued characters were squares; this
in turn led to questions about the signs of Artin root numbers—an issue that
lay right at the heart of his work on Galois modules.

39Hecke’s theorem can be proved for global fields of characteristic p �= 0 by methods similar to
those of Hecke (Armitage 1967).
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Fröhlich’s work on Artin root numbers and Galois module structures was his most
important.

1963 Sen, Shankar; Tate, John. Ramification groups of local fields. J. Indian
Math. Soc. (N.S.) 27 1963 197–202 (1964) Let F be a field, complete with re-
spect to a discrete valuation, and let K be a finite Galois extension of F . Assume
initially that the residue field is finite, and let W be the Weil group of K/F (exten-
sion ofG(K/F) byK× determined by the fundamental class ofK/F ). Shafarevich
showed that there is a homomorphism s making the following diagram commute

1 −−−−→ K× −−−−→ W −−−−→ G(K/F) −−−−→ 1
⏐⏐'r

⏐⏐'s
∥∥∥

1 −−−−→ G(Kab/K) −−−−→ G(Kab/F ) −−−−→ G(K/F) −−−−→ 1,

where r is the reciprocity map. For a real t > 0, let G(Kab/K)t denote the t th
ramification subgroup of G(Kab/K). Then

r−1(G
(
Kab/K

)t)=UtK def=
{ {u ∈K× | ordK(u)= 0} if t = 0

{u ∈K× | ordK(u− 1)≥ t} if t > 0.
(39)

Artin and Tate (1961) proved the existence of the Shafarevich map s for a general
class formation. When the residue field of F is algebraically closed, the groups
π1(UK) (fundamental group of UK regarded as a pro-algebraic group) form a class
formation, and so the above diagram exists with K× replaced by π1(UK). In this
case,

r−1(G
(
Kab/K

)t)= π1
(
UtK
)
. (40)

In both cases, Sen and Tate give a description of the subgroups s−1(G(Kab/F )t )

ofW generalizing those in (39) and (40), which can be considered the case K = F .
Specifically, letG(K/F)x , x ≥ 0, denote with ramification groups of K/F with the
lower numbering, and let

ϕ(x)=
∫ x

0

du

(G(K/F)0 : G(K/F)u) for x ≥ 0.

For u ∈ W , let m(u) > 0 be the smallest integer such that um(u) ∈ K× (resp.
π1(UK)). Then

Wϕ(x) = {u ∈W |um(u) ∈Um(u)·xK

(
resp. π1

(
U
m(u)·x
K

))}
.

1964c Tate, John. Nilpotent quotient groups. Topology 3 1964 suppl. 1 109–111
For a finite group G, subgroup S, and positive integer p, there are restriction maps
r and transfer maps t ,

Hi(G,Z/pZ)
ri−→Hi(S,Z/pZ)

ti−→Hi(G,Z/pZ), i ≥ 0,



326 J.S. Milne

whose composite is multiplication by (G : S).
Let S be Sylow p-subgroup of G (so p is prime). If S has a normal p-

complement in G, then the restriction maps are isomorphisms, and Atiyah asked
whether the converse is true. Thompson pointed out that the answer is yes, and that
results of his and Huppert show that one need only require that r1 is an isomorphism.
Tate gives a very short cohomological proof of a somewhat stronger result.

Specifically, for a finite group G, define a descending sequence of normal sub-
groups of G as follows:

G0 =G, Gn+1 = (Gn)p[G,Gn] for n≥ 0, G∞ =
∞⋂

n=0

Gn

(p not necessarily prime). Thus, G/G1 (resp. G/G∞) is the largest quotient group
of G that is abelian of exponent p (resp. nilpotent and p-primary). Let S be a sub-
group of G of index prime to p. The following three conditions are (obviously)
equivalent,

• the restriction map r1 : H 1(G,Z/pZ)→H 1(S,Z/pZ) is an isomorphism,
• the map S/S1 →G/G1 is an isomorphism,
• S ∩G1 = S1,

and Tate proves that they imply

• S ∩Gn = Sn for all 1≤ n≤∞.

When S is a Sylow p-subgroup of G, S ∩ G∞ = 1, and so the conditions imply
that G∞ is a normal p-complement of S in G (thereby recovering the Huppert-
Thompson theorem).

1968b Tate, John. Residues of differentials on curves. Ann. Sci. École Norm.
Sup. (4) 1 (1968) 149–159 Tate defines the residues of differentials on curves as
the traces of certain “finite potent” linear maps. From his definition, all the standard
theorems on residues follow naturally and easily. In particular, the residue formula

∑

P∈C
resp(ω)= 0 (C a complete curve)

follows directly, without computation, from the finite dimensionality of the coho-
mology groups H 0(C,OC) and H 1(C,OC) “almost as though one had an abstract
Stokes’s Theorem available”.

A linear map θ : V → V is finite potent if θnV is finite dimensional for some n.
The trace TrV (θ) of such a map can be defined to be its trace on any finite dimen-
sional subspaceW of V such that θW ⊂W and θnV ⊂W for some n. Many of the
properties of the usual trace continue to hold, but not all. For example, linearity fails
even for two finite potent operators on an infinite-dimensional vector space (Gon-
zalez and Romo 2012). Tate defines the residue of a differential f dg at a closed
point p of a curve C to be the trace of the commutator [fp,gp], where fp , gp are
representatives of f , g in a certain subspace of End(k(C)p).
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Tate’s approach to residues has found its way into the text books (e.g., Iwasawa
1993). Elzein (1971) used Tate’s ideas to give a definition of the residue that recap-
tures both Leray’s in the case of a complex algebraic variety and Grothendieck’s in
the case of a smooth integral morphisms of relative dimension n.

Others have adapted his proof of the residue formula to other situations; for ex-
ample, Arbarello et al. (1989) use it to prove an “abstract reciprocity law” for tame
symbols on a curve over an algebraically closed field, and Beilinson et al. (2002)
use it to prove a product formula for ε-factors in the de Rham setting.

In reading Tate’s article, Beilinson recognized that a certain linear algebra con-
struction there can be reformulated as the construction of a canonical central exten-
sion of Lie algebras. This led to the notion of a Tate extension in various settings;
see Beı̆linson and Schechtman (1988), and Beilinson and Drinfeld (2004, 2.7).

1978a Cartier, P.; Tate, J. A simple proof of the main theorem of elimination
theory in algebraic geometry. Enseign. Math. (2) 24 (1978), no. 3-4, 311–317

The authors give an elementary one-page proof of the homogeneous form of
Hilbert’s theorem of zeros:

let a be a graded ideal in a polynomial ring k[X0, . . . ,Xn] over a field k; either
the radical of a contains the ideal (X0, . . . ,Xn), or a has a nontrivial zero in
an algebraic closure of k.

From this, they quickly deduce the main theorem of elimination theory, both in its
classical form and in its modern form:

let A=⊕d≥0Ad be a graded commutative algebra such that A is generated
as an A0-algebra by A1 and each A0-module Ad is finitely generated; then the
map of topological spaces proj(A)→ spec(A0) is closed.

1989 Gross, B.; Tate, J. Commentary on algebra. A century of mathematics in
America, Part II, 335–336, Hist. Math., 2, Amer. Math. Soc., Providence, RI
(1989) For the bicentenary of Princeton University in 1946, there was a three-
day conference in which various distinguished mathematicians discussed Problems
in Mathematics. Artin, Brauer, and others contributed to the discussion on algebra,
and in 1989 Gross and Tate wrote a commentary on their remarks. For example:

Artin’s belief that “whatever can be said about non-Abelian class field the-
ory follows from what we know now,” and that “our difficulty is not in the
proofs, but in learning what to prove,” seems overly optimistic.

1994b Tate, John. The non-existence of certain Galois extensions of Q unram-
ified outside 2. Arithmetic geometry (Tempe, AZ, 1993), 153–156, Contemp.
Math., 174, Amer. Math. Soc., Providence, RI (1994) In a 1973 letter to Tate,
Serre suggested that certain two-dimensional mod p representations of Gal(Qal/Q)

should be modular. In response, Tate verified this for p = 2 by showing that ev-
ery two-dimensional mod 2 representation unramified outside 2 has zero trace. The
article is based on his letter.
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Serre’s suggestion became Serre’s conjecture on the modularity of two-dimen-
sional mod p representations, which attracted much attention because of its relation
to the modularity conjecture for elliptic curves over Q and Fermat’s last theorem.
Serre’s conjecture was recently proved by an inductive argument that uses Tate’s
result as one of the base cases (Khare and Wintenberger 2009).

1996a Tate, John; Voloch, José Felipe. Linear forms in p-adic roots of unity.
Internat. Math. Res. Notices (1996), no. 12, 589–601 The authors make the
following conjecture: for a semi-abelian variety A over Cp and a closed subvariety
X, there exists a lower bound c > 0 for the p-adic distance of torsion points of A,
not in X, to X. Here, as usual, Cp is the completion of an algebraic closure of Qp .
They prove the conjecture for the torus

A= SpecCp
[
T1, T

−1
1 , . . . , Tn, T

−1
n

]
.

This comes down to proving the following explicit statement: for every hyperplane

a1T1 + · · · + anTn = 0

in Cnp , there exists a constant c > 0, depending on (a1, . . . , an), such that, for any
n-tuple ζ1, . . . , ζn of roots of 1 in Cp , either a1ζ1 + · · · + a1ζn = 0 or |a1ζ1 + · · · +
a1ζn| ≥ c.

2002a Tate, John. On a conjecture of Finotti. Bull. Braz. Math. Soc. (N.S.) 33
(2002), no. 2, 225–229 In his study of the Teichmüller points in canonical lifts of
elliptic curves, Finotti was led to a conjecture on remainders of division by polyno-
mials (Finotti 2004). He checked it by computer for all primes p ≤ 877, and Tate
proved it in general. The statement is:

Let k be a field of characteristic p = 2m+ 1≥ 5. Let F ∈ k[X] be a monic
cubic polynomial, and let A be the coefficient of Xp−1 in Fm. Let G ∈ k[X]
be a polynomial of degree 3m + 1 such that G′ = Fm − AXp−1. Then the
remainder in the division of G2 by XpFm+1 has degree ≤ 5m+ 2= 5p−1

2 .
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Added September 2012 I should have mentioned the work of Tate on liftings of Galois rep-
resentations, as included in Part II of: Serre, J.-P. Modular forms of weight one and Galois rep-
resentations. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ.
Durham, Durham, 1975), pp. 193–268. Academic Press, London (1977). See also: Variations on a
theorem of Tate. Stefan Patrikis, arXiv:1207.6724.

Also, “An oft cited (1979) letter from Tate to Serre on computing local heights on elliptic
curves.” was posted on the arXiv by Silverman (arXiv:1207.5765).

The collected works of Tate, which will include other unpublished letters, is in preparation.
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Autobiography

John Milnor

I grew up in Maplewood, New Jersey, a suburban community where at least half of
the adult male population took the train into New York City every weekday morning.
My father, an electrical engineer with Western Union, was no exception. He worked
particularly on undersea cable engineering,1 and obtained many patents for devices
which helped to optimize telegraphic transmission. My mother was an enthusiastic
amateur artist. During the depression, she organized a Toy Lending Library to help
parents who couldn’t afford toys.

I was painfully shy, and socially backward as a youngster. It didn’t help that
my parents bought a farm an hours drive to the west when I was four years old.
After that time, every summer and every weekend was spent on the farm. I certainly
enjoyed the rolling countryside, and the animals. But it meant that I was isolated
from anyone my own age much of the time.

My father and my brother Bob, who is seven years older, were both adept with
tools, and were always happy building things. (There was a hydroponic garden in
the barn, and a ten inch telescope, permanently mounted under a sliding shed out in
the field.) Bob built an elaborate model railway system. I was fascinated by the relay
switching circuits used to control it; but wasn’t much help in actually constructing
anything. With World War II looming, he took an accelerated degree in aeronautical
engineering at the University of Michigan, and spent the rest of the war in the army,
working on aircraft maintenance.

1See J. Willard Milnor, Submarine cable telegraphy, Transactions of the American Institute of
Electrical Engineers 41 (1922) 20–38.
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My father J. Willard Milnor and mother Emily Cox Milnor in 1928, a few years
before I was born

We had a few cows and chickens, at least during the war years. I even learned how
to milk a cow

With my brother Bob in the late 1930s
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Thus I spent a great deal of time by myself, reading everything I could get my
hands on. I loved Bertrand Russell’s “History of Western Philosophy”, and was quite
intrigued by the few mathematics books that my father owned. These included a
calculus text for engineers, and a translation of a very brief German text on complex
function theory, which was fascinating but very mysterious. However, I certainly
never thought of mathematics as a career at that point.

One memorable event was a cross-country road trip which Bob and I took in
1948. In particular, we both took an exciting lesson in rock climbing in Wyoming.
We have both had a love of the mountains since that time.2

At age seventeen I enrolled in Princeton, and was almost immediately captivated
by the mathematical world. It was not that I wasn’t interested in other subjects; but I
found everything else much harder. Furthermore, the friendly ambience in the math-
ematics department felt wonderful. There was a cosmopolitan atmosphere, created
by many distinguished refugees from Nazi Germany and elsewhere in Europe.

One particularly memorable course was taught by Ralph Fox. The subject was
point set topology in the manner of R.L. Moore. This meant that Fox provided the
definitions and theorems, while we were required to find the proofs, without any
help from books. Later Fox introduced me to 3-dimensional topology, which many
people in the department then seemed to think of as a boring backwater, although
the field has really come into its own in recent years. I wrote both my senior thesis
and my doctoral thesis, under Fox’s direction, on the theory of higher order linking
invariants.

Another memorable course, completely opposite in style, was a totally polished
presentation of algebraic number theory, by Emil Artin. Although the course was
very enjoyable, I was chagrined to realize some time later that I had no idea what an
“algebraic number” is. As far as I can remember, that particular topic had never been
mentioned. Nevertheless, that course, and also contact with junior faculty members
such as Serge Lang and John Tate, served me well in later years.

A third memorable class, on elementary differential geometry, was taught by
Albert Tucker. In particular, Tucker introduced us to a problem of Karol Borsuk on
the total curvature of knots, which I was happily able to solve.

One particularly enjoyable feature of the department was the commons room,
which was open at all times. There was often some game such as Go or Kriegspiel
in progress, usually surrounded by a crowd of kibitzers. In fact there was an active
group in Princeton studying Game Theory, headed by Tucker, but also including
younger people such as David Gale, Harold Kuhn, and John Nash. I became ac-
tively involved for a few years, and spent several summers at The Rand Corporation
in California working in Game Theory. (They were particularly interested in this
field because of its possible military applications.) However, I eventually lost en-
thusiasm for the subject, since it seemed to me that mathematics could play only a
limited role. Any really important application would also involve questions of poli-
tics, sociology, and psychology, which were completely foreign to me.

2Some of my adventures (and misadventures) in the mountains are described in the dedication
pages of my “Collected Papers III”.
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With a hyperbolic blackboard, Princeton 1963. Alfred Eisenstaedt/Time & Life Pic-
tures/Getty Images. Reprinted with permission

During my time as a graduate student in Princeton, I took a year off to study
geometry under Heinz Hopf in Zürich. The time in Switzerland, was useful and en-
joyable, but the difference in style was amazing to me. When I acted like a Princeton
student, and interrupted the lecture to ask a question, everyone turned around to stare
at me as if I were totally crazy.

I returned to Princeton with a Swiss wife, Brigitte. Over the next ten years, we
had three children. Stefan, the oldest, is a computer hardware engineer, who shares
my love of the mountains. After many treks in Nepal, he and his wife Lisa adopted
two Nepali children. Daniel runs a successful business as a commercial artist in
Switzerland, and Gabrielle, the youngest, lives with her blacksmith partner and two
horses in the California hills.

During the many years I spent at Princeton,3 my primary focus was on the topol-
ogy of manifolds, and the tools from algebraic topology needed to understand them.
Here I benefited very much from the presence of Norman Steenrod and John Moore.
This was a golden time in topology. The work of Jean-Pierre Serre had made ho-
motopy groups accessible, and the work of René Thom had provided an unexpected
and surprising relationship between homotopy theory and the study of smooth man-
ifolds.4 Furthermore Raoul Bott’s work had provided an amazingly simple descrip-
tion for the stable homotopy groups of classical groups. The confluence of these
new ideas, together with the well established techniques of cohomology theory, ob-
struction theory, fiber bundle theory, and characteristic classes led to solutions for
many problems which had seemed completely intractable.

3For more about my mathematical life in Princeton, see: Growing Up in the Old Fine Hall, in
“Prospects in Mathematics”, edited by H. Rossi, AMS, 1998.
4One conversation with Thom, in which he described how to “kill” a homotopy class by a surgery
construction, was particularly important to me.
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With grandchildren Kavi and Deepa, in Provincetown

The power of these new methods was brought home to me when I discovered
what I first thought was a contradiction in mathematics. I had been studying the
classification problem for closed 2n-dimensional manifolds which are (n − 1)-
connected. The homotopy theory of such a manifold is relatively easy to describe,
since it has homology only in dimensions 0, n, and 2n. In dimension eight, many
such examples can be constructed by starting with a fiber bundle

D4 ⊂−→E8 →→ S4

over S4 with the closed disk D4 as fiber. Whenever the boundary manifold
M7 = ∂E8 is a topological sphere, one can paste a copy of the disk D8 onto E8

to obtain the required closed 8-dimensional manifold. In fact, for many examples of
smooth D4-bundles over S4, one can easily check that the boundary is a homotopy
7-sphere. Assuming the Generalized Poincaré Hypothesis, this seemed to lead to a
contradiction. It was easy to compute the characteristic classes for the 8-manifold
constructed in this way, but in many cases the results contradicted the restrictions on
characteristic classes for smooth closed manifolds which followed from the work of
Thom and Hirzebruch. My first thought was that the boundary was only a homo-
topy sphere, not a topological sphere, so that I had found a counterexample to the
7-dimensional Poincaré Hypothesis. However, a little careful analysis showed that
the boundary was indeed a topological sphere. Thus I had actually constructed ex-
amples of smooth 7-dimensional manifolds which are homeomorphic, but not dif-
feomorphic, to the standard 7-sphere. In effect, I had answered a question which, as
far as I know, no one had ever asked.

A year or so later, Michel Kervaire and I discovered that we were working on
very similar ideas, and decided to combine forces, leading to our work on “Groups
of Homotopy Spheres.”

I was particularly lucky during these years to have a wonderful group of graduate
students and junior faculty, who helped me convert some of my lectures into print.
Thus my lectures on Morse Theory, inspired by Bott, were put into book form by
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In Princeton, perhaps in the 1970s

Michael Spivak and Robert Wells. Similarly, my lectures on Stephen Smale’s h-
Cobordism Theorem were converted into published form by Larry Siebenmann and
Jonathan Sondow, and my Characteristic Classes lectures by Jim Stasheff.

Contacts between American and European mathematicians always play a very
important role. I was very grateful for the opportunity to visit the IHES near Paris
many times during this period. The annual Arbeitstagung organized by Fritz Hirze-
bruch in Bonn also provided a wonderful opportunity for keeping up with the latest
developments.

Unfortunately, my marriage to Brigitte fell apart. In 1967, I left Princeton, spend-
ing a year at UCLA and two years at MIT. Then in 1970, I returned to Princeton,
but at the Institute for Advanced Study, where I spent 20 happy years. During this
time, work in algebraic topology inevitably led to related problems in pure algebra.
Jean-Pierre Serre’s “Cours d’Arithmétique” provided a marvelously readable intro-
duction to quadratic forms, which form an indispensable tool in studying the ho-
motopy theory of manifolds. Michael Atiyah taught me the importance of K-theory,
and I learned the related subject of Algebraic K-theory through the work of Hyman
Bass. The groupK0A of a ring A can be thought of as a simplified description of the
class of finitely generated projective modules over A, while K1A is closely related
to J.H.C. Whitehead’s theory of the “simple homotopy type” of a finite simplicial
complex. I was happy to find a useful definition of the group K2A of a ring A, and
made a completely ad hoc definition of what are now called the “Milnor K-groups”
KMn F of a field F for higher values of n. These groups are of interest because of
their close relation with the theory of quadratic forms and with Galois cohomol-
ogy, as proved later in the work of Kazuya Kato and Vladimir Voevodsky.5 (A few
years later, Daniel Quillen constructed a more generally useful theory of higher K
groups.)

5Compare: On the Milnor Conjectures, history, influence, applications, by Albrecht Pfister, Jahres-
ber. Deutsch. Math.-Verein, 102 (2000) 15–41.
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With Dusa in the California High Sierra in 1980, and in Arizona, many years later

Another development that I was particularly happy about in this period was the
book “Singular Points of Complex Hypersurfaces,” which made a useful contribu-
tion to elementary algebraic geometry, even though I was completely untrained in
that field.

During the late seventies, my attention drifted towards a different area. Under the
influence of Bill Thurston, and later of Adrien Douady, I became very much inter-
ested in the theory of dynamical systems. In particular, the abundance of fascinating
problems which can be directly visualized seemed very attractive.

The theory of dynamics in one complex variable had received a powerful start in
the early 20-th century through the work of Pierre Fatou and Gaston Julia. But there
was a long hiatus until their work was brought to new life in the late 20-th century
through the work of many mathematicians such as Adrien Douady, John Hubbard,
Bill Thurston, and Dennis Sullivan. The advent of computers which could bring the
abstract mathematics to life with vivid illustrations, played an important role. One
particularly interesting feature is that dynamics over the complex numbers, where
all of the powerful classical machinery is available, often provides an essential tool
in understanding problems in real dynamics which seem a priori much simpler.

After a second failed marriage, I met and married Dusa McDuff. We have one
child Thomas who is now a graduate student in Vancouver. (She also has one child
Anna, by a previous marriage.) A high point of every year is the family get together,
which takes place at Daniel’s vacation house in Provincetown.

In 1989 I left the Institute for Advanced Study, and moved to Stony Brook Uni-
versity. In part this was because I missed the regular contact with students. However,
the fact Dusa had been in Stony Brook for some years was the deciding factor.

At Stony Brook, I organized a small “Institute for Mathematical Sciences”, with
the help of Misha Lyubich, who has now taken over as its director. Over the years,
many young (and not so young) mathematicians have spent time at our Institute,
many of them working in the field of dynamics.
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In front of the Abel monument, Oslo 2011

Although I am now formally working only half-time at Stony Brook, I still feel
that happiness consists of thinking about mathematical problems.



Milnor’s Work in Algebra and Its Ramifications

Hyman Bass

1 Introduction

While John Milnor was preeminently a topologist and geometer, he saw algebra as
not only a resource but also, at times, an area of deep and engaged interest in its
own right. He attributes some of his algebraic sensibilities to his exposure to Serge
Lang, John Tate, and, especially, Emil Artin at Princeton. He wrote in [27] that,
“attempts to solve topological problems led directly to serious questions in alge-
bra, which of course had an addictive fascination of their own.” Indeed, during the
period 1965–1973, Milnor made transformative contributions to algebra, with sub-
stantial and lasting impacts on algebraic groups, algebraic K-theory, and quadratic
forms. Though his own algebraic interventions were somewhat bounded in time, it
is striking how, in several cases, his work helped set important research agendas for
years to follow. Indeed, work subsequent to Milnor’s in algebraic K-theory earned
two Fields Medals (Quillen and Voevodsky). These ramifications of Milnor’s work
are what I shall try to highlight here. Other discussions of Milnor’s work in algebra
can be found in the references [7] and [27].

Part II is a brief discussion of Milnor’s work with John Moore [19] on Hopf alge-
bras, work that followed Milnor’s important paper [18] on the Steenrod algebra and
its dual. Part III discusses Milnor’s introduction of ideas about growth of finitely
generated groups, and relations of curvature properties of a compact manifold to the
growth of its fundamental group. This precipitated the question: Which groups have
polynomial growth? This question was finally resolved in a landmark paper of M.
Gromov [10] that laid one of the foundations of geometric group theory. Part IV de-
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scribes the work of Milnor (with Bass and Serre) on the Congruence Subgroup Prop-
erty (CSP) for SLn (n ≥ 3) and Sp2n (n ≥ 2) [3]. This revealed deep connections
with number theory, and established initial methods for investigating the CSP for
other algebraic groups over global fields, a large program of research that continues
to this day. See Prasad and Rapinchuk [31] for survey of the current state of the field.
The final Part V presents some highlights of Milnor’s work on algebraic K-theory
and quadratic forms. While the congruence subgroup theorem had some direct con-
nections with the functor K1, it also revealed links with work of C. Moore [28],
H. Matsumoto [14] and R. Steinberg [39] about central extensions that Milnor used
to develop his definition of the functor K2. This is all exposed in Milnor’s excellent
introduction to algebraic K-theory [26]. For a field F, Milnor obtains a presenta-
tion of K2(F) generated by “Steinberg symbols,” {x, y} with x, y ∈ F• = K1(F).
These are bi-multiplicative in (x, y) and are trivial when x + y = 1. In his mile-
stone 1970 paper, Algebraic K-theory and quadratic forms [24], Milnor uses this
presentation to make Kn(F) (n = 0,1,2) the low degree terms of a graded ring,
now denoted KM∗ (F) (to distinguish it from the K-groups soon after introduced by
Quillen [32]), and called the Milnor ring of F. Assume now that char(F) �= 2, and
put kM∗ (F)=KM∗ (F)/2KM∗ (F). Then Milnor constructs two homomorphisms:

sF
n : kMn (F)→GWn(F) and hF

n : kMn (F)→Hn(F,μ2)

where GWn(F) is the degree n component of the associated graded ring of the Witt–
Grothendieck ring of quadratic forms over F, and Hn(F,μ2) is the Galois cohomol-
ogy with coefficient in μ2 = {±1}. What came to be known as the Milnor Con-
jectures were his questions about whether sF

n and hF
n are isomorphisms. That sF

n is
always an isomorphism was proved in 2007 by Orlov, Vishik, and Voevodsky [29].
(And Kato [11] proved a version of this when char(F) = 2.) The proof that hF

n is
always an isomorphism was proved in a monumental and original work for which
Voevodsky received the Fields Medal. Interestingly, Voevodsky’s methods, using
motivic cohomology, return to algebraic topology ideas, introducing a motivic ana-
logue of singular cohomology, and make strategic use of an analogue of the Steenrod
algebra, wherein he uses ideas from Milnor’s 1958 paper [18] cited at the beginning.

2 Hopf Algebras

The theory of Hopf algebras emerged from Hopf’s work on the homology of Lie
groups, work later elaborated by John Moore. At about the same time, pursuant
to a suggestion of Steenrod, Milnor [18] showed that the Steenrod algebra had a
natural a Hopf algebra structure. This confluence of interest led Milnor and Moore
[19] to collaborate on a project to study the general structure of graded Hopf alge-
bras. The topological relevance comes from the fact that, if G is a pathwise con-
nected homotopy associative H -space with unit, then the Hurewicz homomorphism
λ : π∗(G,K)→H∗(G,K) of graded Lie algebras induces an isomorphism of Hopf
algebras U(π∗(G,K))→H∗(G,K).



Milnor’s Work in Algebra and Its Ramifications 363

The main results of [19] describe the structure of a graded connected primitively
generated Hopf algebra A over a field K of characteristic zero. The primitive ele-
ments P(A) form a graded Lie algebra, and for any graded Lie algebra L, the uni-
versal enveloping algebra U(L) has the structure of a graded connected primitively
generated Hopf algebra. A fundamental structure theorem asserts that the compos-
ite functors, P ◦U and U ◦P , are isomorphic to the respective identity functors. In
particular, A is canonically isomorphic, as Hopf algebra, to U(P (A)). In the course
of proving this, Milnor and Moore establish a sharpened version of the Poincaré–
Birkhoff–Witt Theorem: The associated graded algebra of U(L) is Hopf-algebra
isomorphic to the symmetric algebra of the underlying graded vector space of L.

When A has commutative multiplication (and K is only required to be perfect),
Milnor and Moore retrieve and strengthen classical theorems of Borel, Leray, and
Samelson. For example, when A is further of finite type as a graded vector space,
then A is a tensor product of single generator Hopf algebras.

3 Growth of Groups

In [20] Milnor introduced the growth function g(r) of a group G with respect to
a finite set S of generators of G; g(r) denotes the number of elements of G of
length less than or equal to r as a group word in S. The group G is said to have
polynomial growth of degree less than or equal to d if g(r) ≤ ard for some a > 0,
and exponential growth if g(r) ≥ ar for some a > 1. Such properties depend only
on G, not S, and are shared by subgroups of finite index.

Let M be a complete Riemannian n-manifold, with G = π1(M) acting (freely)
on its universal cover M̃ . Choose x ∈ M̃ , and let B(r) denote the ball of radius r
in M̃ centered at x. Then it is shown in [21] that, for the fundamental group G,
the function g(r) above has the same asymptotic growth properties as the functions
#(G · x ∩ B(r)) and Vol(B(r)). The latter are related to curvature properties of M ,
and thus Milnor proved results relating curvature to the growth of π1(M).

Results of this genre were further pursued by Wolf [45]. Suppose that G has
a nilpotent subgroup H of finite index, with descending central series H = H1 ≥
H2 ≥H3 ≥ · · · Let ri = rank(Hi/Hi+1) and put

d(G)=
∑

i≥1

iri ≤ d ′(G)=
∑

i≥1

2i−1ri .

(These depend only on G, not H .) Wolf in [45] shows then that G has polynomial
growth of degree between d(G) and d ′(G). Bass later showed, in [5], that G has
polynomial growth of degree exactly d(G). Wolf further shows that ifG is virtually
polycyclic, then either G is virtually nilpotent, and hence has polynomial growth as
above, or else it has exponential growth. Milnor’s note [22] shows in fact that any
finitely generated solvable group is either virtually polycyclic or else of exponential
growth.
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These results together imply that: If G is virtually solvable, then either G is
virtually nilpotent, and hence of polynomial growth of degree d(G), or else G
is of exponential growth. Two questions naturally emerged from this: Question I:
Must the growth of any finitely generated group be either polynomial or exponen-
tial? Conjecture II: Every finitely generated group of polynomial growth is virtually
nilpotent. Question I was actually posed by Milnor as an Advanced Problem in the
MAA Monthly [23]. It took 15 years before Grigorchuk [9] found a counterexample,
a group of “intermediate growth.”

As for Conjecture II, the results described above show that it holds for virtually
solvable groups. It then follows that it is true for linear groups, using the “Tits alter-
native” [41]: A finitely generated linear group G is either virtually solvable or else
G contains a non-Abelian free group (and is hence of exponential growth). Using
this, Conjecture II was finally proved in a landmark paper of Gromov [10] that has
since made the ideas of metric geometry a fundamental tool of combinatorial group
theory. Gromov’s idea was, roughly speaking, to map the group G of polynomial
growth into a Lie group L, and hence in a linear group, and so that the kernel has
smaller growth degree, thus setting up an induction. Relative to a finite set of gen-
erators of G, word length defines a kind of norm on G, and hence also a metric.
Gromov obtains the sought after Lie group L as a “limit” of a suitable sequence of
micro-scalings of the metric spaceG, in the same way that we can picture Rn as the
limit of the sequence (1/N !) ·Zn (as N→∞).

4 The Congruence Subgroup Problem

Let Z = ZS be the ring of S-integers in a global field k, where S is a finite set
of places of k containing all Archimedean places. For readers not so familiar with
this context, the main gist of what follows can be understood by taking Z = Z,
the integers, k = Q, the rational numbers, and S = {∞}. Let G ⊆ GLn be a linear
algebraic group defined over k, and let Γ =G(Z)=G(k)∩GLn(Z). For any ideal
J �= 0 of Z we have the principal congruence subgroup of level J ,

ΓJ =Ker
(
Γ =G(Z)→G(Z/J )

)
.

Since the ring Z/J is finite, ΓJ has finite index in Γ . The Congruence Subgroup
Property (CSP) forG and Z (or forG, k, and S) asserts, conversely, that every finite
index subgroup of Γ is a congruence subgroup, i.e. contains ΓJ for some J �= 0.
The CSP does not depend on the linear embedding G⊆GLn.

Some Examples

1. When G is a unipotent group and k is a number field, the CSP is easily shown to
hold.

2. For Γ = SL2(Z) it was already known by Fricke and Klein in the 19th century
that the CSP fails; in fact Γ is virtually a free group, and so has an abundance
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of non-congruence subgroups of finite index. Positive results for SLn(Z) with
n ≥ 3, were obtained independently by Bass–Lazard–Serre [2] and Mennicke
[15].

3. ForG=GL1, and, more generally, forG an algebraic torus, the CSP was proved
by Chevalley [8].

4. When G is an Abelian variety (no longer a linear algebraic group), G(k) is
a finitely generated Abelian group (Mordell–Weil), and Serre [36] defines an
S-congruence subgroup of G(k) to be the intersection of G(k) with an open
subgroup of

∏
v∈S G(kv) (in which G(k) is diagonally embedded). With this in-

terpretation, he proves the CSP in [36] and [38].

The paper [3] of Bass–Milnor–Serre, offers an exact determination of whether,
and even to what extent, the CSP holds for SLn(Z) (n ≥ 3) and Sp2n(Z) (n ≥ 2).
This section briefly recounts the content of [3] as well as the ensuing research that
it precipitated. In this I draw largely on the excellent survey [31] by Prasad and
Rapinchuk. The caseG= SLn (n≥ 3) is treated in [3] as follows. (The case of Sp2n
(n ≥ 2) is similar.) Let E be the subgroup of Γ generated by elementary matrices,
and, for each ideal J �= 0 of Z, let EJ be the normal subgroup of E generated by
elementary matrices in ΓJ . Then the following results are proved in [3]:

1. EJ is a normal subgroup of finite index in Γ , and every finite index subgroup of
Γ contains EJ for some J �= 0. Moreover, CJ = ΓJ /EJ is central in Γ/EJ .

2. Each element c of CJ is represented by an element s of ΓJ ∩ SL2(Z). If (a, b)
is the first row of s, then c depends only on (a, b) (≡ (1,0) mod J ), so we can
write c = [ b

a

]
. (This notation was first introduced and exploited by Milnor, and

became a primary tool in later computations ofK1 groups in algebraic K-theory.)
3. The symbols

[
b
a

]
satisfy the following properties:

a. They are bi-multiplicative as a function of (a, b) ∈ WJ = {(a, b) ≡ (1,0)
mod J in Z2}.

b.
[
b
a

]
is unchanged if we add tb to a for any t ∈ Z, or if we add ta to b for any

t ∈ J .

Maps from WJ to an Abelian group satisfying these properties are called Men-
nicke symbols (of level J ) in [3], and it is shown in [3] that the above

[
b
a

]
is a

universal Mennicke symbol. In particular, it is independent of n ≥ 3. (For these
results, Z could be any Dedekind domain.)

When Z is the ring of S-integers of a global field k, as above, Chap. I of [3]
determines all Mennicke symbols of level J for each J �= 0 in Z. If S is not totally
imaginary, they are all trivial, and hence CJ = {1} for all J . If S is totally imaginary,
then there is an r = r(J )≥ 1 such that k contains μr , the group of r th roots of unity,
and the map

WJ → μr, (a, b) �→
(
b

a

)
,

given by the r th power Legendre symbol, is a universal Mennicke symbol, and hence
CJ ∼= μr . If μm is the group of all roots of unity in k, and if J is divisible by
m ·∏p|m p1/(p−1) then r(J )=m, and so lim←−CJ ∼= μm.
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Chapter IV of [3] provides a measure of the failure of the CSP, by an Abelian
group CS = CS(G(k)), the so called congruence kernel, defined below. In the case
G= SLn discussed above,

CS = lim←−CJ = lim←−ΓJ /EJ .
It is this formulation that frames subsequent research on the CSP.

The S-congruence topology on G(k) is that for which the congruence subgroups
of Γ form a base for neighborhoods of 1. It is the topology induced by the diagonal
embedding of G(k) in G(AS), where AS is the ring of S-adèles of k. Thus, the S-
congruence completion,G(k), is just the closure ofG(k) inG(AS). Kneser’s Strong
Approximation Theorem [12], valid under rather general conditions on G, asserts
that G(k)=G(AS). The closure Γ of Γ in G(k), the congruence completion of Γ ,
is a profinite open subgroup of G(k).

The S-arithmetic topology onG(k) is that for which the S-arithmetic groups, i.e.
subgroups ofG(k) commensurable withG(Z), form a base for neighborhoods of 1.
Let Ĝ(k) denote the S-arithmetic completion of G(k). The closure Γ̂ of Γ in G(k)
is just the profinite completion of Γ , and it is a compact open subgroup of Ĝ(k).

Since the S-arithmetic topology refines the S-congruence topology, we have an
exact sequence E(G,S)

1→ Cs→ Ĝ(k)→G(k)→ 1

that restricts to an exact sequence E(Γ,S)

1→ CS→ Γ̂ → Γ → 1.

The CSP is just the assertion that the S-congruence and S-arithmetic topologies
coincide, and so:

The CSP is equivalent to the condition: CS = {1}.
With this formulation, we can now state the main result of [3]. We shall say that

S is totally imaginary if every place in S is complex, i.e. kv =C for all v in S. This
means that ZS is just the ring of algebraic integers in a totally imaginary number
field.

Congruence Subgroup Theorem (14.1 in [3]) For G = SLn (n ≥ 3) or Sp2n
(n ≥ 2), CS ∼= μ(k), the roots of unity in k, if S is totally imaginary and CS = {1}
otherwise.

In particular, though the CSP fails in the totally imaginary case, its failure is
precisely measured by the finite group μ(k). In fact, the isomorphism with μ(k) is
intimately connected with power residue symbols in class field theory, as described
above.

The results of [3] were shown to bear a close relation with the work of C. Moore
[28] on “metaplectic covering groups.” In fact, when S is totally imaginary, E(G,S)
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is exactly the metaplectic covering group defined by Moore. It was also shown in
[3] that the finiteness of CS implies certain rigidity properties of Γ , namely that
any linear representation of Γ is virtually the restriction of an algebraic representa-
tion of G. The precise calculations in [3] also yielded some calculations of certain
algebraic K-groups, SK1(Zπ), with π a finite Abelian group.

The Congruence Subgroup paper [3] naturally drew interest in the CSP for other
algebraic groups G, and a substantial body of work (e.g. [33]) has been done in
this direction, for which the survey [31] of Prasad and Rapinchuk is an excellent
reference. First, Matsumoto [14] extended the above results to all Chevalley groups
of rank≥ 2. The subsequent results are due largely to Serre, Raghunathan, Prasad,
and Rapinchuk. As Serre pointed out early, the CSP fails badly (CS is infinite if G
is not simply connected).

The discussion in [31] explains how the investigation of the CSP quickly focuses
on the case when G is absolutely simple, and simply connected (SSC), an assump-
tion we now make. Define rkS(G)=∑v∈S rkv(G), where rkv(G) is the rank of the
algebraic group G over the completion kv . Let V∞ denote the set of arcimedian
places of k. assumed to be contained in S. Then [31] formulates the following Con-
gruence Subgroup Conjecture, slightly corrected from the original version posed by
Serre:

• Higher rank: If rkS(G) ≥ 2, then CS is finite if and only if rkv(G) > 0 for all
v ∈ S \ V∞.

• Rank 1: If rkS(G)= 1, then CS is infinite.

Serre formulated (essentially) this conjecture after treating the rank 1 case when
G = SL2 [37]. In the positive direction, Theorem 2 of [31] asserts: Assuming that
rkS(G) > 0, and rkv(G) > 0 for all v ∈ S \ V∞, then CS is finite if and only if it is
central in Ĝ(k).

In particular, the higher rank congruence subgroup conjecture is equivalent to the
centrality of CS . The centrality of CS has been proved in many cases, for example
when G is k-isotropic (Raghunathan [34], and [31]) but many anisotropic cases
remain open, and seem to require new methods.

Some of the results in [31] require the following Margulis–Platonov Conjecture
(MP), known to be true in many cases: Let T be the (finite) set of places v �∈ V∞
such that rkv(G)= 0. If N is a non-central normal subgroup of G(k), then there is
an open normal subgroup W of GT =∏v∈T G(kv) such that N =W ∩G(k).

This is used in linking the CSP to the notion of bounded generation. A discrete
group Γ is said to be boundedly generated if there exists s1, s2, . . . , st in Γ such that
Γ = 〈s1〉〈s2〉 · · · 〈st 〉 (a finite product of cyclic groups). A similar notion is defined
for profinite groups, with 〈si〉 replaced by the closure of the cyclic group generated
by si . In this connection we have the following result.

Theorem (Platonov–Rapinchuk [30], Lubotzky [13]) Assuming (SSC) and (MP),
CS is central if and only if Γ̂ is boundedly generated.
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5 Algebraic K-Theory and Quadratic Forms

This exposition draws much from the excellent survey of Merkurjev [17].

Milnor’s K2(R) An early precursor of algebraic K-theory (specifically K1)
was J.H.C. Whitehead’s work on the torsion τ(f ) of a homotopy equivalence
f : X→ Y of finite complexes, an invariant that detects whether f is a simple ho-
motopy equivalence. It lives in the “Whitehead group,” that we can now describe as
Wh(π)=K1(Zπ)/(±π), where π is the (common) fundamental group ofX and Y .
Milnor was interested in Whitehead torsion (see [20]), as well as in other algebraic
invariants, such as C.T.C. Wall’s obstruction to finiteness of a CW complex X dom-
inated by a finite complex, an obstruction that lives in a quotient of K0(Zπ), with
π = π1(X). While the general philosophy of algebraic topology was to reduce hard
topology to easier (usually homological) algebra, these algebraic K-groups proved
to be difficult to calculate. The computational tools offered by algebraic K-theory
no doubt provided some of the early motivation for Milnor’s interest in the subject.
In fact, the study ofK1 for rings of arithmetic type, for example group rings of finite
groups, led quite naturally to the congruence subgroup problem, discussed above.

Both algebraic and topological K-theory were inspired by Grothendieck’s intro-
duction of the “Grothendieck group,” now denoted K0 in algebra (or K0 in topol-
ogy) in the proof of his general version of the Riemann–Roch Theorem in algebraic
geometry. Topological K-groups were defined by applying K0 to suspensions. But,
lacking a good notion of suspension, the algebraic theory succeeded at first only in
defining serviceable notions of K0 and K1. Nonetheless, enough interesting math-
ematical connections and applications could be made, even with only these two
functors, to stimulate interest in a possible higher algebraic K-theory [4]. When
Milnor entered the subject he made the first major expansion of the horizon, in his
Princeton Studies monograph, Introduction to Algebraic K-theory [26]. In addition
to providing a beautifully exposed and accessible introduction to the subject, Milnor
there introduces his functor K2, he shows that it fits naturally with K0 and K1, and
he provides some first substantial calculations of it.

Milnor’s definition of K2 was inspired by work of Robert Steinberg [39] on gen-
erators and relations for Chevalley groups, and related universal covering groups.
These ideas surfaced in the work of C. Moore [28], in work related to the Con-
gruence Subgroup Theorem, and in Matsumoto’s proof of the CSP for Chevalley
groups of rank ≥ 2 [11]. For a ring R, Milnor used the Steinberg relations on the
elementary matrices, that generate the subgroup En(R) of GLn(R), to define the
covering group Stn(R)→ En(R). Taking the inductive limit as n→∞, this gives
a universal central extension

1→K2(R)→ St(R)→E(R)→ 1

in whichK2(R)∼=H2(E(R),Z). From this definition he showed directly thatK2(Z)
has order 2. When R is commutative and u,v ∈R•, the unit group of R, then there is
defined an element {u,v} inK2(R), called a Steinberg symbol. It is bi-multiplicative
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in (u, v) and is trivial if v = 1−u. When R is a field, the Steinberg symbols generate
K2(R), and Milnor presents Matsumoto’s work to show that the Steinberg symbols
and the above relations furnish a presentation of K2(R). He further presents Tate’s
computation of K2(Q), based on one of Gauss’s proofs of quadratic reciprocity.

The Milnor Ring KM∗ (F) Milnor’s monograph [26] appeared in 1971. At the
Battelle Conference on Algebraic K-theory, in the summer of 1972, Quillen ap-
peared with his definitive definitions of the higher algebraic K-functors [32], com-
patible with the previously defined Ki for i ≤ 2.

The next major phase of Milnor’s work related to K-theory was the seminal 1970
paper [24], Algebraic K-theory and Quadratic Forms. Let F be a field, and let u �→
{u} denote the isomorphism F• →K1(F) (written additively). Let T (K1(F)) denote
the tensor algebra over Z of K1(F). Then Milnor defines the graded ring of K-
groups,

KM∗ (F)= T
(
K1(F)

)
/J =

⊕

n≥0

KMn (F)

where J is the ideal generated by the degree two elements {u} ⊗ {1− u} for all u �=
0,1 in F. It follows from this that KM0 (F) = Z = K0(F), KM1 (F)

∼= F• ∼= K1(F),
and

KM2 (F)=
K1(F)⊗K1(F)

(the subgroup generated by all {u} ⊗ {1− u}, u �= 0,1)

=K2(F),

the latter being essentially the presentation of K2(F) described above in terms of
Steinberg symbols {u,v}, which we can now interpret as the product {u}{v} in
KM∗ (F). More generally, for u1, u2, . . . , un in F•, we write

{u1, u2, . . . , un} = the product {u1} · {u2} · · · · · {un} in KM∗ (F).

This Milnor K-ring,KM∗ (F), is skew commutative, in the sense that xy = (−1)nmyx
for x in KMn (F) and y in KMm (F).

Let v be a discrete valuation of F with valuation ring R and residue field F(v).
Denote the homomorphism R→ F(v) by a �→ ā. The homomorphism

v : F• =K1(F)→ Z=K0
(
F(v)

)

extends to a degree −1 homomorphism,

∂v : KM∗ (F)→KM∗
(
F(v)

)
, such that

∂v
({a1, a2, . . . , an}

)= v(a1){ā2, . . . , ān} for a1 ∈ F• and a2, . . . , an ∈R•.
Milnor uses these maps to calculate the Milnor K-ring of a rational function field
F(t). Each monic irreducible polynomial p = p(t) defines a discrete valuation on
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F(t) with residue field F(p) = F[t]/pF[t], so, from above, we have homomor-
phisms, for n≥ 1, ∂p : KMn (F(t))→KMn−1(F(p)). Milnor shows [24, Theorem 2.3],
using methods that Tate used for n = 2, that these assemble into a split exact se-
quence,

0→KMn (F)→KMn
(
F(t)

)→
⊕

p

KMn−1

(
F(p)

)→ 0

where the direct sum is over all monic irreducible polynomials p.

The Homomorphism sF
n : kM

n (F) → GWn(F) Milnor next relates the ring

kM∗ (F)=KM∗ (F)/2KM∗ (F)=
⊕

n≥0

kMn (F)

to the Witt ring W(F) of quadratic forms over F. For this he assumes that
char(F) �= 2, but as Merkurjev [17] points out, this is unnecessary if one uses in-
stead the Witt ring of symmetric bilinear forms. (In a separate paper [25], for fields
F of characteristic 2, Milnor obtains an elegant description of the structure of the
Witt ring of quadratic forms over F.)

Consider the category of pairs (V , b) where V is a finite dimensional F-module
on which b is a non-degenerate symmetric bilinear form. The Witt–Grothendieck
ring Ŵ (F) is the Grothendieck ring of this category, with respect to direct sum
and tensor product. (V , b) is said to be metabolic if there is a self-orthogonal sub-
space W of V . The Witt ring W(F) is the quotient of Ŵ (F) by the ideal gener-
ated by metabolic forms. We write [b] for the class of (V , b) in W(F). If b and b′
are anisotropic and [b] = [b′] then (V , b) and (V ′, b′) are isomorphic. The map,
(V , b) �→ (dim(V ) mod 2), defines a ring homomorphism W(F)→ Z/2Z, whose
kernel I (F) is called the fundamental ideal of W(F). Its powers define the associ-
ated graded ring of W(F):

GW∗(F)=
⊕

n≥0

In(F)/In+1(F)=
⊕

n≥0

GWn(F).

Milnor asked [24, (4.4)] if the intersection of the In(F) is zero; this was later proved
by Aronson and Pfister [1].

For a, a1, a2, . . . , an in F write 〈a1, a2, . . . , an〉 for the bilinear form on Fn with
diagonal matrix diag(a1, a2, . . . , an), 〈〈a〉〉 = 〈1,−a〉, and

〈〈a1, a2, . . . , an〉〉 = 〈〈a1〉〉 ⊗ 〈〈a2〉〉 ⊗ · · · ⊗ 〈〈an〉〉.

The latter is called an n-fold Pfister form. Their classes additively generate In(F).
The map F• → I (F) sending a to [〈〈a〉〉] mod I 2(F) defines a homomorphism

sF
1 : kM1 (F)= F•/F•2 →GW1(F).
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If a �= 0,1 then 〈〈a,1−a〉〉 can be shown to be metabolic, so [〈〈a,1−a〉〉] = 0, and
so sF

1 extends to a graded ring homomorphism

sF∗ : kM∗ (F)→GW∗(F).

What had come to be known as a Milnor Conjecture (MQF(n)):

sF
n is an isomorphism

was in fact only a question posed by Milnor [24, (4.3)]. Milnor [24, (4.1)] proves
MQF(n) for n ≤ 2 when char(F) �= 2. Moreover, Milnor obtains a calculation of
W(F(t)) analogous to that above of KM∗ (F(t)) [24, (5.3)]. When char(F) = 2,
MQF(n) was proved by Kato [11], in 1982. For char(F) �= 2, MQF(n) was finally
proved in general in 2005 by Orlov, Vishik, and Voevodsky [29, Sect. 4].

The Homomorphism hF
n : kM

n (F) → Hn(F) Let F be a field of characteristic
�= 2, with separable closure Fs , and Galois group G = GF = Gal(Fs/F). Let μn
denote the group of nth roots of unity. The map q : x �→ x2 on F•s yields an exact
sequence of G-modules,

1→ μ2 → F•s
q−→ F•s → 1

whence an exact cohomology sequence,

H 0(G,F•s
) 2−→H 0(G,F•s

)→H 1(G,μ2)→H 1(G,F•s
)
.

By Hilbert’s Theorem 90, H 1(G,F•s ) = 0, and so the latter becomes an exact se-
quence

F• q−→ F• →H 1(G,μ2)→ 0.

Whence an isomorphism (MHF(1)):1

hF
1 : kM1 (F)= F•/F•2 →H 1(G,μ2).

It was shown in Bass–Tate [6] that, for u �= 0,1 in F•, hF
1 (u) ∩ hF

1 (1 − u) = 0 in
H 2(G,μ2). Thus hF

1 extends to a graded ring homomorphism

hF∗ : kM∗ (F)→H ∗(G,μ2).

Milnor states [24, p. 340], “I don’t know of any examples for which the homomor-
phism hF∗ fails to be bijective.” This led to what came to be known as a conjecture
of Milnor (MHF(n)):

hF
n : kMn (F)→Hn(G,μ2) is an isomorphism.

1When char(F)= 2 there are natural analogues of hF
n and MHF(n), but with Hn(G,μ2) replaced

by groups Hn(F) defined in terms of differentials. (See [17, p. 5].)
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Milnor proved this when the field F is finite, local, global, or real closed. He also
showed that MHF implies MHF((t)).

MHF(2) was proved by Merkurjev [16], using work of Suslin on a kM∗ -
generalization of Hilbert’s Theorem 90, as well as computations of Quillen of the
K-theory of quadrics. These methods were extended by Rost [35] to prove MHF(3).
However these methods relied on a close connection of the lower KM -groups with
Quillen K-theory, a connection no longer available for larger n.

The proof of MHF(n) in general was achieved in groundbreaking work of Vo-
evodsky [43]. First, using joint work with Suslin [40], he was able to reinterpret the
Milnor groups KM∗ (F) as motivic cohomology groups. In this context he showed
that MHF(n) follows from a motivic generalization of Hilbert’s Theorem 90. At
this point Voevodsky introduced motivic methods analogous to those in algebraic
topology [42]. For each smooth scheme X over F, he introduced a Cech simpli-
cial scheme, from which he defined motivic cohomology groups of X, analogous
to singular cohomology for CW complexes. On these Voevodsky defined a motivic
Steenrod algebra [44], and established results analogous to those from Milnor’s fa-
mous paper [18] on the Steenrod algebra and its dual. This impressive arsenal of
tools was finally mobilized to prove the motivic version of Hilbert’s Theorem 90,
and hence MHM(n) in general.
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John Milnor’s Work in Dynamics

Mikhail Lyubich

1 Preface

John Milnor fell in love with One-Dimensional Dynamics, real and complex, in
the mid 1970’s. His first work, joint with Thurston, developed a combinatorial one-
dimensional theory called Kneading Theory. It sparked a firework of activity that
completely changed the face of the field. Besides the development of Kneading
Theory, Milnor has contributed by clarifying important concepts, proposing inspir-
ing conjectures, carefully developing foundational themes, exploring new interest-
ing dynamical families, writing an introductory book [40] and expository articles
from which three generations of students have learned the subject, creating a gallery
of beautiful dynamical objects, and last but not least: by bringing to the area a won-
derful atmosphere of excitement and dedication to research.

This paper can be viewed as an update of my article in the volume dedicated
to Milnor’s 60th birthday [28]. Though overlap is inevitable, I have tried to reduce
it to minimum. For a more systematic story of real and complex one-dimensional
dynamics (focused on the unimodal case) the reader can take a look at my recent
survey [34].
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2 Selected Themes

2.1 Kneading Theory

Let us consider the class S of continuous piecewise monotone interval maps
f : I→ I . The Milnor-Thurston Kneading Theory1 provides us with a combina-
torial classification of the corresponding dynamical systems. To such a map one can
associate a sequence called the kneading invariant that determines a symbolic model
for the map. This model is nicely semi-conjugate to the original map.

More precisely, let I0, . . . , Il be the tiling of I into intervals of monotonicity
(laps) of f . (Assume for definiteness that f is increasing on I0.) Let ck = Ik ∩ Ik+1
be the extrema of f . A map f ∈S with l extrema is called l-modal, and we let Sl

be the space of such maps.
To each point x ∈ I we can associate a symbolic sequence ε̄(x) = (ε0, ε1, . . . ),

where the symbols εk assume the values Ij and cj according to whether f kx ∈ int Ij
or f kx = cj (where int Ij is understood in the relative topology of I ). Moreover if
εk = cj for some k (so that x is a precritical point), we stop, so the sequence ε̄ is
finite in this case.

The space Σf of all admissible sequences with the shift transformation σ acting
on it is called the symbolic model of f . Two maps with the same symbolic model
are called combinatorially equivalent.

The symbolic sequences ε̄(f cj ) of the critical values form the kneading invari-
ant κ(f ) of f . Milnor and Thurston showed that the whole combinatorial model
is determined by the kneading invariant, and described all admissible kneading se-
quences. In this way Kneading Theory provides us with a full combinatorial classi-
fication of the one-dimensional dynamics in question.

An important special case of the theory covers the dynamics of unimodal maps
f ∈S1, i.e., the maps with one extremum c. A remarkable conclusion of Kneading
Theory is that the real quadratic family fa : x �→ ax(1− x), a ∈ [1,4], is full in the
space of unimodal maps, in the sense that any map f ∈S1 is combinatorially equiv-
alent to some fa . As the latter can be studied with powerful methods of holomorphic
dynamics, this put polynomials into a very special position in the dynamical world.

A beautiful problem was raised in a preliminary version of [48]: Does the knead-
ing invariant κ(fa) depend monotonically on a (with respect to a natural “twisted
lexicographic order” on the space of kneading sequences)? The problem was re-
solved affirmatively in the final version of the paper. The proof is based on ideas of
holomorphic dynamics, more precisely, on Thurston’s Rigidity Theorem (see [17])
asserting that a superattracting parameter a ∈ [1,4] (i.e., such that the critical point
is periodic) is determined by its kneading invariant. It was the first deep application
of ideas of Holomorphic Dynamics to real dynamics.

A more general Rigidity Conjecture that naturally emerged from the above the-
ory is that every non-periodic kneading invariant is realized by a single quadratic

1A preliminary version of the theory had been developed in Metropolis-Stein-Stein [38].
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map fa , a ∈ [1,4]. (Note that periodic kneading sequences correspond to hyper-
bolic maps fa , i.e. maps having an attracting cycle; they are realized on intervals of
parameters.) This conjecture is equivalent to the density of hyperbolic maps in the
real quadratic family. It was proved in [30, 22]. Methods of holomorphic dynamics
play a crucial role in the proof, and until now no purely real argument has been
found.

2.2 Milnor’s Attractors

The notion of a “strange” attractor played an inspiring role in the 1970–1980’s. Any
invariant set with somewhat complicated topology that attracts “many” points was
regarded to be a strange attractor. Examples included the Smale solenoid, Lorenz,
Hénon, and Feigenbaum attractors. The notion itself was coined by Ruelle and Tak-
ens who proposed it as a mathematical foundation for the turbulence phenomenon.

However, mathematically the situation deteriorated fast because of the lack of
agreement what exactly these creatures are? Should the notion be topological or
measure-theoretical? Can it be so broad that attractors govern the behavior of “most”
orbits for “most” systems? (and what is the exact meaning of “most”, anyway?) In a
conceptual article [41], Milnor gave an overview of this unsatisfactory situation and
proposed a general notion of attractor.

Let f :M→M be a smooth dynamical system. A closed invariant set A⊂M is
called a (measure-theoretic) attractor if

• Its basin of attraction B(A)= {x ∈M : f nx→ A} has positive Lebesgue mea-
sure;

• Any proper closed invariant subset A′ ⊂ A has a smaller basin: l(B(A′)) <
l(B(A)) (where l stands for the Lebesgue measure).

An important feature of this definition is that it does not require that A is a
trapped attractor. The latter would have an invariant neighborhood where all orbits
are attracted to A. This requirement would exclude some very interesting examples
like the Feigenbaum attractor.

Milnor showed that any smooth dynamical system has a unique global attractor
Af that attracts almost all orbits. He posed a problem as to whether this attractor
can be decomposed into finitely many minimal attractors, and if so what is their
structure.

This problem was particularly emphasized in dimension one, and stimulated a
lot of activity in this direction. In a series of papers by Alexander Blokh and the
author, it was confirmed that a finite decomposition into minimal attractors for one-
dimensional maps does exist, see [5]. Moreover, these attractors can be of four dif-
ferent types: attracting cycles, (topologically) transitive cycles of intervals, Feigen-
baum attractors, and “wild” attractors. The latter is a Cantor attractor contained in
a transitive cycle of intervals. We could not resolve the problem of whether such
wild attractors may or may not exist, and it remained open for a few more years.



378 M. Lyubich

A breakthrough came in a joint work of Milnor with the author [35] where it was
proved that the key example, the Fibonacci quadratic map, does not have a wild
attractor. (This map can be characterized by the property that the closest returns of
the critical point occur at the Fibonacci moments.) In [29], this was generalized to
all quadratic polynomials. These developments were largely based upon complex
methods. A purely real argument was eventually found by Weixiao Shen [54].

On the other hand, Bruin, Keller, Nowicki and van Strien proved that the Fi-
bonacci map z �→ zd + c of sufficiently high degree has a wild attractor [11].

More recently, it was shown that a complex quadratic map fc : z �→ z2 + c may
have a wild attractor as well. Namely, there exist quadratic maps fc whose Julia
set Jc = J (fc) has positive area, see Buff–Cheritat [13] and Avila–Lyubich [2]. The
global measure-theoretic attractor for such a map is the union of {∞} and a nowhere
dense subset Ac of Jc that attracts almost all points of Jc. Moreover, in examples
constructed in [2], Ac is a minimal Cantor attractor.

These results give a clear picture in dimension one. But what about higher dimen-
sions? Of course, one cannot anticipate anymore that the global attractor can always
be decomposed into finitely many minimal ones as the Newhouse phenomenon gives
an obstruction for this: there are maps that have infinitely many attracting cycles.
Moreover, these maps can densely fill some parameter domain.

It is still conceivable that from probabilistic point of view, the Newhouse phe-
nomenon is neglectable. The appropriate probabilistic notion (in infinitely dimen-
sional space of systems) goes back to Kolmogorov: some property is considered
to be typical if it is satisfied for almost all parameters in a generic one-parameter
family of systems. The corresponding conjectures in this spirit were articulated by
Jacob Palis in [50].

Milnor–Palis Conjecture For a typical smooth dynamical system f :M→M ,
the global attractor Af is decomposed into finitely many minimal attractors Ai .
Moreover, for almost every point x ∈M , the ω-limit set ω(x) is equal to one of
the Ai .

In fact, Palis put forward a stronger conjecture asserting that typically each mini-
mal attractor supports a unique SRB measure2 μ that governs behavior of Lebesgue
almost all points x ∈M . The latter means that

1

n

n−1∑

k=0

φ
(
f kx

)→
∫
φ dμ as n→∞

for any continuous function φ ∈ C(M).
For real analytic one-dimensional unimodal maps the strong Palis Conjecture

was proven in [32, 33, 3]. However, already in dimension two the above conjectures
are wide open.

2This abbreviation stands for Sinai-Ruelle-Bowen.
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2.3 Self-similarity and Hairiness of the Mandelbrot Set

2.3.1 Pinched Model for Julia Sets

Let us now provide some brief background in holomorphic dynamics.
Consider a polynomial f :C→C of degree d ≥ 2 normalized so that its leading

coefficient is equal to 1. The basin of infinity Bf (∞) is the set of points z whose
orbits {f nz}∞n=0 escape to infinity. The complementary set of non-escaping points is
called the filled Julia set K(f ). The Julia set J (f ) is the boundary of K(f ) (and of
Bf (∞) as well).

The (filled) Julia set is connected if and only if none of the critical points ci of f
escape to∞. In this case, the basin of infinity can be uniformized by the complement
of the unit disk, Φ : C \ D̄→Bf (∞) conjugating f to the pure power z �→ zd . If
additionally J (f ) is locally connected, then by the classical Carathéodory Theorem,
the Riemann mapping Φ extends continuously to the unit circle T= ∂D, so it semi-
conjugates the map z �→ zd on T to the dynamics on the Julia set J (f ).

This leads to the pinched model for the filled Julia set that can be obtained by
pinching the unit disk D̄ along some geodesic lamination (see [14, 56]). More pre-
cisely, for any point ζ ∈ J (f ), let us consider its full preimage Φ−1(ζ )⊂ T, and let
C(ζ ) ⊂ D be its convex hull in the unit disk D viewed as the hyperbolic plane. If
C̄(ζ ) is a hyperbolic geodesic or a finite sided hyperbolic polygon, let us pinch it to a
point. It turns out that the quotient set obtained this way is naturally homeomorphic
to K(f ) (whenewer K(f ) is locally connected).

2.3.2 Hyperbolic and Superattracting Polynomials

Let α be a periodic point of period p, and let α = {f kα}p−1
k=0 be the corresponding

cycle. The derivative λ= (f p)′(α) is called the multiplier of α (and its cycle). The
periodic point and its cycle are called attracting if |λ|< 1. They are called superat-
tracting if λ= 0 (note that such a cycle contains a critical point).

The basin B(α)=Bf (α) of an attracting cycle is the set of points whose orbits
converge to α. The immediate basin B∗(f kα) is the component of B(α) containing
f kα. The union

B∗(α)=
p−1⋃

k=0

B∗(f kα
)

is called the immediate basin of the cycle α.
A classical Fatou–Julia Theorem asserts that B(α) contains a critical point. It

follows that a polynomial of degree d can have at most d − 1 attracting cycles.
A polynomial is called hyperbolic if all its critical orbits converge to attracting

cycles. It is called superattracting if all these cycles are superattracting.
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Fig. 1 Mandelbrot set. It
encodes in one picture all
beauty and subtlety of the
complex quadratic family. Its
pieces attached to the main
cardioid are called the limbs

2.3.3 Little Mandelbrot Copies and Tuning

Let us now consider the quadratic family fc : z �→ z2 + c. The Mandelbrot set M
is the set of parameters c for which the Julia set J (fc) is connected. One of the
prominent features of the Mandelbrot set is that it contains many copies of itself
that look identical to the main set (Fig. 1). Douady and Hubbard showed that these
copies can be produced by a surgery called tuning.

Let us take some superattracting quadratic polynomial fs : z �→ z2 + s with pe-
riod p > 1. For this map, the critical point 0 is periodic with period p, and its
cycle α is superattracting. Consider the immediate basin B∗

s (0). Then the return
map g = f p :B∗

s (0)→B∗
s (0) is a branched covering of degree two. Moreover, the

uniformization of B∗
s (0) by the unit disk, φ : (D,0)→ (B∗

s (0),0), brings g to the
simplest possible form, φ−1 ◦ g ◦φ = f0 : z �→ z2. In fact, one can show that B∗

s (0)
is a Jordan disk, so φ extends to a homeomorphism between D̄ and B̄∗

s (0).
Take now another quadratic polynomial fc : z �→ z2+ c with connected Julia set,

i.e., c ∈M . If its Julia set is also locally connected then it can be obtained from the
map f0 by pinching the unit disk along some geodesic lamination. By means of the
Riemann mapping φ, this pinching can be carried to the immediate basin B∗

s (0).
By means of the dynamics, it can be then executed consistently on all components
of the basin Bs(α). It will produce a map that gives a topological model for some
quadratic polynomial called the tuning of fs by fc (or just “tuning s by c”).

Douady and Hubbard [16] justified this procedure indirectly using the inverse
operation called renormalization. In fact, they proved existence of the “tuning” s & c
for an arbitrary c ∈M , even when the Julia set J (fc) is not locally connected.

2.3.4 Milnor’s Observations

Thus, to any superattracting parameter s of period p > 1 and any other parameter
c ∈M corresponds the tuning s & c, which gives us a map σs :M→Ms . The image
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Fig. 2 A baby Mandelbrot
copy

of this map is a little Mandelbrot copyM ′ = s &M . Iterating this map, we obtain the
nest of copies,M ⊂M ′ ⊃Mn ⊃ · · · centered at the points s&n.

In [42], Milnor conjectured that the intersection of these Mandelbrot sets is a
single point s&∞, and the tuning map is conformal at this point. This would im-
mediately imply the self-similarity of M at c&∞, which is clearly observed on the
computer pictures. This Conjecture is a clean generalization to the complex setting
of the Universality Conjecture for period doublings put forward by Feigenbaum,
Coullet and Tresser in 1970’s. (For the complex period triplings, this conjecture was
formulated by Gol’berg, Sinai and Khanin [55].)

Milnor also made a surprising observation that the Mandelbrot set possesses a
hairiness property at c&∞: magnifications of M near c&∞ appear to fill densely the
complex plane. So, the little copies Mn are small pieces of M (almost identical to
M itself) but decorated with a bundle of hairs that almost completely fill a neigh-
borhood of c&∞. On the pictures, the local magnifications ofM rapidly start to look
homogeneously black (see Fig. 2).

It turns out that Milnor’s Self-Similarity and Hairiness conjectures are intimately
related. In [36], McMullen proved the dynamical version of the Hairiness Con-
jecture and derived from it the dynamical version of the Self-Similarity Conjec-
ture. (Here “dynamical” means the version concerning the Julia sets, rather than
the “parameter” Mandelbrot set.) In [31], the original parameter conjectures were
confirmed.

2.4 Beyond the Quadratic Family

At the time when the world was rotating around the quadratic family fc : z �→ z2+c,
Milnor kept reminding people that there are plenty of very interesting research areas
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beyond it, concerning polynomial dynamics of higher degree and rational dynam-
ics. As the quadratic family was eventually getting exhausted, with few outstanding
very difficult problems remaining, this Milnor’s work assumed greater resonance
becoming a foundation for further exploration.

2.4.1 Combinatorics of External Rays

Combinatorial issues were always central in Milnor’s work. An important problem
Milnor addressed in his joint work with Lisa Goldberg [21] is combinatorics of rays
landing at the fixed points of polynomials with connected Julia sets.

In the quadratic case, the situation is as follows [15]. There are two fixed points,
α and β , that play very different dynamical role. Namely, β is the landing point
of the 0-external ray R0. It is either repelling or parabolic with multiplier 1. The
other point, α, is either non-repelling, or is the landing point of finitely many (more
than 1) rays Rθi that are cyclically permuted by the dynamics, with some rotation
number p/q . Thus, the external angles θi form a rotation set under the doubling
dynamics θ �→ 2θ mod Z on the circle R/Z. The rotation number p/q is called the
combinatorial rotation number of f .

The set of parameters c for which the quadratic polynomial fc has combinatorial
rotation number p/q form a p/q-limb Lp/q of the Mandelbrot set M . It can also
be characterized as the part of M “attached” to the parabolic parameter cp/q on the
main cardioid where the α-fixed point is parabolic with rotation number p/q (i.e.,
with multiplier λ= e2πip/q ). See Fig. 3.

This theory is extremely important as it allows us to penetrate into the com-
binatorial structure of dynamical and parameter objects. In particular, it is a be-
ginning of the Yoccoz puzzle construction (closely related to the Branner-Hubbard
tableaux [10]) which gives a key to many crucial problems in one-dimensional dy-
namics, real and complex, see survey [34]. (Yoccoz has never published his results,
so most people have learned them from expository articles by Hubbard [23] and
Milnor [45].)

Goldberg and Milnor carried the above theory further to the higher degree case.
They showed that the set of the external angles θi ∈R/Z of the rays Rθi landing at
fixed points of f is the union of sets Tj ⊂ T satisfying the following properties (see
Fig. 4):

P1. Each Tj is the rotation set under the dynamics of z �→ zd with some rotation
number pj/qj .

P2. The Tj are disjoint and pairwise unlinked.
P3. The union of all Tj with zero rotation number is the set of fixed angles
k/(d − 1), k = 0,1, . . . , d − 2.

P4. Each pair of sets Ti �= Tj with non-zero rotation number is separated with a set
Tk with zero rotation number. (This property is particularly interesting as it was
not visible in the quadratic case.)
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Fig. 3 Two consecutive
magnifications of the
Mandelbrot set near the
Feigenbaum point illustrating
the hairiness phenomenon
[42]
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Fig. 4 Fixed point ray
portrait for a cubic
polynomial [21]

Goldberg and Milnor conjectured that these properties are also sufficient for the
set of angles to be realizable by some fixed point ray portrait. This conjecture was
confirmed by Alfredo Poirier [51].

The paper by Goldberg and Milnor, along with the paper by Bielifield, Fisher
and Hubbard [4] on the critical ray portraits, laid down a foundation for higher
degree Polynomial Dynamics. For further important advances, see e.g., Kiwi [26]
and Kozlovski, Shen and van Strien [27].

2.4.2 General Monotonicity Conjecture

Let us now consider the space PR

d of real polynomials of degree d with all critical
points real. It was shown by de Melo and van Strien [39] that this is a full sec-
tion of the space Sd−1 of (d − 1)-modal maps. Next, one can wonder whether the
Monotonicity Theorem for the kneading invariant can be extended to this space?

At first glance, it is even unclear what is the meaning of “monotonicity” of the
kneading invariant in the higher degree case, as the space PR

d of real polynomials of
degree d (up to affine conjugacy) has dimension d− 1. A natural way was proposed
by Milnor in [43].

In fact, the best known formulation of the monotonicity of the quadratic family
is not in terms of the kneading invariant but rather in terms of entropy h(f ). For a
piecewise monotone interval map f , the latter can be defined as the rate of expo-
nential growth of the lap number l(f n) (i.e., the number of monotonicity intervals
of the f n):

h(f )= lim
n→∞

1

n
log l

(
f n
)

(see Misiurewicz-Szlenk [37]).
Let us now consider entropy h(f ) as a function on the space PR

d . Isentropes are
level sets of this function. Connectivity of all isentropes gives a good sense to the
entropy monotonicity conjecture in the higher degree case.
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In the cubic case (when the parameter space is two-dimensional), the problem
was analyzed and resolved by Milnor and Tresser [43, 49]. In fact, this work pro-
vides a precise combinatorial description of the isentropes in the cubic family.

The general Monotonicity Conjecture in all spaces PR

d was recently established
by Henk Bruin and Sebastian van Strien [12]. It required the general version of the
Density of Hyperbolicity for all degrees that had been proved by Kozlovski, Shen
and van Strien [27].

2.4.3 Rational Dynamics

General rational maps have many new features compared with polynomials, and
their dynamics is much less explored. In this direction Milnor has written a founda-
tional paper [44] with a discussion of the moduli space M2 of degree two rational
maps f , i.e., the space of these maps up to Möbius conjugacy. He showed that M2
is an orbifold with the underlying space biholomorphically equivalent to C2, natu-
rally parametrized by two symmetric functions of the multipliers μ1,μ2,μ3 of the
fixed points.

Milnor went on to describe a natural compactification of M2, to explore one-
dimensional dynamical slices Pern(μ) comprising maps that have a cycle of period
n with multiplier μ, to give a rough classification of hyperbolic components (fol-
lowing an important work by Mary Rees [53]), and to take a look at the real slice
of M2.

Since then, essentially any discussion of the rational dynamics begins with de-
scription of Milnor’s results, making use of the terminology and notation introduced
in [44]. See Epstein [19], DeMarco [18], Petersen and Uhre [52].

2.5 Two-Dimensional Dynamics

Milnor’s work sparked an intense interest to yet another direction of research:
Higher Dimensional Complex Dynamics. An article by Friedland and Milnor [20]
was probably the first paper since Fatou’s time dedicated to global complex dynam-
ics in several variables. It particularly emphasized the role of (generalized) complex
Hénon maps

H :C2 →C2, (x, y) �→ (
p(x)− δy, x)

(where p is a polynomial of degree > 1) by deriving from a classical Jung’s Theo-
rem that any non-elementary polynomial automorphism of C2 can be decomposed
into Hénon maps. (Note that the real Hénon family originally appeared as a simple
model exhibiting strange attractors, see [24].)

Then the authors made first steps in understanding the global dynamics of com-
plex Hénon maps, their periodic points, and topological entropy. This work was fol-
lowed up by Hubbard and Oberste-Vorth, Bedford and Smillie, Fornaess and Sibony,
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Fig. 5 For the real Desboves
map with parameters
( 1

3 ,0,− 1
3 ), the Fermat curve

seems to be the global
attractor [7]

Ueda, among many others, and by now has developed into a deep and flourishing
area on the borderline of dynamics and complex geometry.

Milnor himself left the subject until early 2000’s when he started collaboration
with Araceli Bonifant and Marius Dabija exploring the family of generalized Des-
boves maps [7]. This is a 3-parameter family of rational maps P2 → P2,

F = Fa,b,c : [x : y : z] �→
[
x
(
y3 − z3) : y(z3 − x3) : z(x3 − y3)

+ (a : b : c)(x3 + y3 + z3)],

that preserves the Fermat elliptic curve A= {x3 + y3 + z3 = 0}.
Revisiting Milnor’s favorite theme, the authors asked themselves whether A can

be a measure-theoretic attractor for F . They found out numerically that for some
values of parameters (a, b, c), F has a negative transverse Lyapunov exponent onA,
which makes A a measure-theoretic attractor indeed (and it appears to be the global
one in some case, see Fig. 5). However, the authors showed that a non-singular
elliptic curve is never a trapped attractor (i.e., it never attracts a full neighborhood
of itself)—one more confirmation of good sense for the measure-theoretic approach.

On the other hand, for some other parameter values, the experiment indicated
that A may lose its attractiveness giving it to a cycle of two Herman rings that serve
as an attractor.

The authors went on to study elementary parameters for which the map F pre-
serves a pencil of lines through some point p. This point can be made attracting, in
which case its basin B(p) is the whole Fatou set. At the same time, the Lyapunov
exponent of the Fermat curve A can be made negative, so for these parameters,
A becomes a measure-theoretic attractor. Thus, in this case the Julia set J (F ) is a
nowhere dense set of positive volume! Even better, this Julia can contain an invari-
ant line L that can also have a negative Lyapunov exponent. In this case the Julia
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Fig. 6 Plot for the
elementary map with
parameters (a, b, c)=
(−1, 1

3 ,1). In this case, the
pencil of great circles through
the north pole is invariant
under the dynamics. There
are three attractors: the
Fermat curve, the equator,
and the north pole, each
marked in white. The
corresponding attracting
basins are colored red, blue,
and grey respectively.
(However, the closely
intermingled blue and red
yield a purple effect.) See [7]

Fig. 7 This picture
represents a family of rational
maps
fq : z �→ z2(z− q)/(1+ q̄z)
commuting with the antipodal
involution of the sphere.
A surprising virtue of this
family is abundance of maps
that have an Herman ring.
Each map in the colored
region has a well defined
rotation number, coded by its
color. Irrational rotation
numbers correspond to
Herman rings [6]

set contains two measure-theoretic attractors, A and L, with intermingled basins:
both basins are dense in the Julia set (see Fig. 6). It is the first appearance in the
rational dynamics of a very interesting phenomenon discovered earlier in [1, 25].
(For instance, in the latter work, Ittai Kan constructed a cylinder map fibered over
the circle with the property that the top and the bottom of the cylinder are attractors
with dense basins.)
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Fig. 8 Julia set of fq (see
Fig. 7) with q = 4+ 3i. The
inner white region is the basin
of zero; and the outer darker
region is the basin of infinity;
while the colored region
consists of an Herman ring
together with its preimages.
Note that the picture is
symmetric with respect to the
unit circle. One interesting
feature is the pair of repelling
period ten orbits, one inside
and one outside, which crowd
the ring. This reflects the fact
that the rotation number of
the ring is very close to
7/10 [6]

Fig. 9 This picture shows the
Universal covering of the
space of cubic polynomials
with one periodic critical
point of period 3 [8]

2.6 Art Gallery

Let us conclude with an exhibition of a few dynamics pictures from various Milnor’s
papers: see Fig. 7–10.

We stop here. Of course, our brief survey is far from being complete. The reader
is encouraged to go directly to Milnor’s papers in dynamics (whose collection up
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Fig. 10 This is a Markov
tiling for the torus covering of
a “Lattès map” f [46]. The
Julia set of f is the whole
sphere that can be naturally
realised as an invariant Peano
curve known as the Heighway
Dragon. The depicted fractal
tiling gives a dynamical
approximation to the Dragon.
This example inspired a deep
work by Bonk and Mayer [9]

to 2000 has just appeared as a separate volume [47]) and to learn more about this
beautiful world.

Acknowledgement I thank Araceli Bonifant and John Milnor for helpful comments and for
assistance with pictures.
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John W. Milnor’s Work on the Classification
of Differentiable Manifolds

L.C. Siebenmann

John Willard Milnor (nicknamed Jack) was born in New Jersey in 1931. Ever since
the mid 1950’s, he has been among the world’s leading mathematicians. One of
the greatest of his many contributions to mathematics was ‘surgery on manifolds’,
which is still the dominant method for the classification of various sorts of manifold
of dimension ≥5. I will first devote several sections to his 1956 discovery of exotic
smooth manifold structures that revealed unsuspected subtlety lurking since the 19th
century in the concept of differentiable manifold. Then I will go on to describe
how his surgery method germinated and grew up in the subsequent classification
of exotic smooth structures on spheres. His contributions to surgery, made in the
decade 1955–1965, remain fundamental to the highly evolved surgery theory of
today. Surgery was at the same time a unifying motivation for his important parallel
work in algebraic topology.

1 Some Preliminaries

I adopt common terminology concerning topology and manifolds. Topological
spaces will all be metrizable, and all manifolds will be of finite dimension. All
maps will be at least continuous unless there is some contrary indication. A closed
manifold is by definition a compact manifold with empty boundary.

The term smooth will normally be synonymous with infinitely differentiable, i.e.
of class C∞. A diffeomorphism is a one-to-one smooth map of smooth manifolds
whose inverse map is also smooth. Degree +1 diffeomorphism of oriented smooth
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manifolds will be manifolds is denoted ≈. Where clarifications concerning smooth
manifolds and differential topology are wanted, I suggest the reader first consult
Milnor’s justly famous 1965 primer [M65e] of 70 pages.

A smooth triangulation of a smooth manifold M is a homeomorphism K→M

from a simplicial complexK ontoM that is smooth and nonsingular on every closed
simplex of K . It endows M with a PL (= piecewise linear) manifold structure; see
[M56d, App. 2]. It endowsK with what is called a compatible smooth structure. For
a bootstrapping development of PL topology, see [RoS72] or the references there.
For theorems of existence of such triangulations and also of ‘near uniqueness’, see
[WhdJ40] or [Mu63]. This ‘near uniqueness’, first proved by J.H.C. Whitehead,
is a strong technical condition implying, in particular, that two such PL structures
on M are related by a PL homeomorphism that is homotopic to the identity map
of M . Most of this article can be understood without the notions of this para-
graph.

Homology with integer coefficients Z will be used, unless the contrary is in-
dicated. A (continuous) map of topological spaces h : X → X′ is said to be a
homotopy equivalence if there exists a map h′ : X′ → X such that the compo-
sitions h′h : X→ X and hh′ : X′ → X′ are both homotopic to the identity. One
then writes X $X′. A well known theorem of J.H.C. Whitehead asserts that every
map g : X→X′ of simply connected manifolds (or ANRs) that induces an isomor-
phism of homology is a homotopy equivalence. Every closed oriented n-manifold
M clearly admits a degree +1 map f : M → Sn; thus a simply connected closed
manifold with the same homology groups as Sn is homotopy equivalent to Sn. It is
called a homotopy n-sphere. A smooth homotopy n-sphere that is known to be not
diffeomorphic to Sn will already qualify for the epithet exotic.

The old-fashioned abbreviation Zn will be used for the integers Z modulo an in-
teger n > 0. Mathematical entities with a standard meaning usually appear in roman
type (i.e. not italic). For example, the tangent vector bundle of a smooth manifold
X will be denoted TX.

Articles of Milnor are identified by a tag of the form [Mxyz], where two dig-
its xy identify its year, and z is a lower case letter that further locates it in any
one the several complete lists of Milnor’s publications; see [Milnor]. For example,
[M59d] refers to the fourth distinct article in the list of Milnor’s papers for the year
1959. Such tags serve to pinpoint the article in volumes of Milnor’s collected papers
[M07a], [M09a], etc. where it is supported by related material.

The body of this article has four parts, and each part (beyond this first one) is
divided into several sections. Thus, Sect. 2.13 refers to the thirteenth section in
Part 2.

In a survey of this length I am sure to leave some errors and omissions that beg
for comment. Readers are invited to communicate any such to the author.

For assisting me by answering queries, or by offering comments on a preliminary
version, I owe thanks to several mathematicians: G. Brumfiel, J.F. Davis, C. Escher,
T. Kragh, J. Lannes, A. Ranicki, D. Zagier, and particularly to Jack Milnor himself.
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2 The Discovery of Exotic 7-Spheres

2.1 Synopsis

As a young postdoctoral researcher of 25 years of age, with however over 5 years
of experience in research, Milnor was the first to discover exotic smooth manifold
structures. In [M56d] of 1956, for every oriented smooth homotopy 7-sphere, he
defined, in Z7, a new degree +1 diffeomorphism invariant (called “lambda”). It
is clearly zero for the standard 7-sphere S7 and he calculated that it assumes four
distinct nonzero values on a certain known family of oriented homotopy 7-spheres,
namely those occurring as oriented orthogonal S3-bundles over S4 having Euler
class ±1. In summary, he could exhibit four exotic oriented homotopy 7-spheres in
the chosen family, which his lambda invariant showed to be pairwise not degree +1
diffeomorphic.

On the other hand, Milnor constructed, on each member of that family, an explicit
smooth real-valued function with exactly two critical points, both nondegenerate,
and deduced that each is homeomorphic to S7.

In concluding [M56d], Milnor constructed, from each of his newfound exotic 7-
spheres, a closed topological 8-manifold, and gave reason to suspect that none of
them admits a smooth manifold structure—as was indeed proved later on.

Part 3 of this article will describe Milnor’s discovery of surgery and the subse-
quent calculation of groups of exotic spheres in high dimensions. It is convenient at
this point to insert a limited synopsis of it inasmuch as it is a direct sequel to the
discovery of exotic 7-spheres.

In the period 1958–1962, two essentially disjoint research projects respectively
of Milnor (see [M59c], [M59d]) and of Steven Smale (see ([Sm60], [Sm61],
[Sm62]) combined to establish that the degree +1 diffeomorphism classes of all
oriented smooth manifolds homeomorphic to S7 form an Abelian group, here de-
noted S7, that is isomorphic to the cyclic group Z28. Milnor’s lambda invariant is
a surjective homomorphism from S7 onto Z7. In S7, addition corresponds to the
well-known geometric connected sum operation, and algebraic change of sign cor-
responds to reversal of manifold orientation. Connected sum of oriented connected
smooth manifolds is well defined in all dimensions (up to degree +1 diffeomor-
phism); in dimension 2, it is the operation one sees when two soap bubbles touch
and coalesce to form one! The fact that connected sum preserves the property of be-
ing homeomorphic to a sphere was established by B. Mazur’s topological Schoen-
flies Theorem [Maz59]. Thus the group Sn can be defined for all dimensions n; see
[M11a].

Milnor’s role was to use his freshly discovered surgery techniques to show in
[M59d] that a similarly defined group, '7, formed from all smooth oriented ho-
motopy 7-spheres viewed up to a seemingly looser equivalence called degree +1
h-cobordism is isomorphic to Z28.

Smale’s role was to give an autonomous proof of his famous h-cobordism the-
orem, which is discussed in Sect. 2.16. It easily implies that the ‘forgetting’ map
Sn→'n, is a group isomorphism for all dimensions n≥ 6. It likewise implies that
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a forgetting map *n→'n is an isomorphism for n ≥ 6 where *n is the group of
oriented smooth twisted n-spheres to be defined in Sect. 2.13.

The generalization of Milnor’s calculation of'n for n= 7, to an almost complete
calculation for all dimensions n≥ 5, was achieved by extension of the new surgery
techniques of [M59d] in a famous collaboration of Milnor with the French topologist
Michel Kervaire. The article [KM63] to be discussed in Part 3 was the culmination.

2.2 1956: Why the Surprise? Some History

Milnor’s 1956 discovery of exotic spheres was quite a surprise to all mathematicians
and scientists who work with manifolds. In recalling his discovery, Milnor expressed
this mildly as follows in 2011, see [RS11].

“This was something which hadn’t been expected, and I am not aware that
anybody had explicitly asked the question; we just assumed the answer was
obvious.”

But why the surprise? Ever since the pioneering period 1892–1905 when
H. Poincaré made a wide-ranging study of smooth manifolds, their smooth triangu-
lations,1 their homology, and their fundamental group, all evidence had concurred
with the following common but tacit and somewhat vague assumption:

(A) Given a manifold M of any reasonable sort, one can endow it with a smooth
manifold structure. And given between two smooth manifolds a homeomorphism
h : M →M ′ of any reasonable sort, one can find a diffeomorphism f : M →M ′
approximating h.2

Motivating (A) was perhaps the belief that differential analysis as developed
since the time of Newton and Leibniz should and will be available to study the
topology of all manifolds. In Poincaré’s time, the use of the so called ‘uniformiza-
tion theorem’ of Klein, Poincaré, and Koebe to help classify 2-manifolds, was a
tempting paradigm.

It is appropriate to add that evidence comforting this assumption (A) had been
piling up:

1Poincaré used triangulations as an essential tool in defining homology, and in establishing
Poincaré duality for closed oriented manifolds. Anticipating [WhdJ40] (as Poincaré seemingly
did) one can quickly deduce invariance of his homology under diffeomorphisms and also under
homeomorphisms that are PL with respect to smooth triangulations; indeed, exercising hindsight,
and using the simple bisection operation of J.W. Alexander [Alr30] and K. Reidemeister [Reid38],
this deduction is easy, see [Sieb80].
2Ever since F. Hausdorff’s 1914 monograph [Hau14], “homeomorphism” has consistently meant
a one-to-one continuous map between topological spaces such that the inverse map is also contin-
uous. However, for manifolds, Poincaré used the term “homéomorphe” (in French) to mean some-
times diffeomorphic and sometimes PL homeomorphic. In dynamics and in discussing dimension
he did indeed sometimes use “homéomorphe” in its modern meaning!
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• In 1885, K. Weierstrass proved [Weier85] that an arbitrary real continuous func-
tion on the unit interval [0,1] can be uniformly approximated by polynomials;
his method was very general and has enjoyed wide application to this day.

• Among D. Hilbert’s famous 23 problems of 1900, was this question (in his 5th
Problem): Does a topological group that is known to be a topological manifold
necessarily admit a smooth manifold structure making the group multiplication
smooth? The answer was yes, but the proof was difficult. For compact groups G,
J. von Neumann proved this in 1927 [vonN27] using the Peter–Weyl embedding
[PW27] of G as subgroup of a classical matrix group. Then many famous mathe-
maticians contributed to a proof in general. It was complete by 1952; see [Pal09]
for an excellent overview.

• In the 1930s, H. Whitney [Why36] showed that, for k ≥ 1, given a class C k-
smooth manifold, i.e. one with an atlas A of mutually C k-compatible charts,
one can find for M an atlas A ′ of C∞-compatible charts (or even analytically
compatible charts) that is C k-compatible with the given atlas A .

• In 1940, J.H.C. Whitehead established an essentially unique PL manifold struc-
ture for every smooth manifold M [WhdJ40]; it can be specified by a homeo-
morphism f : K →M where K is a simplicial complex and f is smooth and
nonsingular on each closed simplex of K .

• In the 1940s, S. Cairns [Cai44] (cf. [WhdJ61]) made progress in the opposite
direction by compatibly smoothing all PL manifolds of dimension ≤4, and estab-
lished uniqueness up to diffeomorphism of such smoothings in dimensions ≤3.
(It was perhaps no accident that Whitney and Cairns, who worked on smoothing
problems, had been students at Harvard University of George Birkhoff, who in
turn was an eminent disciple of Poincaré.)

• Only the question whether or not all merely topological manifolds are trian-
gulable as simplicial complex (the Triangulation Conjecture), and the question
whether or not such triangulations are unique up to some sort of subdivision
(the Hauptvermutung) had been explicitly raised (see H. Tietze 1908 [Ttz08], E.
Steinitz 1908 [Stz08], H. Kneser 1925 [Kn25], and J.W. Alexander 1932 [Alr32]).
In 1952, to these two known conjectures, E. Moise [Moi52] provided a positive
answer in dimensions ≤3.

In 1905, Poincaré had formulated the Classical Poincaré Conjecture that a closed
smooth 3-manifold with trivial fundamental group is diffeomorphic to the 3-sphere.
It was recently established by Grigory Perelman. Incidentally, Milnor boldly and
accurately heralded that solution [M03a], [M06a], converting many a skeptic into
an admirer. I believe that, before Milnor’s 1956 breakthrough, the similar Gener-
alized Poincaré Conjecture had not been explicitly formulated. Soon thereafter, it
became (usually!) the conjecture that every closed smooth n-manifold having the
same homotopy type as the standard sphere Sn is homeomorphic to Sn.

To close this historical introduction, I quote Friedrich Hirzebruch’s 1954 com-
ment [Hirz54, p. 214] indicating that, for one expert, assumption (A) had, become a
recognized problem, one perhaps too hard to attack frontally.

“No manifold is known which can carry two different differentiable struc-
tures. But it is not unlikely that it will be easier to solve Problem 1 [topolog-
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ical invariance of Pontrjagin classes] than to prove (or disprove?) that every
manifold carries at most one differentiable structure.”

Two years later, Hirzebruch’s own work was to contribute to Milnor’s disproof!
A decade after that, Hirzebruch was first to discover exotic spheres in classical al-
gebraic geometry; they arose as links of isolated Brieskorn singularities of complex
hypersurfaces; see [Brie66], [Hirz66a].

2.3 Milnor’s Incendiary 1956 Article Appears

Milnor’s incendiary 1956 [M56d] article is not easy to understand on its own. It
was submitted to the prestigious journal “Annals of Mathematics” on June 14th
1956, and published a very few months later in the September issue; clearly it was
considered exceptionally urgent.

Milnor is rightly considered one of the finest expositors of mathematical re-
search active since the 1950s, as his three subsequent Amer. Math. Society Steele
prizes testify. He soon compensated his initial terseness with a mimeographed article
of November 1956 that beautifully filled in much geometric background material.
(That exposition was formally published for the first time in 2007 in volume III of
Milnor’s collected papers, along with further helpful introductory remarks.) A few
months later, in spring 1957, Milnor elucidated much of the necessary algebraic
topology in a lecture course on characteristic cohomology classes for vector bun-
dles, and R. Thom’s cobordism theory.3 Written up by J. Stasheff, those notes were
cherished by generations of students of differential topology. The 1974 monograph
by Milnor and Stasheff [MSt74] is a vastly expanded version that is also meant for
experts.

On the other hand, Milnor’s admirable zeal and talent for streamlining and im-
proving existing mathematics has mostly been devoted to theories of others upon
which he has wished to build, and very much less to theories he has himself built.
Thus the terse style adopted for the urgent discoveries in the article [M56d] has
remained an obstacle to its being fully understood and appreciated by nonexperts
and students of today. This partly explains why my discussion of [M56d] will be
more didactic than for surgery theory. Additionally, the article [M56d] was a start-
ing point, whilst surgery theory has had a long trajectory during which it has been
repeatedly renewed and reexpounded by successive generations, see, for example,
[Brow72], [Wall70], [Cap00], [Cap01].

2.4 From Thom’s Cobordism to Diffeomorphism?

At this point I set the scene for readers wanting to understand Milnor’s key 1956 ar-
ticle [M56d]. Hopefully my historical and technical observations will help make all

3The mimeographed notes for it are still extant at http://www.maths.ed.ac.uk/%7Eaar/surgery/.
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aspects of [M56d] accessible to non-experts and students. Other resources and com-
mentaries for understanding [M56d] can be found in volume III [M07a] of Milnor’s
collected papers, or in [M00b], [M09c] and [M11a].

A quick explanation of oriented cobordism is needed; see [MSt74] for more de-
tail. LetW be a smooth, compact and oriented (n+ 1)-manifold whose boundary is
the closed n-manifold V with the naturally induced orientation. It will often be con-
venient to say thatW is an (oriented) coboundary for V . Suppose that ∂W = V is the
disjoint union V ′ � V ′′ of two closed oriented n-manifolds. Then W is said to give
an oriented cobordism of −V ′ to V ′′, or a oriented null-cobordism of V = V ′ �V ′′;
here −V denotes V with its orientation reversed. Quite different cobordism equiv-
alence classifications arise when different sorts of manifolds are used, for example
unoriented manifolds, or oriented manifolds with a framing.

In 1954, R. Thom had published [Thom54] an elegant and complete unoriented
cobordism classification of closed smooth manifolds. In principle he also obtained
an oriented cobordism classification but his calculations were complete only in di-
mensions ≤7. In higher dimensions they were complete ‘rationally’; rational cobor-
dism equivalence allows V equivalent to V ′ if, for some non-zero positive integer s,
there is an oriented cobordism, from the s-fold disjoint sum sV := V � · · · � V ,
to sV ′ similarly defined. Thom’s ‘rational’ calculation was enough to establish the
Hirzebruch–Thom signature formula in all dimensions; it expresses in terms of Pon-
trjagin characteristic classes (see [Hirz56] and [MSt74]) the signature of any smooth
oriented closed manifold of dimension divisible by 4, say 4k. Signature here refers
to the usual algebraic signature of the nonsingular real intersection form on 2k-
dimensional real homology. When this bilinear form is expressed by a diagonal
matrix, its signature is the number of positive diagonal entries minus the number of
negative diagonal entries.

By 1956, Milnor was perhaps wondering whether related methods might help
to advance from Thom’s 1954 oriented cobordism classification of smooth closed
manifolds into the finer diffeomorphism classification about which little was then
known in dimensions greater than 3.

2.5 Milnor’s Test Manifolds

As part of a simplest prototype classification problem, Milnor was examining the in-
finite family of smooth compact 8-manifolds W (along with their nonempty closed
7-dimensional boundaries) that occur as total space of the well known smooth ori-
ented orthogonal 4-disk bundles ξ over the standard 4-sphere S4. This total space
W is the union of all the 4-disk fibers of ξ , and its boundary ∂W is the union of
all the 3-sphere fiber boundaries. Classic references for bundles are [Strd51] and
[Hus66]; we will use (often implicitly) the most basic concepts of bundle theory
such as structure group, principal bundle, and associated bundle with given fiber,
including the usual conventions concerning left and right actions of structure group.

The bundle structure group of ξ is the so called special orthogonal group SO(4)
consisting of the degree +1 isometries of the standard unit 4-ball B4 in R4. Up to
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smooth bundle equivalence fixing the base S4, these bundles are neatly classified
by homotopy classes of smooth maps S3 → SO(4), or equivalently, by the elements
of the homotopy group π3(SO(4)). But SO(4) is smoothly the Cartesian product
SO(3) × S3 where S3 is the 3-sphere of unit norm quaternions, which we often
denote by Q; this splitting of SO(4) is determined by the standard section of the
projection SO(4)→ S3 induced by the right action of Q on B4. (Beware: As Lie
group, SO(4) is not this product.) One deduces natural isomorphisms

π3
(
SO(4)

)= π3
(
SO(3)

)⊕ π3
(
S3)= Z⊕Z.

Viewed up to bundle isomorphism fixing base, these bundles ξ thus form a doubly
indexed family ξ(a, b), where (a, b) is an element of Z⊕Z.

The canonical generator of π3(SO(3)) is the degree+2 covering map Q= S3 →
P3
R
= SO(3) of real projective 3-space realized by W.R. Hamilton’s orthogonal ac-

tion Q×R3 * (u, v) �→ uv u−1 ∈R3.
In [Strd51], the smooth structures mentioned above are absent; but Weierstrass’

smooth approximation method lets one introduce them with no resulting change to
the bundle classification.

This classification is a case of a 1939 result of J. Feldbau, which features promi-
nently in N. Steenrod’s 1951 monograph [Strd51] on fiber bundles. It is helpful to
observe that the Abelian addition in π3(SO(4)) corresponds to a geometric ‘base-
connected-sum’ operation on the isomorphism classes of these bundles with base
S4. The classifying element in π3(SO(4)) of such a bundle ξ coincides with the
primary obstruction to sectioning the so-called principal SO(4) bundle of ξ . Similar
statements apply to all SO(n) bundles over all spheres.

Let W(a,b) denote the total space of ξ(a, b), viewed as a smooth compact
8-manifold, and endowed with the orientation for which the zero section has in-
tersection number +1 with each oriented fiber. Clearly, W(a,b) retracts by defor-
mation onto the bundle zero-section; thus it has the homotopy type of S4; it’s bound-
ary ∂W(a, b) is a closed oriented and simply connected 7-manifold to be denoted
M(a,b). Milnor found his first exotic 7-spheres among these 7-manifoldsM(a,b).

2.6 Towards an Easy ‘Endoscopic’ Classification of these
8-Manifolds

The degree +1 diffeomorphism classification of these 8-manifolds W(a,b) is so
close to the above SO(4) bundle classification of ξ(a, b) that is easy to grasp, by
examining their internal structure. The adjective ‘endoscopic’ derives from the an-
cient Greek roots ‘endon’ = within, and ‘skopein’ = to see. Robert Langlands has
often employed ‘endoscopic’ in mathematics.

A weak O(2n) bundle equivalence ξ→ ξ ′ of O(2n) bundles over a sphere S2n is
a O(2n) bundle map that induces on the common base S2n either the identity or the
(degree −1) antipodal map. It is thus a diffeomorphism E(ξ)→ E(ξ ′) of the total
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spaces. We require bundle equivalences not specified as weak to induce the identity
on the common base.

Preliminary Classification Theorem Suppose that f : W(a,b)→W(a′, b′) is a
diffeomorphism. Then there exists a smooth isotopy of f to a diffeomorphism g that
coincides on a neighborhood of the zero-section with a weak O(4) bundle equiva-
lence g0 : ξ(a, b)→ ξ(a′, b′).

There is a direct geometric proof of this based on a 1961 embedding uniqueness
theorem of A. Haefliger, namely [Haef61b, Theorem 5.1, p. 76]. In the present con-
text, it is a natural generalization of Whitney’s famous 1944 embedding uniqueness
theorem [Why44]. Haefliger’s theorem provides a smooth deformation of f through
diffeomorphisms to a diffeomorphism f ′ such that f ′ identifies the zero-section of
ξ(a, b) to that of ξ(a′, b′) either by the antipodal map (the zero sections being copies
of S4) or by the identity map. Then an application of the well known tubular neigh-
borhood uniqueness theorem (see [Lang62]) completes the construction of g0. �

Corollary 1 With the same data, suppose that f is of degree+1, and that it induces
the identity map Z = H4(W(a, b))→ H4(W(a

′, b′)) = Z where the identifications
to Z come from the zero sections. Then (a, b)= (a′, b′).

Proof The diffeomorphism g0 of the theorem is then an SO(4) bundle equivalence,
not just a weak O(4) bundle equivalence. �

Corollary 2 The degree±1 diffeomorphism classification of the manifoldsW(a,b)
coincides with the classification of the bundles ξ(a, b) up to weak O(4) bundle
equivalence.

It is known that this weak classification of the bundles ξ(a, b) corresponds to
dividing the plane of parameters (a, b) by a certain linear reflection group of order 4.
See Sect. 2.12 for details.

2.7 Towards a Classification of the 7-Manifolds M(a,b)

Given the above conceptually simple diffeomorphism classification of the 8-
manifolds W(a,b), it is tempting to believe that similar considerations would let
one classify up to diffeomorphism the closed 7-manifold boundaries M(a,b) :=
∂W(a, b) of these classified 8-manifolds. Each boundary M(a,b) inherits from
ξ(a, b) a fibration ∂ξ(a, b) by 3-spheres that again has structure group SO(4). Their
classification as smooth SO(4)-bundles with fiber S3 is easily seen to be the same
as for the bundles ξ(a, b). But the diffeomorphism classification of M(a,b) turned
out to be very difficult, and also very different from anything contemplated before,
and thus very exciting!
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Remark Recently, these fibrations ∂ξ(a, b) ofM(a,b) have been visually described
by Niles Johnson [John12] using quaternion notations of Milnor to be introduced
presently. It would be nice to have some visual clue to the appearance of exotic
spheres among these M(a,b). As already mentioned, in 1959, Milnor was to de-
termine that there are exactly 28 degree +1 diffeomorphism classes of smooth ho-
motopy 7-spheres. Then, in [EK62] (see also the end of Sect. 2.11), it was further
determined that 16 of these 28 classes occur among the manifolds M(a,b), each
of the 16 occurring for infinitely many values of the pair (a, b). Hence there are
numerous diffeomorphism relations beyond known ‘fibered’ relations (to be further
explained and exploited below; see Sect. 2.12) that correspond to reversal of fiber
and/or base orientations. Have any of them been described in concrete terms? See
Milnor’s query on page 403 line 3 in [M56d]. See also the relatively recent article of
D. Crowley and C. Escher [CrE03]; it answered many outstanding questions about
the 7-manifoldsM(a,b) and includes an extensive survey of what was known about
them in 2003.

The well understood Euler class e(ξ(a, b)) in H4(S4) = Z is the primary ob-
struction to sectioning the S3 bundle ∂ξ(a, b) with base S4, and one observes
that e(ξ(a, b)) = b. Indeed, since ∂ξ(a,0) has a canonical section, e(∂ξ(a, b)) =
0+ e(∂ξ(0, b)); and one can pursue definitions to see that e(∂ξ(0, b))= b.

One readily shows that b is the self intersection number of the zero section of
ξ(a, b) in the 8-manifold W(a,b). It follows that its (simply connected!) boundary
∂W(a, b) =M(a,b) has exactly the homology of S7 if and only if b = ±1. Thus
the manifolds M(a,±1) are exactly the homotopy 7-spheres among the manifolds
M(a,b).

Remark In the last two decades differential geometers have discovered, on each of
Milnor’s exotic homotopy 7-spheres M(a,±1), Riemannian metrics with all their
sectional curvatures non-negative; see [GrZ00] and [JoW08] for many related re-
sults. Whether any exotic smooth homotopy sphere has a metric with strictly posi-
tive sectional curvatures remains a wide open question.

2.8 Milnor’s SO(4) Bundle Notations

For the calculation of the needed first Pontrjagin class of the above bundles, Milnor
made a nicely optimized choice of notations as follows. Identify S3 with the unit
norm quaternions Q. Define fh,j : S3 → SO(4) by fh,j (u) : v �→ uhvuj . Note that
f1,−1 is, up to sign, W.R. Hamilton’s covering map Q → P3 = SO(3) identifying
antipodes.

Denote by ξh,j the 4-disk bundle over S4 determined by fh,j . Since uh v uj =
uh v u−h uh+j , it is clear that ξh,j = ξ(h,h + j) or inversely ξ(a, b) = ξa,b−a .
Thus, we also have identifications Wh,j = W(h,h + j) of their respective natu-
rally oriented total spaces. And likewise of their oriented boundary 7-manifolds
Mh,j =M(h,h+ j).
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Remark Although I find Milnor’s notations and conventions relating to the bundles
ξh,j to be clear and optimal, they are not universally followed. It might be helpful
to specify their relationship to others, notably those of [JW55] and [CrE03].

2.9 The First Pontrjagin Class

Milnor’s calculation in [M56d] of the Pontrjagin class p1(ξh,j ) ∈ H4(S4) assumes
the rather technical fact that fiber orientation reversal in the bundle ξh,j transforms
it into the bundle ξ−j,−h. I will prove this ‘ab initio’ using quaternions. Milnor’s
calculation also assumes the fact that fiber orientation reversal leaves p1(ξh,j ) unal-
tered, I will deduce this from the property (needed elsewhere) that p1 depends only
on the stabilized bundle with group SO(5) (or SO). Thus, this section intended for
readers who want direct and elementary proofs of these two known facts.

Since the Pontrjagin class of an SO(4) bundle over S4 depends only on the sta-
bilization of the bundle to group SO(5), let us examine the surjective stabilization
map s in the following segment:

Z∼= π4
(
S4)→ π3

(
SO(4)

) s−→ π3
(
SO(5)

)= π3(SO) (∗)

of the exact sequence of the fibration SO(4)→ SO(5)→ S4.
Consider the two maps λ, and ρ from S3 =Q to SO(4) defined for v ∈ S3 ⊂R4

by, respectively, left and right quaternion multiplication:

λ(u) : v �→ uv, and ρ(u) : v �→ vu.

Their homotopy classes [λ] and [ρ] are free generators of the rank 2 free Abelian
group π3(SO(4)); indeed, in π3(SO(4)), one clearly has [ξh,j ] = h[λ] + j [ρ]. On
the other hand:

Theorem 1 (Steenrod–Whitehead) s[λ] = −s[ρ] in π3(SO(5)).

This theorem is an immediate consequence of [Strd51, §23.6], which is based on
G.W. Whitehead’s article [WhdG42] of 1942 written under N. Steenrod’s direction.
I will presently explain an abbreviated proof of this theorem suggested by Milnor’s
use of fiber-orientation reversal on the bundles ξh,j . But first some corollaries.

Corollary A π3(SO(5))∼= Z.

Proof By the theorem, the element [λ] + [ρ] in π3(SO(4)) = Z2 lies in the kernel
of s. Since this element is primitive (indivisible) in Z2, it generates a summand K
of π3(SO(4)) with infinite cyclic quotient. Thus, the exactness at π3(SO(4)) of the
above displayed sequence shows that K is the whole kernel of s. �
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Corollary B The two generators of π3(SO(5)) (differing only by sign) are s[λ] and
s[ρ].

Corollary C With respect to the basis [λ], [ρ] of π3(SO(4)) ∼= Z2, and the basis
s[λ] of π3(SO(5))∼= Z, the map s assigns (h, j) �→ h− j .

We now explain a proof of the above theorem; it is just an assemblage of known
observations.

Any homotopy group πk(SO(n)), n≥ 1, can be shown, see [Strd51, §16], to be
the set of free homotopy classes of maps Sk→ SO(n), the addition being induced
by either the standard coproduct Sk→ Sk ∨ Sk or by composition of the isometries
in SO(n).

The group π0(O(n)) = Z2 determines an involutive homotopy class α of maps
SO(n)→ SO(n) that is well defined, as follows. Let β and β ′ be any degree −1
isometries of Sn. The map SO(n)→ SO(n):

SO(n) * x �→ β ′xβ ∈ SO(n)

has by definition homotopy class α. This α is well defined; indeed, any two choices
of β are joined by a path in SO(n), and similarly for β ′. It is easily verified that αα
is the class of the identity map. Given any homotopy class [g] of maps X→ SO(n),
we can define α([g]) to be the homotopy class of the following map X→ SO(n):

X * x �→ β ′g(x)β ∈ SO(n).

The inclusion-induced maps s : π∗ SO(n)→ π∗ SO(n + 1) are easily seen to
commute with the involutions α on the graded groups π∗ SO(n); thus s α = α s
when defined.

For n odd, the involution α on π∗ SO(n) is the identity; indeed one can choose
β and β ′ to both be the antipodal involution of Sn−1, which has degree −1 and
commutes with all of SO(n). The situation is quite different in even dimensions; for
example, on π1(SO(2))∼= Z, the involution α clearly reverses sign.

It follows from the last two observations that α is the identity on the stable groups
πk(SO)∼= πk(SO(n)), n≥ k + 2.

Proposition 1 Let ξ be a bundle over Sk with fiber Sn−1, with group SO(n), and
classified by [ξ ] ∈ πk−1(SO(n)). Then the element α[ξ ] ∈ πk−1(SO(n)) classifies
the bundle ξα derived from ξ by reversal of the orientation of each fiber.

Proof The proof lies in the definitions. �

Consider quaternion inversion β : Q → Q mapping u �→ u−1, and note that
β : uv �→ v−1u−1. This β is the degree −1 isometry of S3 =Q that fixes the center
{−1,1} of Q and is the antipodal involution on the orthogonal 2-sphere consisting
of all square roots of −1, in particular W.R. Hamilton’s six operators ±i, ±j, ±k.
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Proposition 2 The involution α of π3(SO(4))∼= Z2 exchanges the pairs ([λ], [ρ])
and (−[ρ],−[λ]). In other words ξαh,j

∼= ξ−j,−h.

Proof It will suffice to prove that α([ρ])=−[λ] since applying α to both sides of
this last equality then yields [ρ] = −α([λ]). Now, α([ρ]) is by definition the ho-
motopy class of the map that to u ∈Q associates the composed isometry βρβ(u) ∈
SO(4). This isometry acts as follows on any point x ∈ S3:

x
β�−→ x−1 ρ�−→ x−1u

β�−→ u−1x.

Thus βρβ(u) is the isometry λ(u)−1. But u �→ λ(u)−1 represents −[λ] in
π3(SO(4)). �

Assertion Proposition 2 implies the Steenrod–Whitehead Theorem 1 above.

Proof Apply to π3(SO(5)) the above commutation relation sα = αs. On the ele-
ment [λ], it tells us that sα[λ] = −s[ρ] is equal to αs[λ] = s[λ]. Hence s[λ] =
−s[ρ] as required. �

Theorem 2 p1(ξh,j )=±2(h− j) ∈H4(S4)= Z.

Remark The sign is constant (independent of h and j ). Because he exploits only p2
1,

Milnor makes no effort in [M56d] to determine which sign is the correct one.

The proof and what follows involve some tangent bundles and related conven-
tions. Given X a smooth oriented n-dimensional manifold, TX will denote its ori-
ented tangent vector bundle with group SL(n). Its reduction to group SO(n) is (up
to bundle isomorphism) a bijective operation, so the result is also denoted TX. The
associated stable tangent bundle ofX will be denoted τX; it corresponds bijectively
to the associated SO(n+ k) bundle for k ≥ 1.

When q is any stable characteristic class such as a Pontrjagin class, and X is a
manifold, the notation q(X) will often abbreviate q(τX)= q(TX).

Proof of Theorem 2 in outline By a Whitney sum formula (see [MSt74]), the first
Pontrjagin class p1(ξ) ∈ H4(S4) = Z of an SO bundle over S4 is an additive func-
tion of the classifying element [ξ ] ∈ π3(SO)= Z. Thus, by Corollaries A, B, and C
above, there exists an integer constant c such that p1(ξh,j ) = c(h − j) ∈ Z =
H4(S4).

Appealing to Hirzebruch’s proof [Hirz53] that the first Pontrjagin class p1(τP
8)

of the quaternion projective plane P8 is ±2 ∈ Z=H4(S4)=H4(P8), and a geomet-
ric (stable) identification of ξ1,0 or ξ0,1 with the restriction of the tangent bundle
TP8 to the quaternion projective line S4 in P8, Milnor concludes that c =±2. See
[M56d, §3] for more details. �
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2.10 Exotic Homotopy 7-Spheres Appear

Applied to any closed smooth oriented 8-manifold X, the Thom–Hirzebruch signa-
ture theorem expresses the signature σ(X) ∈ Z in terms of the 8- and 4-dimensional
integral Pontrjagin classes p2(X) and p1(X) of the tangent bundle of X, as follows:

45σ(X)= 7 p2(X) · [X] − p2
1(X) · [X] in Z.

Here, ·[X] indicates Kronecker product of the immediately preceding cohomology
class in H8(X), with the orientation class [X] generating H8(X)∼= Z. In situations
where we know nothing about p2(X) we can get rid of its term by passing to residue
classes modulo 7 thus:

3σ(X)= 0+ 6 p2
1(X) · [X] mod 7.

Then multiplying by 2 in the field Z7 and transposing gives:

2 p2
1(X) · [X] − σ(X)= 0 mod 7 (∗)

The equation (∗) can serve as a test for the existence of X.
Let the left hand side of equation (∗) above be denoted Λ(X), viewed as an

expression with value in Z7.
We can use (∗) to quickly prove by ‘reductio ad absurdum’ that most of the

homotopy 7-spheres among the 7-manifoldsMh,j are exotic, i.e. not diffeomorphic
to S7. Recall thatMh,j is a homotopy 7-sphere precisely if h+ j = e(ξh,j )=±1 in
H4(S4)= Z.

Initially, we fix h+ j =+1 so thatMh,j =Mh,1−h and p1(Wh,j ) is±2(h− j)=
±2(2h − 1) ∈ H4(W) ∼= Z. Aiming for a contradiction, we suppose Mh,1−h ≈ S7

and close upWh,1−h by gluing on a copy of B8 to form a closed oriented smooth 8-
manifold X8. Its signature is +1, the self-intersection number of the zero-section of
ξh,1−h in Wh,1−h. Thus, substituting into the expression Λ(X) above the first Pon-
trjagin class ±2(2h − 1) just determined, and then simplifying, one gets Λ(X) =
(2h − 1)2 − 1 ∈ Z7. As h ∈ Z runs through the values . . . ,1,2,3,4,5,6,7, . . . ,
the expression (2h− 1) takes the values . . . ,1,3,5,0,2,4,6, . . . in Z7 and the ex-
pression Λ(X) ∈ Z7 takes the values . . . ,0,1,3,6,3,1,0, . . . Since the resulting
sequence of values of Λ(X) is clearly periodic with period 7, we conclude that 5
out of 7 of the oriented homotopy 7-spheres in the sequence Mh,1−h, h ∈ Z, yield
Λ(X) �= 0 and hence are exotic.

We will soon see (in the next section) that, up to orientation reversal, all the exotic
7-spheres that one can similarly detect for h+ j =−1, have already been detected
above for h+ j =+1.

Remark Recalculating Λ(X) as above but without Hirzebruch’s result that, in the
expression p1(ξh,j ) = c(h − j), the integer constant c is ±2, one gets Λ(X) =
2 c2(2h− 1)2 mod 7 with c still unknown. Thus, the same Mh,j would be detected
to be exotic homotopy 7-spheres unless c is divisible by 7; but if c were so divisible
none would be detected!
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2.11 Milnor’s Invariant λ and Its Refinement μ

The expression Λ(X) can also be defined for any oriented smooth compact 8-
manifold X whose boundary is a homotopy sphere; of course, the orientation class
[X] then lies in H8(X, ∂X) rather than in H8(X). In order to prove that there exist
several oriented smooth homotopy 7-spheres no two of which are degree +1 diffeo-
morphic, Milnor showed, using equation (∗) for closed smooth manifolds, and some
homology calculations, that in this context, the value of Λ(X) ∈ Z7 is an invariant
of the degree +1 diffeomorphism type of the oriented homotopy sphere ∂X. Thus,
for ∂X the expression Λ(X) ∈ Z7 defines Milnor’s λ-invariant λ(∂X) :=Λ(X). In
particular λ(Mh,j )=Λ(Wh,j ) ∈ Z7 whenever h+ j =±1. For details and a some-
what broader definition of the λ-invariant, see [M56d, §1]. (This bold λ must not be
confused with λ indicating left multiplication by quaternions.)

Thom proved in [Thom54] that every smooth oriented closed 7-manifoldM has
an oriented coboundary W 8. Thus Milnor’s λ-invariant in Z7 is defined for every
oriented smooth homotopy 7-sphereM .

SinceΛ(−W)=−Λ(W), one has λ(−M)=−λ(M). Since 7 is odd, this reveals
that λ(M) �= 0, impliesM is chiral—meaning thatM �≈ −M .

Milnor’s invariant λ is additive for connected sum of oriented smooth homo-
topy 7-spheres. This is an important and easily proved property left unmentioned

Fig. 1 λ-invariants of homotopy 7-spheres in the h, j -plane. Each square of the checkerboard is
centered on an integer point (h, j) ∈ Z2 ⊂R2 to which is associated an oriented closed 7-manifold
Mh,j that is the total space of a smooth fibration ∂ξh,j with fiber S3 group SO(4) and base S4. The
origin (0,0) is the intersection of the two diagonals drawn. The white squares are those for which
h+ j ≡ 1 mod 2. The homotopy 7-spheres among the Mh,j are characterized by h+ j =±1 and
so correspond to the white squares adjacent to the antidiagonal x + y = 0; on each is marked the
value of Milnor’s invariant λ(Mh,j ). A second coordinate system on R2 is given by the values of
the functions e= x + y and p = x − y. At any integer point (h, j), the value of e= h+ j gives
the Euler class e(∂ξh,j ) ∈ H4(S4) = Z, and that of p = h− j is up to sign 1

2 of the value of the
Pontrjagin class p1(∂ξh,j ) ∈H4(S4)= Z
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in [M56d], but used in followup articles, for example [M59c] of 1959.4 To prove
it, let W and W ′ be oriented coboundaries for the smooth homotopy 7-spheres M
and M ′ respectively. Then a boundary connected sum of W with W ′ is a suitable
coboundary to show that λ(M +M ′)= λ(M)+ λ(M ′).

Consequently, if λ(M) �= 0 for an oriented smooth homotopy 7-sphere M , then
M must generate, by iterated connected sum, at least seven oriented smooth ho-
motopy 7-spheres no two of which are degree +1 diffeomorphic; indeed their λ-
invariants assume all values in Z7. Incidentally, each of these of these generated
homotopy spheres can be a twisted sphere (see next section) since the connected
sum operation can clearly preserve this property.

Above we have calculated λ(Mh,j ) when h+ j =+1, while leaving aside those
Mh,j for which h + j = −1. This is legitimate because M−h,−j ≈ −Mh,j by an
obvious fibered map that reverses base orientation but preserves fiber orientation.
(See the first lemma of the next section for more details.)

The values assumed by λ on the homotopy spheres Mh,j are indicated in Fig. 1.
Notice that they correspond to the white squares adjacent to the anti-diagonal, with
Euler class +1 above the antidiagonal and Euler class −1 below. Above the antidi-
agonal, the sequence of values in Z7 assumed by the invariant λ is 7-periodic with
repeating pattern 0,1,3,6,3,1,0. Crossing the antidiagonal merely changes sign
in Z7.

Thus the set of values assumed by Milnor’s invariant λ on all the fibered and
oriented smooth homotopy 7-spheres among the manifoldsMh,j are precisely these
five values: 0, 1, 6, 3, 4 mod 7.

Corollary No smooth homotopy 7-sphere M with λ-invariant 2 or 5 in Z7 can
admit a fibration S3 →M→ S4 with group SO(4).

In many situations, Milnor’s 1959 evaluation of '4k+3, k ≥ 1, and notably of
'7 ∼= Z28 (see Sect. 2.1, Sect. 3.5 and [M59d]), provided no convenient means to
decide when two given homotopy spheres are degree +1 diffeomorphic. A couple
of years later (see [EK61], [EK62]), James Eells and Nicolas Kuiper constructed a
powerful refinement μ of Milnor’s lambda invariant λ that does the job completely
for Milnor’s homotopy 7-spheres Mh,j , h+ j =±1, and many others. It provides
an Abelian group isomorphism μ :'→ Z28 whose reduction modulo 7 coincides
with Milnor’s λ. In addition to the Thom-Hirzebruch signature theorem, their con-
struction uses an integrality property of the Atiyah-Hirzebruch Â-genus [AH59],
[Hirz66a] (one already used in [M59d]).

For dimension 7, there is a succinct development of μ with its basic properties
(quite analogous to those of λ) which one can find on the first page of Sect. 2 in
[M65c]. For the calculations to follow, we need this property: If W is any smooth

4Why was this additivity left unmentioned in 1956? Perhaps because connected sum of two ori-
ented connected n-manifolds without boundary had not yet been proved to be well-defined up to
degree +1 diffeomorphism. However this does not invalidate the additivity as asserted and used
here. The tubular neighborhood uniqueness theorem, see [Lang62], for the special case of point
submanifolds easily implies well-definition of connected sum.
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compact oriented 8-manifold with boundary ∂W =M $ S7, and H∗(W)=H∗(S4),
then

μ(M)= (p2
1(W) · [W,M] − 4σ(W)

)
/32 mod 28.

Note that, since Z28 decomposes naturally as Z7 ⊕ Z4, the value of λ̂ := μ mod 4,
together with that of λ in Z7, determines the value of μ in Z28.

Recalling that the Pontrjagin class p1 ofWh,1−h is ±2(h− j) ∈H4(W)= Z, the
value of μ on Mh,1−h simplifies to h(h − 1)/2 mod 28, while that of λ (already
calculated) is 4(2h− 1)2 = h(h− 1)/2 mod 7.

One can now quickly calculates that, for h= 1,2, . . . ,8, the values assumed by
λ̂ are 0, 1, 3, 2, 2, 3, 1, 0; and they continue for h > 8 by repeating with period
eight. This periodic sequence corresponds to the points (h,1− h) on the (infinite)
checkerboard of Fig. 1 starting at the point (1,0) and stepping southeastwards on
the squares of the white bishop’s corridor just above the antidiagonal. Similarly (or
consequently), the values of μ(Mh,1−h) ∈ Z28 for h= 1, . . . , 56= 7× 8 are 0, 1,
3, 6, 10, 15, 21, 0, 8, 17, 27, 10, 22, 7, 21, 8, 24, 13, 3, 24, 13, 3, 22, 14, 7, 1,
24, 20, 17, 15, 14; 14, . . . , 2, 1. The last 28 values 14, . . . , 3, 2, 1 (those after the
semicolon) are the same as the first 28 values except for reversed order. In view of
the weak SO(4) bundle isomorphisms described in the next section, this completes
the degree+1 diffeomorphism classification of Milnor’s spheresMh,j , h+ j =±1.

From these μ values, one can, for example, conclude that, of the 15 degree ±1
diffeomorphism classes represented in '7 ∼= Z28, those not represented by one of
Milnor’sMh,j , h+ j =±1, are the three classes whose ±μ invariant is one of: ±5,
±9, ±12.

2.12 Weak Equivalences Among the SO(4) Disk Bundles

There are three interesting families of fiber preserving diffeomorphisms among the
8-manifolds Wh,j (and 7-manifolds Mh,j = ∂Wh,j ). They are specified in Lem-
mas 1, 2, 3 below. Each arises from a weak O(4) bundle equivalence between the
corresponding bundles ξh,j that are not an SO(4) bundle equivalence. They have
been helpful in studying Milnor’s exotic 7-spheres and explain much of what meets
the eye in Fig. 1. This section is not essential to what follows.

Recall that a weak O(2n) bundle equivalence ξ → ξ ′ of O(2n) bundles over a
sphere S2n is a O(2n) bundle map that induces on the common base S2n either the
identity or the (degree −1) antipodal map.

Recall that the total space Wh,j of the SO(4) bundle ξh,j over S4 is oriented by
the convention that the intersection number (geometric or homological) of oriented
base and oriented fiber be +1; it is thus −1 in the manifold −Wh,j . Each of these
three orientations (of base, fiber and total space) can be construed as a preferred
generator of a homology group isomorphic to Z; for example; the fiber orientation
amounts to a preferred generator of H4(W,∂W)∼= Z∼=H4(W,∂W). It follows that
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each diffeomorphism f : W →W ′ between two of the oriented manifolds ±Wh,j
has a well defined degree ±1 on each of base, fiber, and total space. The same is
true for every homotopy equivalence f : (W,∂W)→ (W ′, ∂W ′).

Lemma 1 (Base orientation reversal) For every pair (h, j) in Z2, the two fiber
bundles ξh,j and ξ−h,−j have Euler class and Pontrjagin class differing by sign
only. Their naturally oriented total spaces Wh,j and W−h,−j are degree −1 diffeo-
morphic by an O(4) bundle map ξh,j → ξ−h,−j that reverses base orientation, but
preserves fiber orientations. In particular,Wh,j ≈−W−h,−j andMh,j ≈−M−h,−j .

Recall that ≈ indicates degree +1 diffeomorphism.

Proof Note that (h, j) and (−h,−j) are related by the central inversion of R2 ⊃
Z2, i.e. rotation of angle 180◦ about the origin; it changes the sign of both h + j
and h − j . The weak O(4) bundle equivalence ξh,j → ξ−h,−j can be constructed
as follows. Pull back the bundle ξh,j by a the antipodal (degree −1) involution r
of S4; then the canonical map r∗ξ−h,−j → ξ−h,−j is essentially the required bundle
map; indeed, by the Feldbau classification, r∗ξ−h,−j is isomorphic as SO(4) bundle
to ξh,j . �

Lemma 2 (Fiber orientation reversal) For every pair (h, j) in Z2, the two fiber
bundles ξh,j and ξ−j,−h have Euler class differing by sign, but Pontrjagin class
unchanged. Their naturally oriented total spaces Wh,j and W−j,−h are degree −1
diffeomorphic by a weak O(4) bundle equivalence ξh,j → ξ−j,−h that reverses fiber
orientation, but preserves base orientation. In particular, Wh,j ≈ −W−j,−h and
Mh,j ≈−M−j,−h.

Proof Note that (h, j) and (−j,−h) are related by reflection in the anti-diagonal
h = −j of R2; it changes the sign of h+ j while leaving h− j unchanged. This
lemma is less trivial, but it follows directly from Propositions 1 and 2 in our calcu-
lation of Pontrjagin class in Sect. 2.9. �

Lemma 3 (Base and fiber orientation reversal) For every pair (h, j) in Z2, the
two fiber bundles ξh,j and ξj,h have the same Euler class, but Pontrjagin classes
differing by sign. Their naturally oriented total spaces Wh,j and Wj,h are degree
+1 diffeomorphic by a weak O(4) bundle equivalence ξh,j → ξj,h that reverses
both fiber and base orientations. In particular,Wh,j ≈Wj,h andMh,j ≈Mj,h.

Proof Note that (h, j) and (j, h) are related by reflection in the diagonal h= j of
R2; it changes the sign of h− j while leaving h+ j unchanged. This lemma follows
immediately from the preceding two. �

Theorem Let f : ξh,j → ξh′,j ′ be a weak O(4) bundle equivalence. Then either f
respects all three orientations (of base, fiber, and total space) in which case f is
an SO(4) bundle equivalence, or else f belongs to the unique one of the above 3
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classes that reverses the same orientations as f or equivalently induces the same
sign changes on the Euler and Pontrjagin classes.

Proof The case where f preserves all three orientations is trivial. If it does not,
observe that there exists a weak O(4) bundle equivalence g : ξh,j → ξh′′,j ′′ that be-
longs to one of the three classes and reverses exactly the same orientations as does f .
Then the composed weak O(4) bundle equivalence h= gf−1 : ξh′,j ′ → ξh′′,j ′′ pre-
serves all three orientations and hence is an SO(4) bundle map. From this it follows
by composition that f = hg is a weak O(4) bundle equivalence of the same class
as g. �

Combining the above theorem with the classification Sect. 2.3 of the diffeomor-
phisms Wh,j →Wh′,j ′ in terms of weak O(4) bundle equivalences ξh,j →Wh′,j ′
we get:

Corollary 1 The following conditions are equivalent:

(i) Wh,j is degree +1 diffeomorphic to Wh′,j ′ .
(ii) (h, j) and (h′j ′) both lie in the same orbit of the orthogonal reflection of R2

in the main diagonal x = y.
(iii) (h′, j ′)= (h, j) or (h′, j ′)= (j, h).

Corollary 2 The following conditions are equivalent:

(i) Wh,j is degree ±1 diffeomorphic to Wh′,j ′ .
(ii) (h, j) and (h′j ′) of lie in the same orbit of the order 4 group generated by the

orthogonal reflection in the diagonal x = y and the orthogonal reflection in the
antidiagonal x =−y.

(iii) |h+ j | = |h′ + j ′| and |h− j | = |h′ − j ′|.

2.13 Twisted Spheres Appear

To complement his proof of exoticity, Milnor established a homeomorphism from
every M(a,1) = Ma,1−a to S7 by a surprising ‘deus ex machina’. He presented
explicit (and amazingly simple!) smooth functions ha : Ma,1−a→R (for all a ∈ Z),
leaving the reader to check that each has just two critical points, both nondegenerate;
they are necessarily the two points where the maximum and minimum values are
attained. It had been known, from M. Morse [Mors25] of 1925 or G. Reeb [Reeb49]
of 1949 (by different proofs!), that the existence of such a function ha is equivalent
to Ma,1−a being a twisted sphere; in other words, Ma,1−a is then of the form M =
B+ ∪B− where B+ and B− are diffeomorphic to the standard ball, while B+ ∩B−
is the common boundary sphere of B+ and B− in M . Every twisted sphere (in any
dimension) is trivially homeomorphic (by coning) to a standard sphere. Better, the
uniqueness clause of Whitehead’s smooth triangulation theory [WhdJ40] of 1940
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lets one show that, with any smooth triangulation, every smooth twisted sphere is
PL homeomorphic to a standard PL sphere; this is an observation of R. Thom; see
[M56e] for details.

The oriented twisted n-spheres of any dimension n, viewed up to degree +1 dif-
feomorphism, form an Abelian group whose addition arises from connected sum; it
is denoted *n. These groups appear as the obstruction groups for the theory of com-
patible smoothings of PL manifolds; see [Hir63] and earlier articles of J. Munkres
cited there.

2.14 Conjecturally Nonsmoothable Manifolds Appear

In his 1956 colophon to [M56d], Milnor raised an important two-fold question:

(i) Is the closed PL 8-manifold Ŵi , obtained by first smoothly triangulatingWi and
then adding the simplicial cone on its boundary, always (or sometimes) non-
smoothable whenMi = ∂Wi is one of Milnor’s exotic 7-spheres?

By November of 1956, R. Thom had proved this to be always so, by applying his
cobordism methods; see the reference in [M56e] to a 1956 preprint for [Thom58].
For all PL manifolds, he defined Pontrjagin classes in rational (not integral!) co-
homology. These rational Pontrjagin classes are shown to agree with the rational
images of the classical integral Pontrjagin classes whenever the PL manifold is
smoothable, and at the same time, the usual Hirzebruch–Thom signature formula is
established for PL manifolds. This discovery of Thom encouraged Milnor to refor-
mulate his λ-invariant and its later generalizations to take rational values modulo 1,
beginning in [M56e] of November 1956.

(ii) The same question as (i) modified by allowing arbitrary smoothings of Ŵi
viewed now as a merely topological manifold.

Milnor observed that homeomorphism invariance of p1 for smoothings ofWi−∂Wi
would make such smoothings absurd. Indeed, his λ-invariant would be �= 0 for the
boundary of a small smooth 8-disk in the smoothed Ŵi .

Although Milnor’s examples above were the first non-smoothable topological
manifolds to be exhibited, they were not the first closed topological manifolds
to be proved non-smoothable. The first example was established in dimension
10 by Michel Kervaire in 1960 [Kerv60]. Shortly thereafter, in [Sm60], [Sm62],
Steven Smale noticed similar but easier examples in infinitely many dimensions
12,28,44, . . . based on the 1959 “plumbing construction” of Milnor [M59d] (see
Sect. 3.3). Kervaire’s also proved that his 10-manifold does not have the homo-
topy type of any closed smooth manifold. We will return to this ‘homotopy non-
smoothability’ phenomenon in discussing surgery; see Sect. 3.3.

Several years later, in 1965, topological invariance of all rational Pontrjagin
classes of smooth and PL manifolds was established by S. Novikov [Nov65].
Still later, rational Pontrjagin classes for all topological manifolds could be con-
structed by Thom’s method assuring continued validity of the signature formula
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(see [Kahn72] of 1972); but that construction had to await a topological transver-
sality theorem established by R. Kirby and this author, see [KirS71], [Sieb71] and
[KirS77].

2.15 Comments on Motivation and Strategy

Milnor’s article [M56d] that unveiled exotic spheres could well leave the reader with
the impression that Milnor’s original motivations included the ambition to test for
exotic smooth structures. Milnor has recently made it very clear that exactly the
contrary was true:5

. . . I was trying to study 3-connected 8-manifolds. The case H4 = 0 seemed
too hard. For H4 = Z, one can assume that the 4-skeleton is a 4-sphere. To
build an 8-manifold, one can try to fatten it up by taking a tubular normal
bundle neighborhood, and then adjoin an 8-cell. This worked so beautifully
that I came up with many manifolds which couldn’t possibly exist . . .

. . . at the time I was unaware that there could be any difference between
smooth and topological manifolds.

Thus his 1956 discovery of exoticity was the result of analyzing entirely unexpected
paradoxes. This contrasts with F. Hirzebruch’s keen awareness, already in 1954, of
the possibility of exoticity, noted at the end of the historical Sect. 2.2.

Milnor’s overall 1956 strategy for proving exoticity turned out to be fundamental
in his soon to germinate surgery technique for manifold classification. Indeed, he
had extracted subtle diffeomorphism invariants of closed manifolds M from rather
basic characteristic class invariants of compact oriented manifolds W with bound-
ary M . Following usage of Eells and Kuiper [EK62] (and others), I often call W a
coboundary for M . This coboundary strategy of Milnor has remained a feature of
most diffeomorphism classifications of closed manifolds in dimensions ≥ 5. As a
doctoral student of Prof. Ralph Fox in Princeton, Milnor had been a 3-dimensional
knot theorist, and a somewhat analogous strategy had been well known there for
decades; namely, the use of a suitable surface whose boundary is the knot, as a tool
to extract knot invariants such as J.W. Alexander’s knot polynomial, or knot signa-
ture (see H. Seifert [Seif36] of 1936). Admittedly, in homology theory, the linking
of cycles in manifolds of dimensions ≥ 3 had already been studied using chains of
which those cycles are the boundary. On the other hand, treating an abstract closed
manifold as if it were a cycle was distinctly new in the art of classifying manifolds
up to diffeomorphism.

5The following two quotes are taken with permission from Milnor’s correspondence with this
author in October 2013. Compare the historical comments by Milnor in the introduction to Part I
of [M07a].
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Gradually, an explanation emerged of the need for Milnor’s coboundary approach
in [M56d]. It was proved that, for any homotopy 7-sphere Σ , the tangent vector
bundle TΣ is trivial (not just stably!); see the proof in Sect. 3.3. The bundle TS7

was long known to be trivial because S7 is the 7-sphere of Cayley numbers of unit
norm; indeed any 7-frame at the north pole of S7 can be translated by right (or left)
Cayley multiplication to produce a field of 7-frames trivializing TS7. Since TΣ is
also trivial, it offers no useful bundle invariants!

2.16 Smale’s Dramatic Explanation of Milnor’s ‘deus ex machina’

Milnor’s nondegenerate Morse functions ha : M(a,1)→ R of 1956 with just two
critical points begged to be explained; they had cost him some experimentation to
get rid of parasitic critical points and were chronologically the last aspect of exotic-
ity he established. But of that effort no wisdom or conjecture appeared in [M56d].6

In 1960, Steven Smale gave dramatically general explanations using his high di-
mensional handlebody theory; see his articles [Sm60], [Sm61] and [Sm62]; his most
widely used result (in [Sm62]) is the following h-Cobordism Theorem.

Data Consider a compact smooth n-manifold W whose boundary is the dis-
joint union of closed (n − 1)-manifolds V and V ′. Suppose that the inclusions
V →W ← V ′ are homotopy equivalences.

h-Cobordism theorem ([Sm62], cf. Milnor’s 1965 lectures [M65d]) IfW is simply
connected and of dimension ≥6, then W is diffeomorphic to [0,1] × V .

Given the above data, the ‘triad’ (W ;V,V ′) is called an h-cobordism, and V ,
V ′ are said to be (unoriented) h-cobordant. The theorem (when applicable) clearly
implies that V and V ′ are diffeomorphic by a diffeomorphism in the homotopy
class V → V ′ forming a homotopy commutative triangle with the above inclusions
V →W ← V ′.

When, furthermore, W is oriented (and its boundary components have the in-
duced orientation) the induced homotopy equivalence −V → V ′ has degree +1.
Thus one says that the triad (W ;V,V ′) gives an oriented h-cobordism from −V
to V ′, and one also says that −V and V ′ are degree +1 h-cobordant. Smale’s h-
cobordism theorem, whenever applicable, establishes that −V ≈ V ′ by a diffeo-
morphism in the induced homotopy class.

It is an easy consequence of the above h-cobordism theorem that, for n ≥ 6,
every smooth homotopy n-sphere is a twisted n-sphere (as already defined). Thus,

6On the other hand, Milnor was able to explicitly construct such Morse functions for further ex-
amples of exotic spheres in [M59b]. And, M. Kervaire did as much for his 9-dimensional exotic
sphere in [Kerv60].
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Smale established in dimensions ≥ 6 a strong version of the Generalized Poincaré
Conjecture.

The h-cobordism relation had been introduced by R. Thom in [Thom58] of
1958—under the less satisfactory name J-equivalence. In [M59d] of 1959, Milnor
introduced the Abelian groups 'n of oriented smooth homotopy n-spheres up to
oriented h-cobordism (then still called J-equivalence!), the addition corresponding
to connected sum.

Of particular relevance here is Milnor’s use of surgery in Theorem 5.15 of
[M59d] to show that '5 = 0. This means that every smooth homotopy 5-sphere
V bounds a compact contractible 6-manifold, say M . Then deletion from M of the
interior of a smooth compact 6-disk in IntM yields a 6-dimensional h-cobordism
from V to a standard 5-sphere S5, and application of Smale’s h-cobordism theo-
rem in dimension 6 then completes the proof that M ≈ S5 establishing a strongest
possible smooth Poincaré conjecture in dimension 5.

In Sect. 2.1 we have mentioned natural Abelian group isomorphisms *n ∼=Sn
∼=

'n valid for n ≥ 5; they follow from the proved Poincaré conjectures mentioned
above.

In [KM63], Kervaire and Milnor used surgery to prove that every smooth homo-
topy 4-sphere Σ4 bounds a smooth compact contractible 5-manifold; thus '4 = 0.
But the question whether Σ4 is diffeomorphic to S4 is wide open; nothing (beyond
countability) is known about the Abelian group S4 mentioned in Sect. 2.1. More-
over, in the mid 1980s, Simon Donaldson showed that the 5-dimensional (smooth)
h-cobordism theorem is false in general, even when applied to complex surfaces;
see [Don87].

For more information about low dimensions see [M11a].
Smale proved his h-cobordism theorem by geometrically manipulating and sim-

plifying structures internal to W , namely ‘handle decompositions’ of W on V (or
dually of W on V ′). Re-expressed in the essentially equivalent language of Morse
functions, this means he manipulated and simplified the critical point structure and
Thom gradient structure of Morse functions f : (W ;V,V ′)→ ([0,1];0,1) that
have only generic critical points, all of them lying in the interior ofW . Smale’s the-
ory is thus ‘internal’, or ‘endoscopic’. In contrast, Milnor’s coboundary approach to
revealing and measuring the exoticity of homotopy spheres is ‘external’.

There is a parallel piecewise linear (= PL) version of Smale’s h-cobordism the-
orem. It has been expounded by several authors; see [RoS72] and references there.
Also, there is a topological (= TOP) one; see [KirS77].

3 The Early Achievements of Surgery

3.1 A Rough Description of Surgery

In 1959, shortly before Smale’s handlebody theory was announced, Milnor reported
in [M59c] on a new external methodology called surgery initially conceived to sys-
tematicly classify smooth homotopy spheres of dimensions ≥5, up to degree +1
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h-cobordism; it conspicuously orchestrated three specialties: geometric differential
topology, homotopy theory, and algebra of quadratic forms.

Surgery is, roughly speaking, a procedure for finding an ‘optimal’ manifold in
some sort of a cobordism class of closed manifolds of dimension n ≥ 5. The man-
ifolds and cobordisms involved usually have some extra structure, i.e., they are
equipped with some auxiliary data that is to be suitably maintained at each step,
for example an orientation and a normal framing. ‘Optimal’ initially meant simply
connected and having least homology. In a preliminary phase of Milnor’s surgery, it
is necessary to assure simple connectedness or more. Milnor explained such prelim-
inary steps in a pleasant expository article [M61a] of 1961. Each individual step in
the surgery procedure involves an elementary cobordism, i.e., a triad (W ;V,V ′) of
dimension n+ 1 with a Morse function on it having a single critical point, of index
λ+ 1 say. The two boundary components of V and V ′ of W are thus non-critical
levels of the Morse function, and are related by what is called a spherical modifica-
tion; this alters the n-manifold V by extracting from V a copy of Sλ and replacing
it, in a very precise way, by a copy of Sn−λ−1. This optimization procedure usually
encounters a single obstruction to complete success, one lying in a group here de-
noted Ln, which depends only modulo 4 on the dimension n ≥ 5 of the manifold
undergoing spherical modifications. For surgery on simply connected manifolds, the
obstruction group is normally one of these four:

L4k = Z, L4k+1 = 0, L4k+2 = Z2, L4k+3 = 0.

– the obstruction in L4k = Z arises as 1/8 of the signature of a nonsingular even
and symmetric intersection form in the dimension 2k integral homology of the
4k-manifold undergoing surgery.

– the obstruction in L4k+2 = Z2 is the Arf invariant that, along with rank, clas-
sifies a certain nonsingular quadratic form over Z2 that arises in the dimension
2k+ 1 homology (coefficients in Z2) of the (4k + 2)-manifold being surgered.
See [Arf41], [LorR11] and [Brow72].

3.2 The Springtime of Surgery

Already early in 1959, in a widely circulated mimeographed article [M59d], Mil-
nor developed surgery in a context general enough to make progress on the prob-
lem of determining in any given dimension n ≥ 5 the Abelian group 'n classify-
ing oriented smooth homotopy n-spheres up to degree +1 h-cobordism (or equiv-
alently degree +1 diffeomorphism if we anticipate Smale’s h-cobordism theorem);
the group addition arises from connected sum. He made great progress in the di-
mensions n= 4k+ 3 by use of signature obstructions in L4k . For n= 4k+ 1, a pre-
liminary result was announced involving Arf invariants in L4k+2. But these results
were by no means definitive; presumably for that reason, publication was deferred
to the almost definitive 1963 article [KM63] written in collaboration with Michael
Kervaire.
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Milnor thanks Thom for communicating, in an example, the central idea of
surgery. He also mentions early surgery done independently by A. Wallace [Waa60]
and attributes to him the term spherical modification. In [Waa60] Wallace had stud-
ied a medly of surgery and handlebody theory [Waa60] before Smale announced
his solution of the Generalized Poincaré Conjecture (smooth version). In [Waa61]
he was able to give a quite readable proof of that conjecture in dimensions ≥6,
based on Smale’s somewhat sketchy announcement [Sm60]. His subsequent efforts
to prove the h-cobordism theorem fell short.

3.3 The First Flowering of Surgery

In the Kervaire–Milnor article [KM63] of 1963, the surgery obstruction groups fea-
tured triumphantly in an almost complete calculation of the groups 'n of smooth
homotopy spheres, for n ≥ 5. The construction of a surgery obstruction theory as
sketched above constitutes the major part of their article. The fact that surgery with
these obstruction groups Ln occurs similarly and decisively in several classification
problems of manifold theory became apparent only later.

The first formally published announcement of results obtained using surgery ob-
structions appeared in [M59c] of 1959 where Milnor succinctly stated two revolu-
tionary results:

(a) The group 'n of smooth homotopy n-spheres is finite for all n �= 3. (I will
sketch the surgical proof presented by Kervaire and Milnor in [KM63] of 1963.)

(b) For n= 4k − 1> 3, the group 'n contains a cyclic subgroup, (namely bPn) of
a precisely specified order > 1 (see below for more details).

In reading about the calculations of 'n, one cannot fail to notice a pervading
dependence on information from R. Bott’s famous periodicity theorems of 1957–
1959 for the stable homotopy groups πn−1(SO) := πn−1(SO(N)), N ≥ n+ 1. For
n= 2,3,4, . . . these classify stable oriented vector bundles over Sn. This sequence
of groups depends on n only modulo 8 and for n≡ 1, 2, 3, 4, 5, 6, 7, 8, the group
is:

Z2, Z2, 0, Z, 0, 0, 0, Z.

This and other Bott periodicities are explained ab initio in Milnor’s lectures on
Morse theory [M63d] of 1963 that were beautifully written up with his students
M. Spivak and R. Wells.

Also indispensible (although less conspicuous) are results from Frank Adams
proof [Ad58], [Ad60] of the ‘Hopf Invariant 1’ conjecture.

Here is a another prerequisite stated in a widely useful form that can be rather
simply proved geometrically.

Theorem 1 IfM andM ′ are closed smooth manifolds and f : M→M ′ is a homo-
topy equivalence, then f induces a well defined fiber homotopy equivalence of their
stable tangent bundles.
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The first proof [At61] of this theorem was by M. Atiyah in 1961 using Spanier–
Whitehead duality. A year earlier, Milnor and Spanier [MSp60] had proved the case
of homotopy spheres (needed in [KM63]), and had conjectured the general case.

A naive geometric proof of this was implicit in the proof by B. Mazur [Maz61]
in 1961 of his ‘stable diffeomorphism theorem’ for such manifolds; and a neat vari-
ant was implicit in Milnor’s 1961 article [M61b] giving counterexamples to the
‘Hauptvermutung’ for simplicial complexes.

Remark The geometric proof above can easily be generalized to compact manifolds
with boundary, provided one supposes f to be a pair homotopy equivalence of pairs
f : (M,∂M)→ (M ′, ∂M ′).

A widely used proof is even simpler to explain, as follows. Let W ′ be a tubu-
lar neighborhood of an embedding i : M ′ → Rn, n > 2 dimM ′. Approximate the
composition i ◦ f by an embedding j : M → Rn whose image lies in IntW ′
and choose a tubular neighborhood W of j (M) lying in IntW ′. Then the triad
(W ′ − IntW ; ∂W,∂W ′), can be shown to be an h-cobordism from the normal sphere
bundle ofM to the normal sphere bundle ofM ′. It induces a fiber-homotopy equiv-
alence of these normal bundles. From it, the wanted fiber homotopy equivalence of
stable tangent bundles can be rather formally deduced.

This argument can be adapted to define for any finite simply connected com-
plex enjoying Poincaré duality a stable normal (or tangent) sphere bundle in the
homotopy category. Michael Spivak’s thesis [Spi67] written under Milnor’s direc-
tion develops this idea, which assumed great importance in the surgery theory of the
1960’s and beyond.

Corollary If Σn is a smooth homotopy n-sphere, then under the J-homomorphism
[WhdG42] J : πn−1 SO→-n−1 the classifying element of the stable tangent (or the
stable normal) bundle of Σ maps to zero.

For the moment it will suffice to accept that, for n ≥ 2, there is a commutative
diagram:

πn−1(SO)
J

πn−1(G) ∼= -n−1

πn(BSO)

∂ ∼=

πn(BG)

∼= ∂

where BG classifies stable spherical fiber spaces, and the bottom arrow comes from
viewing the complement of the zero section of a vector bundle as a spherical fiber
space. Definitions of -n−1 and of the J-homomorphism (due to H. Hopf, L.S. Pon-
trjagin, G. Whitehead and others) will appear presently.

Theorem 2 Every smooth homotopy n-sphere Σn is stably parallelizable; in other
words, its tangent bundle TΣn is stably trivial.
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Proof This is established by a sequence of miracles:

(a) For n≡ 3, 5, 6, 7, modulo 8, Bott periodicity alone tells us that TΣn is stably
trivial.

(b) For n ≡ 0, or 4 modulo 8, Σn is stably parallelizable. Indeed, the homotopy
class in πn−1(SO) classifying the stable tangent bundle τΣn of Σn is neces-
sarily proportional to the Pontrjagin class pn/4(τΣn), which is 0 by the Thom–
Hirzebruch signature formula, because vacuously σ(Σn)= 0.

(c) For n≡ 1 or 2, modulo 8, J.F. Adams [Ad58], [Ad60] and [AdA66] proved that
J : Z2 = πn−1(SO)→-n is injective. The corollary above now implies that Σn

is stably parallelizable. Incidentally, Adams’ cited work makes good use of a
striking 1958 theorem of Milnor [M58b] proving that the dual of the Steenrod
algebra (for any prime p) is a polynomial algebra. �

I have mentioned the following corollary as a justification for Milnor’s ‘cobound-
ary’ approach to detecting exotic 7-spheres.

Corollary Every smooth homotopy 7-sphere Σ is parallelizable, i.e., its tangent
bundle TΣ with 7-dimensional fibers is itself trivial.

Proof The stabilization map s for n-dimensional vector bundles over Sn appears in
the following exact sequence arising from the fibration SO(n)→ SO(n+ 1)→ Sn,
which is the principle SO(n) bundle of the tangent bundle of Sn:

Z= πn
(
Sn
) ∂−→ πn−1

(
SO(n)

) s−→ πn−1
(
SO(n+ 1)

)= πn−1(SO).

Here ∂(1) is Feldbau’s classifier for TΣn; there is a similar sequence for any prin-
cipal bundle over a sphere, (see [Strd51]).

Since TS7 is trivial (as already observed) the exactness at πn−1(SO(n)) tells us
that s is injective when n= 7. Hence TΣn is also (non-stably) trivial. �

Remark A more strenuous argument establishes the following generalization: For
any n, if Sn→ Σ is a homotopy equivalence from Sn to a smooth homotopy n-
sphere Σ , then the vector bundle f ∗(TΣn) is isomorphic to TSn. This implies that
no tangent bundle invariant of TΣn can ever detect an exotic sphereΣn. For discus-
sion and references, search on Internet for “Math Overflow” and “exotic spheres”.

For tabulated values of the groups of exotic spheres involved see [KM63] noting
the one correction on page 97 of [M07a] that doubled the order of bP19 to 261,632.
See also the Wikipedia entry for Exotic sphere. It seems that the tables of [KM63]
have not yet been systematically extended!

We next discuss aspects of the spectacular 1963 Kervaire–Milnor classification
[KM63] of smooth homotopy spheres, emphasizing the role of surgery in it.
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3.4 An Exact Sequence Entrapping �n, for n ≥ 5

The Kervaire–Milnor calculation focused on a sequence

0→ bPn+1
i−→'n

j−→-n/ Image(J) (∗)

defined as follows:

– bPn+1 is the subgroup of 'n generated by homotopy n-spheres that occur as
the boundary of a compact smooth (n+ 1)-manifold having trivial stable normal
bundle. The map i is simply inclusion.

– -n is by definition the stable homotopy group πn+N(SN), N ≥ n + 1. By
the famous construction of Pontrjagin–Thom (see Milnor’s little 1965 primer
[M65e]), it is naturally isomorphic to the cobordism group of closed oriented n-
submanifolds of Rn+N each equipped with a trivialization of normal bundle (also
called a framing). -n was proved to be finite for all n by J.P. Serre in [Ser51] of
1951. It is, in principle, calculable for each single n, but calculations are notori-
ously hard. For tabulations of these groups -n, consult the Wikipedia entry on
Homotopy groups of spheres.7

– The classical J-homomorphism J : πn(SO)→ -n exploits a map Sn→ SO to
choose a framing of the standard sphere Sn in Rn+N .

– j is defined on the class of a homotopy n-sphere M as follows. Embed M in
Rn+N and (recalling that the stable tangent bundle τM is trivial) choose a triv-
ialization of its normal bundle (also called a normal framing). This choice of
framing clearly has no influence in -n/ Image(J).

Observation The sequence (∗) is exact.

Proof This is immediate from the above definitions. �

Theorem In the sequence (∗) the map j : 'n → -n/ Image(J) is surjective for
n≥ 5, except (perhaps) when n≡ 2 mod 4. In other words, for these dimensions, j
induces an isomorphism 'n/ Image(J)→ Coker(J).

Proof Assuming n �≡ 2 mod 4, we show that, given any normally framed n-
manifoldM in Rn+N , it can be surgered to become a framed homotopy n-sphere. If
n≡ 1 or 3 mod 4, the surgery obstruction group Ln is 0 so the surgery is possible.
If n= 4k ≥ 8, then the obstruction lies in L4k = Z and is the signature σM . But the
Hirzebruch–Thom signature theorem tells us that M stably parallelizable implies
that σM = 0; thus, once again, the surgery is possible. �

Complement (For same data introduced for the theorem but n = 4k + 2) If n ≡
2 mod 4, then the Arf-invariant obstruction to surgery on M lying in L4k+2 = Z2
gives a well defined homomorphism κ : -4k+2 → Z2.

7http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres.

http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres
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This complement follows straightforwardly from definitions. However the prob-
lem of determining when κ is surjective and when it is 0 remained open for 50 years
and is still (slightly) open.

Corollary For 4k ≥ 8, '4k =-4k .

There is still no uniform way to calculate -4k for all k!

Proof Every element of -4k is represented by a framed homotopy sphere Σ . Since
π4k(SO)= 0 by Bott periodicity, any other framing of Σ determines the same ele-
ment of-4k . IfΣ andΣ ′ represent the same element of-4k , then surgery (exploit-
ing L5 = 0) shows they are h-cobordant. �

3.5 Analysis of the Subgroup bP of �n

When this subgroup is nontrivial, it has a satisfyingly explicit generator obtained
by Milnor’s now famous plumbing construction introduced in [M59d] (see also
[KM63] and [M64f]).

Theorem In the sequence (∗), the subgroup bPn+1 of 'n, n ≥ 5, is finite cyclic,
and:

(a) For n≡ 0 or 2 mod 4, the group bPn+1 = 0.
(b) For n ≡ 3 mod 4, the order |bPn+1 | is 1/8 of the least positive signature of

any connected closed 4k-manifold that is almost parallelizable—which means
parallelizable in the complement of a point. A canonical generator of bPn+1
is represented by any homotopy (4k − 1)-sphere that is boundary of a smooth
compact parallelizable with signature 8, for example the manifold P(E8,4k)
obtained by plumbing together 8 copies of the compact unit tangent disk bundle
of the standard 2k-sphere according to the famous E8 tree:

in which the vertices represent disk bundles and the edges represent plumbing
operations.

(c) For n≡ 1 mod 4, the group bPn+1 is either Z2 or 0. More precisely, it is always
generated by the boundary ∂P of the compact smooth (4k + 2)-manifold P
obtained by plumbing together two copies of the unit tangent disk bundle of
S2k+1 according to the simple graph . Furthermore the homotopy sphere ∂P
is exotic if and only if the homomorphism κ :-4k+2 → Z2 (introduced above)
is zero.
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Remark At the time of publication of [KM63], it had been proved that the groups
bP10 (see Kervaire’s [Kerv60] of 1960) and bP18 are Z2, and that bP6 and bP14
are 0.

The proofs of (b) and (c) use the following lemma whose geometric proof is
elementary.

Lemma A closed connected manifoldM of dimension m is almost parallelizable if
and only if there exists a stable vector bundle γ over Sm and a map f : M→ Sm

such that the induced bundle f ∗γ overM is bundle isomorphic to τM .

Proofs in outline of the theorem By the definitions above, any element of bPn+1,
n ≥ 5, can be represented by a smooth homotopy n-sphere Σ that is the boundary
of a compact framed (n+ 1)-manifold W .

Proof of (a) For n + 1 ≡ 1 or 3 mod 4, the surgery obstruction group Ln+1 is 0;
hence the (n+ 1)-manifold W can be surgered down to become a homotopy disk.
Thus the class [Σ] of Σ in bPn+1 is 0. �

Proof of (b) When n+1= 4k, the obstruction group Ln+1 = Z. But, if by luck σW
is 0, one can proceed as in (a). We will reduce the matter to this lucky case. The
signature σW of W is clearly defined since the PL manifold Ŵ obtained by adding
toW the cone on ∂W satisfies Poincaré duality. Furthermore, the quadratic form on
2k-homology of W takes only even values since W is framed. Hence, the theory of
even quadratic forms tells us that σW is a multiple of 8, say 8s. We can assume
without loss that s is negative. Write ∂P for ∂P (E8,4k). From the disjoint sum
of W with s copies of P(E8,4k) we can readily construct a framed manifold W ′,
whose boundary the (1+ s)-fold connected sum ∂W ′ = ∂W # ∂P # ∂P # · · ·# ∂P ,
and whose signature is −8s + 8s = 0. The lucky case then applies to W ′; thus the
class [∂W ′] in bP4k is 0. But [∂W ′] = [Σ] + 8[∂P ] whence [Σ] = −8[∂P ]. This
shows that [∂P ] := [∂P (E8,4k)] generates the group bP4k .

It remains to show that the generator [∂P (E8,4k)] of bP4k is of finite order, or
equivalently that there exists a closed almost parallelizable manifold M of dimen-
sion 4k whose signature is non-zero. One suchM can be derived from any nontrivial
stable vector bundle γ over S4k , as follows.

Pause If you seek information more precise than the mere finiteness of bP4k , you
can go from here directly to the complements stated below and the references given
there.

Such a γ is classified by a nonzero element [γ ] in π4k(BSO)∼= π4k−1(SO)∼= Z.
The Pontrjagin class pk(γ ) ∈ H4k(S4k)∼= Z is also nonzero [MSt74]. Both [γ ] and
pk(γ ) are additive for bundle sum and take values in an infinite cyclic group. The
‘forgetting map’ from vector bundles to spherical fiber spaces induces a map on
stable homotopy groups ϕ : π4k(BSO)→ π4k(BG) ∼= -4k−1, and the target group
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is finite by Serre [Ser51]. Consequently, for some finite positive integer s the s-
fold vector bundle sum sγ = γ ⊕ · · · ⊕ γ is stably fiber homotopy trivial but has
nonzero Pontrjagin class. Thus, if γ is sufficiently stabilized (say to dimension m),
there exists a proper map from the total space E(sγ ) onto Rsm that has degree +1
on each fiber of sγ . Then the preimage,M say, of a generic point in Rsm is a closed
normally framed submanifold of E(sγ ); its stable tangent bundle τM is therefore
induced from the tangent bundle of E(sγ ), which, in turn, is induced from the stable
bundle sγ over S4k ; thus, by the preceding lemma, M is almost parallelizable. The
signature formula [Hirz56], [MSt74] and the non-zero Pontrjagin class pk(sγ ) then
show that the signature σM is non-zero. This completes the proof of case (b). �

Proof of (c) This is left aside since it is easier than the arguments above for case (b),
see [KM63]. It is easier because the result falls far short of calculating bP4k+2. �

3.6 Complements Concerning Boundaries of Parallelizable
Manifolds

1st Complement Concerning bP in Dimensions 4k−1 In [KM60] and [KM63],
Kervaire and Milnor determine, using an integrality theorem for the Atiyah-
Hirzebruch Â genus of closed smooth ‘spin’ manifolds (see [AH59] and Theorem
26.3.2 in [Hirz66a]), that the order of bP4k , k ≥ 2, is exactly

22k−2(22k−1 − 1
)

Numerator(4 Bk /k)

where Bk is the k-th Bernoulli number.8 In Appendix B in [MSt74] of 1974, Milnor
reveals, with massive support from the classical literature, that Numerator(Bk /k) is
≥ 1 and grows monotonicly and exponentially with a certain asymptotically precise
growth estimate. A fortiori, |bP4k |> 1 for k ≥ 2. Homotopy theory uses closely re-
lated information: the image of the stable J-homomorphism J : π4k−1(SO)→-4k−1
is known to have order equal to the denominator of Bk /4k; a 1989 reference con-
cerning this is [DaM89].

2nd Complement Concerning bP in Dimensions 4k − 1 In his articles
[Sm60] and [Sm61] on handlebody theory, Smale gives an easy proof of the non-
smoothability of the closed topological 12-manifold P̂ 12 obtained from the plumb-
ing manifold P 12 := P(E8,12) defined above by adding the cone on its exotic 11-
sphere boundary. As already mentioned, a few months before Smale [Sm60] was
submitted, Kervaire, in [Kerv60], had established (nontrivially!) the stronger homo-
topy non-smoothability (see below) a similar 10-dimensional manifold derived from
the graph .

8Beware that number theorists denote this rational number |B2k |.
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Here is Smale’s easy argument. Seeking a contradiction suppose that M12 is
a smoothing of P̂ 12. Clearly the complement M12

0 of a point in M12 is homo-
topy equivalent to P 12 or a wedge of 8 copies of S6. Since, by Bott periodicity,
π5(SO(N)) = 0 for N ≥ 7, it follows easily that the stable normal bundle of M12

0
is trivial. Thus M12 is almost parallelizable with signature 8 in contradiction to
|bP4k |> 1 for k ≥ 2.

This argument can be strengthened to show that P̂ 12 is homotopy non-smoothable:
i.e., it is not even homotopy equivalent to any closed smooth manifold. Better, it can
be enhanced as follows to prove the homotopy non-smoothability of half of the anal-
ogous PL manifolds P̂ 4k , k ≥ 2, derived from the graph E8. Namely those for which
4k ≡ 4 mod 8, or equivalently 2k ≡ 2 mod 4. In these dimensions, Bott periodicity
tells us that there are at most 2 distinct oriented stable vector bundles over S2k . By
Adams [Ad60] any one that is nontrivial is also fiber homotopically nontrivial. This
lets one prove the following homotopy invariance.

Proposition Consider a smooth compact parallelizable 4k-manifold P , with
4k ≡ 4 modulo 8, and k ≥ 2, that is homotopy equivalent to a wedge of 2k-spheres,
and whose boundary is a homotopy sphere. Suppose that there exists a closed
smooth 4k-manifold M homotopy equivalent to the closed PL manifold P̂ obtained
by adding to P the cone on ∂P . Then M is almost parallelizable and ∂P 4k is
diffeomorphic to S4k .

Proof Let M0 be the complement M − IntD of the interior of a small compact
smooth 4k-disk D in M . A geometric lemma proves that (M0, ∂M0) is homotopy
equivalent to (P 4k, ∂P 4k). By the obvious generalization to manifolds with bound-
ary, of the normal (or tangent) bundle fiber homotopy equivalence theorem (dis-
cussed in Sect. 3.3), one obtains a fiber homotopy equivalence between the (trivial!)
stable normal bundle of P 4k and that of M0. To now prove that the stable normal
bundle v of M0 is trivial (not just fiber homotopically trivial), it suffices to trans-
fer it by homotopy equivalence to P 4k and again by homotopy equivalence to the
a homotopy equivalent wedge of 2k-spheres. Over each 2k-sphere, it is obviously
fiber homotopy trivial; and hence trivial, whence applying the Theorem of Sect. 3.5,
σ(P̂ 4k)= σ(M) is divisible by 8|bP4k |. This implies ∂P 4k ≈ S4k . �

1st Complement Concerning bP in Dimensions 4k + 1: The Kervaire Conjec-
ture Milnor and Kervaire conjectured cautiously in the last lines of [KM63] that
bP4k+2 = Z2 except for the dimensions 2, 6, and 14. Motivation came from the fact
that parallelizability of S3, S7, and S15 was used to establish those exceptions. This
is usually called the Kervaire Conjecture in honor of M. Kervaire’s pioneering proof
of the first non-exceptional case n= 10. In 1966, Brown and Peterson [BP66] con-
firmed the conjecture for all dimensions of the form 8k + 2. In 1969, W. Browder
[Brow69], confirmed the conjecture for all dimensions not of the form 2x −2. How-
ever the conjecture had to be revised when, in the 1970s and 1980s, it was proved
wrong in dimensions 4k+2= 30 and 62, see [BaMT70] and [BaJM83]. Subsequent
efforts to prove the conjecture wrong in all dimensions of the form 2x − 2 bore no
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fruit. Finally, in 2009 and 2010, M. Hill, M. Hopkins, and D. Ravenel posted at
http://arXiv.org/ a highly sophisticated proof [HillHR09] for all dimensions strictly
greater than 27 − 2= 126; see H. Miller [Miller10] for a very favorable summary.
See Ravenel’s Internet page [Ravenel] for many lectures including much history and
folklore, notably a lecture [Rav12] from February 2012.

2nd Complement Concerning bP in Dimensions 4k + 1: Brumfiel’s Problem
In all dimensions n of the form 2x − 2 > 126 the article [HillHR09] establishes
the Kervaire conjecture that bPn ∼= Z2. For dimensions, 2x − 2, Greg Brumfiel has
recently (re)posed the question whether this subgroup bPn of 'n−1 is also a retract
of 'n−1 thus making bPn a direct summand of 'n−1. For all other dimensions
n≥ 6 Brumfiel showed that bPn is indeed a retract of 'n−1. See his article [Bru70].

4 A Metamorphosis

I conclude by briefly describing the metamorphosis of Milnor’s surgery into a clas-
sification method applicable in principle to most compact manifolds of various
species. One point I would like to make, and which may be surprising to newcom-
ers, is that one can profitably perceive the classical surgery of [M59d] and [KM63]
as a vital part of today’s surgery.

4.1 Milnor’s Microbundles

Before the possibility of exploiting surgery methods for quite general compact man-
ifolds was publicly discussed, Milnor quietly laid the groundwork for parallel treat-
ment of piecewise linear and topological manifolds along with smooth manifolds.
He felt the lack of a well working notion of tangent and normal bundle in the world
of piecewise linear or topological manifolds, and he responded by introducing mi-
crobundles for that role. They came in three variants: piecewise linear [M61f], topo-
logical [M63c], [M64b], and (trivially) smooth, and provided a uniform context for
the development of manifold structure theories mediating between the notions of
topological, piecewise linear, and smooth manifold structure, not to mention ho-
motopy type. In [Thom60], René Thom had conjectured that the problem of intro-
ducing a compatible smooth structure on a piecewise linear manifold is equivalent
to a bundle reduction problem. For Thom’s conjecture, Milnor’s microbundles pro-
vided a clear and plausible meaning and also a proof modulo a stabilization. Sev-
eral other topologists gradually established the conjectured theories, see [Mu66],
[Mu67], [Mu68], [HirM74], [Sieb71], [KirS77] (although smoothings of topologi-
cal 4-manifolds are still mysterious). The obstruction groups to smoothing turned
out to be, in high dimensions, Milnor’s groups of homotopy spheres! When the time
was ripe (1964–70) these theories, in turn, helped develop surgery theory on piece-
wise linear and then on topological manifolds of dimension ≥5; see [BrowH66],
[Sieb71], [KirS77], [Mar77].

http://arXiv.org/
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4.2 Surgery for Classical Smooth Manifolds

Perhaps the most abrupt and decisive leap forward for surgery theory in dimen-
sions ≥5 was its extension from smooth closed oriented homotopy spheres to
all smooth closed oriented and simply connected manifolds of dimension ≥5.
That breakthrough came already in a 1962 article by Sergei Novikov [Nov62]
(cf. [Brow62], [Nov00]). It intimately involved Thom complexes, the central arti-
facts of cobordism theory.

I can briefly describe Novikov’s idea in a simplified but extremely useful form
that avoids Thom complexes; I first encountered it in Dennis Sullivan’s 1965 Prince-
ton thesis [Sull66] (cf. [Sull67]) written under the direction of William Browder.
(I believe Thom complexes are still required to decide whether there exists a closed
smooth manifold in a given homotopy type. This existence problem was first treated
by W. Browder in [Brow62] that followed shortly on [Nov62].)

Given a closed smooth simply connected manifold N of dimension n ≥ 5, we
seek homotopy equivalent manifoldsM each equipped with a degree +1 homotopy
equivalence f : M→N . Such a pairM , f is called a homotopy smoothing of N .

Here is how to proceed. Consider ξ any oriented and fiber homotopicly triv-
ial vector bundle over N , one with high fiber dimension k, together with a fiber-
homotopy trivialization of ξ given by a proper map t : E(ξ)→Rk of the total space
of E(ξ); it is proper, and of degree +1 on each fiber. By a deformation of t with
compact support, we can arrange that t is transverse to the origin 0 of Rk . Then the
preimage M := t−1(0) is a closed and framed submanifold in E(ξ), and we orient
M so that the bundle projection of ξ restricted to M has degree +1 as a map to N ;
call it f . In this situation, one has all the prerequisites for performing surgery on t ,
somewhat as in doing the surgery of [KM63] on sufficiently stable maps of spheres
(see Sect. 3.4). Thus, a single obstruction is encountered in Ln to deforming t so
that the pair (M,f ) becomes a homotopy smoothing of N . It is not difficult to show
that every homotopy smoothing arises in this way.

A quite similar surgery process with obstruction in Ln+1 serves to decide whether
two homotopy smoothings ofN , say (M,f ) and (M ′, f ′) are equivalent in the sense
that there exists a degree +1 diffeomorphism h : M→M ′ such that hf is homo-
topic to f ′.

Thus, with a minimum of modification, the surgery of [KM63] suddenly applied,
in dimensions ≥ 5, to a horde of classical smooth manifolds!

4.3 Further Extensions of Surgery

Let me mention a few extensions that had great repercussions.

(a) W. Browder, J. Levine, and A. Haefliger applied surgery to manifold embed-
dings; [Brow68], [Haef62], [Haef68], [Lev65].
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(b) C.T.C. Wall showed in [Wall66] that, for n≥ 5, surgery with target space having
the homotopy type of a simply connected compact manifold or Poincaré space
with nonempty simply connected boundary is unobstructed. Here, the surgery is
understood to occur in certain natural ways that may alter both manifold bound-
ary and manifold interior.

(c) In a massive technical ‘tour de force’ [Wall70], C.T.C. Wall extended surgery
to all compact manifolds of dimension ≥5, not necessarily simply connected.
For simplicity consider only connected closed manifolds with trivial Whitehead
group. Formally speaking, the main novelty was the introduction of new surgery
obstruction groups L n(π,w) depending on n but only modulo 4. They depend
functorially on the pair (π,w) consisting of π the fundamental group of the
target of the surgery, and w its orientation map π→ Z2. Wall made good use of
a generalization of (b) in thus founding non-simply connected surgery theory.

(d) D. Sullivan used surgery to initiate an analysis in depth of the homotopy type
of the classifying space G/PL for stable PL bundles equipped with a fiber ho-
motopy trivialization. See [Sull66], [Sull67], [Wall70], [MadM79]. This space
G/PL is (in the homotopy category) the fiber of the forgetting map BPL → BG.
The analogous space G/O classifies the homotopy trivialized vector bundles
encountered in Sect. 4.2. For G/TOP see [Sieb71], [KirS77], [MadM79]. This
classifying space G/PL brings simply connected surgery into fruitful contact
with Wall’s often mysterious surgery obstruction groups Ln(π,w).

(e) Andrew Ranicki has gradually forged an autonomous and fruitful algebraic ver-
sion of surgery theory. This was not easy. See [Ran92], [Ran01], [Ran02].

4.4 Conjectures

Here are three great conjectures that are currently guiding the development of
surgery:

(i) The Borel conjecture.9

(ii) The Novikov conjecture [FRR95].
(iii) The Farrell–Jones conjecture.10
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“for his fundamental contributions to discrete mathematics and theoretical com-
puter science, and in recognition of the profound and lasting impact of these contri-
butions on additive number theory and ergodic theory”



Autobiography

Endre Szemerédi

Unlike most mathematicians I did not start to study to be a mathematician. I was
born in 1940 in Budapest, Hungary. I lost my mother when I was 8 years old. My
two brothers and I were sent to different boarding schools for orphans. It was a few
years after WWII.

I have always liked mathematics, and it actually helped me to survive in a way.
I was very short and weak, and the strong tall guys would beat me up. I was kind of
lucky, since the physically strongest guy was mathematically very weak. He could
never solve his homework exercises. So I solved them for him even at the exams. He
was an honest person, he always protected me. So mathematics and in return served
my interest. All this happened in elementary school.

In high school I was good at mathematics, but never took part in competitions.
For my father’s request I was preparing to be a physician and I studied biology. At
this time this was the most recognized profession in Hungary.

My education was not the usual education you get in Hungary if you want to
be a mathematician. There are a few extremely good highschools concentrating in
mathematics, both in Budapest and in the country side.

After a few months at medical school I realized that it was not for me and not
knowing what exactly would suit me I went to work in a machine making factory.
These two years were actually a good experience for me. We had to finish our work
on time even if we felt that it was very monotonous. As a mathematician I can
appreciate now that I can work on things that I like.
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Once one of my best friends, Gabor Ellmann, who attended the university to be-
come a mathematics and physics teacher, suggested that I try to go to the university
to study the same thing. So I tried. At that time in Hungary you studied mathemat-
ics and physics for two years, in the third year if you decided to be a mathematician
and were among the 15 best, you were able to specialize in mathematics. The oth-
ers followed with math and physics plus pedagogy and psychology to become a
mathematics and physics teacher in a high school.

After being admitted to the Eötvös Loránd University in 1960, and attending
Professor Paul Turán’s lecture series on number theory. I consider Professor Turán
to be the one who actually helped me to decide to become a mathematician and he
still is one of my icons. I never worked with him, I have only listened to his lectures
and sometimes went to his seminars.

When I had finished at the university I was hired at the Mathematical Research
Institute (later Rényi Alfréd Institute) of the Hungarian Academy of Sciences.

At that time Paul Erdős, the great Hungarian mathematician, often visited Hun-
gary. His mother lived in Budapest. His main area was discrete mathematics. This
included a lot of things. Among others elementary number theory, graph theory,
random graph theory and so on. Paul Erdős and Alfred Renyi are the founders of
random graph theory. Paul Erdős had many problems, conjectures. Some of them
were not so hard, but the others were extremely difficult. Fortunately or unfortu-
nately the solution to many of his problems required only elementary methods. Of
course quite often the proofs using only elementary methods are not simple because
one may have to put together basic ingredients in extremely complicated and so-
phisticated ways.

Knowing that I had a very limited knowledge, I was very happy that Paul Erdős
was willing to work with me. With him and a fellow mathematician Andras Sarkozy
we wrote a large number of papers on number theory. Then I decided that I would
do something alone. My first try ended up in failure. Anyway I am going to tell
it, because it is very closely related with my later works, and also it shows that a
failure—even an embarrassing one—can be helpful later. The story is the following.
I tried to prove that in a long arithmetic progression it is not possible that a positive
percentage of the elements of the arithmetic progression are squares. In order to
prove it, I took it for granted that if you have a positive percentage of the integers,
then it contains an arithmetic progression of length 4. I proved that if you have an
arithmetic progression of length 4, then not all of them can be squares. If you put
these results together, you prove what you wanted. I was very proud of ‘my result’.
I showed the proof to Paul Erdős. Then he told me that there were some slight
problems with the “proof”. The first one was that I assumed something which had
not been proved yet at that time, namely that any set of a positive percentage of
the integers contains an arithmetic progression of length 4. But this was still OK.
The second one was really shameful. Erdős told me that the other thing, stating that
there are no four squares that form an arithmetic progression, was proved by Euler,
already 250 years earlier. I felt that I must correct this mistake, because Erdős was
my other icon and mentor.

Still at the Rényi Institute I started to work on the arithmetic progression problem.
Van der Waerden proved his famous theorem, stating that if you divide the integers
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into finitely many classes, then some class contains arbitrarily long arithmetic pro-
gressions. Then Erdős and Turán conjectured in 1936 that the important thing is that
the set is dense enough. If you have a positive proportion of the integers, then you
have already long arithmetic progressions. More precisely speaking, for every d > 0
and every positive integer k there exists a number n= n(d,n) such that every sub-
set of the integers {1,2, . . . , n}, n > n(d, k) of cardinality dn contains an arithmetic
progression of length k. In 1953 Roth provided a beautiful proof, using harmonic
analytic methods, that the conjecture is true for k = 3. He even proved that among
at least n/ log logn integers there was always an arithmetic progression of length 3.
Actually, one of my favorite mathematicians is K.F. Roth. When I first went abroad
in 1967, I met him and read his proof. I knew very little about harmonic analysis, so
I tried to use elementary methods. First I gave a very simple high school proof for
k = 3. Then I proved it for k = 4. In 1967 Paul Erdős arranged for me an invitation
to the University of Nottingham. There I was supposed to give a lecture about my
proof. My English was practically non-existing. So I just drew some pictures, and
Peter Elliot and Edward Wirsing, both number theorists, based on these pictures and
my very bad English, wrote down the proof. I am very grateful for their great help.

In 1968 I went to Moscow to be a PhD student of Gelfond, a well known number
theorist. By some unfortunate misspelling of the names I ended up with I.M. Gelfand
who was one of the greatest mathematicians of the last century, but his area was
very far from my expertise and soon I realized that I can not learn that kind of
mathematics. I was lucky that Gelfond visited Budapest, and I, as a student studying
in Moscow, was supposed to be his guide. He was a very nice, warm person. He
agreed to arrange that I would be his student. Soon after his return to Moscow he
tragically died.

András Hajnal, the well known logician and combinatorialist spent half a year in
Moscow in 1969. We worked together and proved an important conjecture of Erdős.
He was working at his desk while I worked walking in the woods. Considering that
the Russian winter usually is pretty harsh, my working method may not have been
an optimal one. I.M. Gelfand was very generous and agreed that this result was
good enough for a PhD thesis. Later our result generated a lot of activities in graph
packing.

In 1973 I proved the Erdős–Turán conjecture. My good friend András Hajnal
helped me to write up the paper. Or better, say he listened to my explanations and
then wrote it up.

After my proof many different proofs were found. Furstenberg gave an ergodic
theoretical proof. His method is much deeper and much more powerful than my
elementary method, and could be generalized into the multidimensional setting. He
and Katznelson could prove in 1978 a multidimensional analogue, and they could
finally prove in 1991 the density version of the Hales–Jewett theorem.

Timothy Gowers gave a much, much better bound than what I had. Even more
importantly, he invented many fundamental methods which completely changed the
landscape. We cannot overestimate the influence of his paper. Gowers used a higher
order Fourier analysis and introduced his famous Gowers norm, which controls the
randomness of the set in the question. For me the absolutely striking result was the
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Timothy Gowers (left) and Endre Szemerédi (right)

fundamental theorem of Ben Green and Terence Tao which states that among the
primes there are arbitrarily long arithmetic progressions.

They and other mathematicians are those who really moved this field. Without
them my theorem would be just a good theorem and nothing more. They strength-
ened it, invented many revolutionary new ideas, found connections, between dif-
ferent branches of mathematics and getting unbelievable results. They are doing
unbelievable things.

My original proof contains a graph theoretical lemma called a week regularity
lemma. The regularity lemma was needed for something else, namely for a graph
theoretical problem. I listened to a lecture by Béla Bollobás, which was in 1974
in Calgary. He talked about the Erdős–Stone theorem. Bollobás and Erdős wanted
to determine the right magnitude, and they had a very good bound, the order was
log n and only the constant was missing a little bit. I decided to work on it, as I
liked the problem and Béla presents things very nicely and extremely cleverly. Then
I realized that maybe a lemma like the regularity lemma would help considerably.
Actually, that was the real reason why the regularity lemma was invented. At least,
this is my recollection. I would like to thank Vasek Chvatal for helping me to write
up the regularity lemma. Later we together found the exact constant for the Erdős–
Stone theorem. Although the regularity lemma was created for a particular problem,
it later found many important applications. In discrete mathematics and theoreti-
cal computer science. Gowers, Rodle, Nagle, Skokan, Schacht found hypergraph
regularity lemmas and a hypergraph removal lemma. These lemmas are extremely
powerful and they have a wide range of application in arithmetic combinatorics and
computer science.

I would like to mention briefly some other results.

1. My favorite work is the creation of the pseudo-random method together with
Miklós Ajtai and János Komlós (it may be that the pseudo-random method ex-
isted in some other areas of mathematics). We used this method, when we tried
to give a better estimate on density of an infinite Sidon sequence. Using this
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method, we also disproved Heilbronn’s conjecture, which was at that time al-
ready 40 years old.

2. Euclid’s system of axioms state some of the basic facts about incidences between
points and lines in the plane. In the 1940s, Paul Erdős started asking slightly
more complicated questions about incidences that even Euclid would have un-
derstood. An interesting question is that at most how many incidences can occur
among n points and n lines, where an incidence means that a line passes trough
a point. My theorem with Trotter confirmed Erdős’s rather surprising conjecture:
The maximum number of incidences is much smaller in the real plane than in the
projective one—much smaller than what we could deduce by simple combinato-
rial considerations.

3. Together with Paul Erdős, we discovered an interesting phenomenon and made
the first nontrivial step in exploring it. We noticed, roughly speaking, that a set
of numbers may have nice additive properties or nice multiplicative properties,
but not both at the same time. This has meanwhile been generalized to finite
fields and other structures by Bourgain, Katz, Tao, and others. Their results had
far-reaching consequences in seemingly unrelated fields of mathematics.

4. We want to sort n numbers, that is to put them in increasing order by using com-
parisons of pairs of elements. Our algorithm is non-adaptive. The next compari-
son never depends on the outcome of the previous one. Moreover the algorithm
can efficiently run simultaneously on cn processors such that every number is
processed by only one of them at a time. Somewhat surprisingly our algorithm
does not require more comparisons than any adaptive nonparallel-shorting algo-
rithm.

After returning from Moscow I continued to work at the Rényi Alfréd Mathemat-
ical Institute. From time to time, either with the family or alone, I visited different
universities, mainly in the US. Ron Graham suggested to Donald Knuth to invite
me to Stanford University. There I started to work on theoretical computer science
too. Donald Knuth and László Babai encouraged me to continue to work on that
discipline. I thank them for this.

With the family we spent two years at the University of South Carolina, in
Columbia. I am very thankful to Tom Trotter who, when I became seriously ill,
helped enormously.

In 1990 I got a tenured position at Rutgers University. I am still a member of
the Department of the Computer Science. I enjoy teaching both, undergraduate and
graduate levels also supervising PhD students.

Being 72, I am a professor emeritus at the Rényi Institute. My plan is to start to
study analytical number theory, although I am well aware that most probably I will
never get any significant result. I am still working on my old problems.

I would like to say some words about the Abel Prize. As I said in my acceptance
speech, I consider this award a recognition of discrete mathematics and theoretical
computer science. Also this award could not have happened were it not for the fun-
damental work of many mathematicians who might have been influenced by some
of my results and methods, but who have developed much stronger results and es-
tablished deep connections between different branches of mathematics.
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The Szemerédi family

I live with my wife Anna. Our five children, Andrea, Anita, Peter, Kati, Zsuzsi
and five grandchildren, Krisztian, Tibi, Szandi, Matyi and Liza live in Budapest,
London and Madrid. Nevertheless we see each other very often.



The Mathematics of Endre Szemerédi
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1 Introduction

Endre Szemerédi is famous for his work in combinatorics and theoretical computer
science. He has published a very large number of papers, often involving extraordi-
narily intricate arguments, so it will not be possible in an article such as this to do
justice to either the breadth or the depth of his work. Instead, therefore, I shall de-
scribe a representative sample of his best known theorems, and attempt to convey in
an informal way some of the ideas that go into their proofs. The sample will consist
of the following results. (The dates given below and throughout the paper are the
dates of publication rather than the dates that the results were actually proved.)

• In 1975, he proved that every dense subset of the natural numbers contains arbi-
trarily long arithmetic progressions, solving a famous and decades-old problem
of Erdős and Turán.

• As part of the proof of the Erdős-Turán conjecture he formulated and proved a
lemma, now known as Szemerédi’s regularity lemma, that became a central tool
in extremal graph theory and an inspiration for many other results in graph theory
and beyond.

• In 1978, with Imre Ruzsa, he proved, using the regularity lemma, that every
graph with few triangles can be approximated by a graph with no triangles. This
innocent-looking result has been at the heart of many developments in graph the-
ory, hypergraph theory, additive combinatorics, and computer science.

• In 1980, with Miklós Ajtai and János Komlós, he showed that the Ramsey number
R(3, k) is at most Ck2/ logk.
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• In 1982, with János Komlós and János Pintz, he found a counterexample to an
old conjecture of Heilbronn in combinatorial geometry.

• In 1983, with Miklós Ajtai and János Komlós, he constructed a parallel sorting
network that sorts n objects in O(logn) rounds.

• Also in 1983, with William Trotter, he proved a theorem about point-line inci-
dences that has become one of the central results in combinatorial geometry.

• In 1995, with Jeff Kahn and János Komlós, he obtained the first exponentially
small upper bound for the probability that a random ±1 matrix is singular.

2 Szemerédi’s Theorem

As its name suggests, Szemerédi’s most famous theorem is . . . Szemerédi’s theorem
[26], which states the following.

Theorem 1 For every positive integer k and every δ > 0 there exists N such that
every subset A⊂ {1, . . . ,N} of size at least δN contains an arithmetic progression
of length k.

This result was first conjectured in 1936, by Erdős and Turán [12], so by the time
Szemerédi proved it in 1975 it had been open for almost four decades. Since then,
a number of other proofs have been discovered, but they have been discussed in
several other places, and here it seems more appropriate to talk about Szemerédi’s
own proof. Unfortunately, his proof is long and extremely intricate, so it is out of
the question to present it here, and difficult even to give an overview. However, it is
significantly easier in the case k = 3, so I shall begin by describing the argument in
that case.

2.0.1 Density Increment Strategies Common to many proofs of Szemerédi’s
theorem, and indeed of several other results in extremal combinatorics, is the so-
called density increment strategy. If X is a combinatorial structure and A is a subset
of X, then the density of A is |A|/|X|. Suppose now that X has many substructures
that are very similar toX itself and we want to prove that if the density ofA is at least
δ then A has some property P . Suppose also that if any subset of A has property P
then A itself has that property. (In particular, this is true when the property is of the
form “contains a configuration of type T ”.) Then instead of aiming directly for the
property P we can instead try to prove one of the following two statements.

1. A has property P .
2. There exists a substructure Y such that the density of A ∩ Y in Y is at least
δ+ c(δ).
Here c(δ) is a positive constant that depends on δ and increases as δ increases.

(One could get away with a weaker condition, but in practice this one always holds.)
If the substructure Y is sufficiently similar to X, then it too will have plenty of
substructures, so in the second case we can apply the argument again. The density
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cannot continue increasing for ever, so eventually, as long as the initial structure X
is large enough, we obtain a subset of A with property P , which shows that A has
property P .

Another way of looking at the density increment strategy is that its existence
allows us to add an extra assumption about the set A: that it has density δ in X,
and density at most δ + c(δ) in every substructure Y of X. (The proof: if not, then
we can pass to Y and we have a bigger density to work with; this cannot go on for
ever.) This is extremely useful, because it allows us to assume that A has the kind
of homogeneity that is usually associated with random sets, and random sets behave
very nicely. This very rough idea is at the heart of all proofs of Szemerédi’s theorem,
but turning it into a rigorous proof is not at all easy.

2.1 Sketch Proof of Szemerédi’s Theorem when k = 3

Our aim in this subsection is to present Szemerédi’s proof of the following result,
which is the first non-trivial case of Theorem 1.

Theorem 2 For every δ > 0 there exists N such that every subset A⊂ {1, . . . ,N}
of cardinality at least δN contains an arithmetic progression of length 3.

This result was first proved by Klaus Roth [20] in 1953. Roth used Fourier anal-
ysis, while Szemerédi’s argument is, as we shall see, purely combinatorial.

We shall apply the density increment strategy. In the context of this problem,
there is a very natural collection of substructures of {1,2, . . . ,N}, namely the set
of all arithmetic progressions that are subsets of {1,2, . . . ,N}. So by the discussion
above, we are free to assume that A has density δ in {1,2, . . . ,N} and density at
most δ + c(δ) in every arithmetic progression Y ⊂ {1, . . . ,N} of length at least m.
What matters here is thatm should tend to infinity with N , since then we can ensure
that m is as large as we like by choosing N sufficiently large. We shall choose c(δ)
and m later in the argument.

Let us now introduce a second idea that appears in many arguments that use a
density increment strategy. Suppose you want to show that A intersects a substruc-
ture Y with density at least δ + c(δ). Often it is not obvious how to find such a
substructure in one step, but it is much clearer how to show that A intersects some
kind of “nice” set W with density at least δ + 2c(δ) (say). In principle, that allows
one to obtain a density increment in two stages. In the first stage, one obtains the
“nice” set W such that |A ∩W | ≥ (δ + 2c(δ))|W |. In the second stage, one shows
thatW can be partitioned into large substructures Y1, . . . , Yr . By averaging, one then
deduces that there exists i such that |A∩Yi | ≥ (δ+ 2c(δ))|Yi | and one has a density
increment.

Sometimes, asking for a partition is too much, but one can get away with a
slightly weaker assertion. This is where the factor 2 comes in. It is enough if al-
most all of W can be partitioned into large substructures Y1, . . . , Yr : if |W \ (Y1 ∪
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· · · ∪ Yr)| ≤ c(δ)|W |, then |A ∩ (Y1 ∪ · · · ∪ Yr)| ≥ (δ + c(δ))|Y1 ∪ · · · ∪ Yr | and the
averaging argument works again.

Another way of weakening the requirement that the substructures Yi partitionW
is to ask instead that they form a uniform covering ofW : that is, every element ofW
is contained in the same number of sets Yi . It is easy to see that the averaging argu-
ment still works. And one can weaken that to an approximately uniform covering.
However, approximate partitions will suffice here.

2.1.1 A Strategy for Obtaining a “Nice” Set

To see where a “nice” set W might come from in our case, we shall make a simple
observation, but we need to set the scene first.

Let θ be a smallish positive absolute constant, and let us divide the interval
{1, . . . ,N} into three parts: the integers up to (1/2 − θ)N , the integers between
(1/2 − θ)N and (1/2 + θ)N and the integers between (1/2 + θ)N and N . That
is, we split {1, . . . ,N} up into a smallish interval around N/2 and the intervals on
either side of it. Let us refer to these intervals as the left interval, the middle interval
and the right interval, and write them as L,M and R. Let us also write AL, AM and
AR for A∩L, A∩M and A∩R.

The density-increment strategy allows us to assume that the density of A in each
of L, M and R is at most δ + c(δ), which implies, by an easy averaging argument,
that it is approximately equal to δ in each of the three subintervals.

Now if we are given any subset B of AM , then A has an empty intersection with
2.B − AL (which is defined to be {2y − x : x ∈ AL,y ∈ B}). That is because the
numbers x and y belong to A and the triple (x, y,2y − x) is an arithmetic progres-
sion. (We are of course assuming that A does not contain an arithmetic progression
of length 3.) Thus, AR is disjoint from 2.B −AL.

The set 2.B − AL is not just any old set: it is a sumset of two large and very
homogeneous sets, and as such has a highly atypical structure. Could that structure
allow us to partition its complement into long arithmetic progressions?

The answer is not immediately obvious, so let us try a simple-minded approach,
picking a positive integer d and partitioning the complement of 2.B − AL into
maximal arithmetic progressions of common difference d . It turns out to be easy
to characterize how many of these progressions there are, since if x is the mini-
mal element of such an arithmetic progression, we know that x /∈ 2.B − AL and
x − d ∈ 2.B −AL. That is, x ∈ (2.B −AL + d) \ (2.B −AL).

This gives us a proof strategy. Suppose we can find a subset B ⊂ AM and a
positive integer d such that (2.B−AL+d)\ (2.B−AL) has cardinality o(N). Then
we can partition the complement of 2.B − AL into o(N) arithmetic progressions
with common difference d . Since this complement contains AR , which has density
at least δ/4, the average length of these progressions tends to infinity. By an easy
averaging argument, we can throw away o(N) points and partition the rest of the
complement of 2.B − AL into long arithmetic progressions. Since 2.B − AL has
density at least δ/4 (because AL does, and 2.B is non-empty) and AR has density
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roughly δ in R, the average density of A inside these arithmetic progressions is at
least (1 + cδ)δ = δ + cδ2 for some absolute constant c, and we have our density
increment on a long arithmetic progression.

2.1.2 Implementing the Strategy

It remains to find a set B and a positive integer d such that (2.B − AL + d) \
(2.B − AL) has cardinality o(N). For this we use the simple observation that if
B ⊂ B ′ then 2.B −AL ⊂ 2.B ′ −AL. This again leads to a proof strategy. Suppose
we can find a sequence of subsets B0,B1, . . . ,Bk of AM such that each Bi is of
the form Bi−1 ∪ (Bi−1 + di) for some positive integer di . Then the Bi are nested,
so the sets 2.Bi − AL are nested, from which it follows that there exists i such
that (2.Bi − AL) \ (2.Bi−1 − AL) has cardinality at most N/k. But 2.Bi − AL =
(2.Bi−1 −AL + 2di)∪ (2.Bi−1 −AL), so

(2.Bi −AL) \ (2.Bi−1 −AL)= (2.Bi−1 −AL + 2di) \ (2.Bi−1 −AL),
which is a set of the form that we would like to have cardinality o(N). Therefore,
our proof will be complete if we can get k to tend to infinity.

We have now reduced the problem to the task of finding a large Hilbert cube
inside AM : that is, a set of the form {x +∑k

j=1 εj dj : εj ∈ {0,1}}. If we can find

that, then we can set Bi = {x +∑i
j=1 εj dj : εj ∈ {0,1}} and we will have Bi =

Bi−1 ∪ (Bi−1 + di) as desired.

Claim Let I be an interval of integers of cardinality m and let E be a subset of I
of density η. Then E contains a Hilbert cube of dimension at least c log logm.

The proof is well known and very simple. There are ηm(ηm− 1)≈ η2m2 pairs
(x, y) of distinct elements of E and at most 2m possible differences, so at least
one difference d1 occurs at least η2m/2 times (up to a tiny error). Let E1 = E ∩
(E − d1). Then E1 has cardinality at least η2m/2 and E1 ∪ (E1 + d1) ⊂ E. We
repeat this observation for E1 to find a subset E2 and a positive integer d2 such that
E2∪ (E2+d2)⊂E1, and so on. At each stage of the iteration, we square the density
of the set, and the iteration continues for as long as we still have a density of at least
m−1. From this we obtain a cube of dimension k provided that (1/η)2

k ≤m, which
gives us the bound of c log logm.

With the claim established, the proof of the theorem is complete.

2.2 What Happens when the Progressions Are Longer?

The proof just sketched contains the germs of various ideas that appear in the proof
of the general case of Szemerédi’s theorem. However, the argument for longer pro-
gressions is much more difficult and complicated. There is a simple reason for this,
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which can be summarized in the form of a slogan: it is very easy to find arithmetic
progressions of length 2. In the argument above, we made use of the fact that if a set
A contains no arithmetic progressions of length 3, and if B and C are subsets of A,
then A is disjoint from the set 2C −B . That is, every pair (b, c) ∈ B ×C gives us a
number 2c− b that is not allowed to belong to A (as long as b �= c).

If we want to try to do something similar for progressions of length 4, then
we will find ourselves considering three sets, B , C and D. But now a triple
(b, c, d) ∈ B × C ×D does not usually yield for us an element that cannot belong
to A: it does so only if b, c and d lie in an arithmetic progression (in which case the
next term in that progression is not allowed to belong to A). As just one example of
the kind of difficulty this can cause, suppose we tried to imitate the proof for pro-
gressions of length 3 as follows: split the interval {1, . . . ,N} into four subintervals,
let A1, . . . ,A4 be the intersections of A with those intervals, find structured subsets
S2 and S3 of A2 and A3 (to play the role of the Hilbert cube), and then use points
in A1 together with the sets S2 and S3 to find many points that cannot belong to
A4. Whereas in the argument for progressions of length 3, every point in AL ruled
out many points from AR , now a point in A1 would not rule out any points at all
from A4 unless it belonged to the set 2.S2 − S3. If S2 and S3 are very small sets
(as the Hilbert cube was in the argument for progressions of length 3), then there
is no reason to suppose even that the set A1 ∩ (2.S2 − S3) is non-empty. So for an
approach like this to have any chance of working, the construction of the sets S2 and
S3 would have to depend in an essential way on the sets A1 and A4—by contrast
with the construction of the Hilbert cube in the earlier argument, which depended
on AM only.

We shall have a little more to say about the proof for longer progressions at the
end of the next section.

3 Szemerédi’s Regularity Lemma

In 1947, Erdős gave a remarkably simple proof [10] that the Ramsey numberR(k, k)
is at least 2k/2. The proof can be summarized in a single sentence: if you take the
complete graph on 2k/2 vertices and randomly colour its edges with two colours,
then the expected number of monochromatic cliques of size k is less than 1. This
proof gave birth to the subject of random graphs, and to the realization that random
graphs are in many ways easy to understand. In particular, if G is a graph with n
vertices and each pair of vertices xy forms an edge with probability p, with all these
events being independent, then two things happen with high probability.

1. For every large set X of vertices the density of the induced subgraph with vertex
set X is approximately p.

2. If v is a fixed constant and H is a graph with v vertices and e edges, then the
number of copies of H in G is approximately pe(1− p)(v2)−env .
To be clear, a copy ofH means a function φ from the vertex set ofH to the vertex

set of G such that φ(x)φ(y) is an edge of G if and only if xy is an edge of H .
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3.1 Quasirandom Graphs and the Counting Lemma

Approximately 40 years later it was realized, as a result of work of Thomason [31]
and Chung, Graham and Wilson [8], that the two properties above are equivalent.
This leads to the extremely useful notion of a quasirandom graph, which is a graph
with one, and hence both, of the above properties.

There are many further respects in which quasirandom graphs behave like ran-
dom graphs. A particularly important one is an example of a counting lemma, for
which we need the closely related notion of a quasirandom bipartite graph. A bipar-
tite graph G of density p with vertex sets X and Y of sizes m and n is quasirandom
if it has one of the following two properties, which again turn out to be equivalent.

1. For every large pair of subsets X′ ⊂ X and Y ′ ⊂ Y the density of the induced
bipartite subgraph with vertex sets X′ and Y ′ is approximately p.

2. If v and w are fixed constants and H is a bipartite graph with vertex sets of
sizes v and w vertices and e edges, then the number of copies of H in G with
the vertex set of size v in X and the vertex set of size w in Y is approximately
pe(1− p)vw−emvnw .

The counting lemma is the following statement.

Lemma 1 Let G be a k-partite graph with vertex sets V1, . . . , Vk such that Vi has
cardinality ni for each i and such that for each i, j the bipartite graph that joins Vi
to Vj is quasirandom with density αij . LetH be a graph with vertex set {1,2, . . . , k}.
Then the number of copies φ :H →G of H in G such that φ(i) ∈ Vi for each i is
approximately n1 . . . nk

∏
ij∈E(H) αij

∏
ij /∈E(H)(1− αij ).

The counting lemma has a very intuitive interpretation. Imagine that the edges
between Vi and Vj are put in with probability αij and that we randomly pick a
vertex vi from each Vi . Then the probability that the vertices v1, . . . , vk span a copy
of H , in the sense that vivj is an edge of G if and only if ij is an edge of H , will be∏
ij∈E(H) αij

∏
ij /∈E(H)(1− αij ). The counting lemma tells us that the same is true

if the edges between each Vi and Vj form quasirandom bipartite graphs rather than
random ones. Thus, when those graphs are quasirandom, the number of copies ofH
is “what one would expect”.

3.2 Statement of the Regularity Lemma

The counting lemma concerns graphs with vertex sets that can be partitioned into
a small number of sets in such a way that the edges between each pair form quasi-
random bipartite graphs. This may seem like a rather artificially strong condition
to impose on a graph. Remarkably, it is not strong at all: to oversimplify slightly,
Szemerédi’s regularity lemma tells us that every dense graph is of this apparently
special form.
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A more precise statement of the lemma is as follows. Given any two sets U,V
of vertices in a graph, let e(U,V ) denote the number of pairs (u, v) ∈ U × V such
that uv is an edge of G, and define the density d(U,V ) to be e(U,V )/|U ||V |. We
define a bipartite graph G with vertex sets X and Y and density p to be ε-regular if
|d(U,V )− p| ≤ ε whenever U ⊂X, V ⊂ Y , |U | ≥ ε|X| and |V | ≥ ε|Y |.

Theorem 3 For every ε > 0 there exists a positive integer K with the following
property. For every finite graph G there is a partition of its vertex set into subsets
V1, . . . , Vk with sizes differing by at most 1, such that k ≤ K and such that for all
but at most εk2 pairs (i, j) the bipartite subgraph of G induced by Vi and Vj is
ε-regular.

The slight oversimplification alluded to earlier was that I implied that all the
pairs were quasirandom, whereas the correct statement is that they are almost all
quasirandom. However, this does not matter too much: for example, the counting
lemma remains true if a few of the bipartite graphs are not quasirandom, since it is
an approximate statement.

3.3 Sketch Proof of the Regularity Lemma

The regularity lemma has been intensively studied ever since it was originally for-
mulated, and there are now several approaches to proving it. However, even Sze-
merédi’s original approach is simple and conceptual, so that is the one I shall present
here.

3.3.1 Energy Increment Strategies

The key idea is a cousin of the density increment strategy discussed earlier: it is what
is nowadays often referred to as an energy increment strategy. LetG be a graph with
vertex set V and let V1, . . . , Vr be a partition of the vertex set ofG. Let |Vi | = μi |V |
for each i. Then the mean square density of the partition is

∑
i μiμjd(Vi,Vj )

2. This
we can think of as a kind of “energy”.

I have stated this definition without assuming that the Vi have approximately the
same size. We shall need a further definition adapted to this context. Let B be the
set of “bad” pairs: that is, pairs (i, j) such that the bipartite subgraph induced by Vi
and Vj is not ε-regular. Let us say that the partition is ε-regular if

∑{μiμj : (i, j) ∈
B} ≤ ε.

The energy increment strategy, like the density increment strategy, is a way of
proving results without trying to do everything in one go. Here we shall prove that
one of the following two statements is true.

• The partition V1 ∪ · · · ∪ Vr is ε-regular.
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• There is a refinement of the partition V1 ∪ · · · ∪ Vr into at most m = m(r) sets
W1, . . . ,Wm such that the mean square density of the refined partition is greater
than the mean square density of the original partition by at least c(ε).

If we can prove something like that, then we are clearly done: we cannot keep
increasing the mean square density for ever (as with the density increment strategy,
we are assuming that c(ε) is an increasing function of ε), so after a certain number
of refinements we end up with an ε-regular partition. The size of this partition will
be bounded above by a function obtained by iterating the function m some number
of times that depends on ε only.

3.3.2 Implementing an Energy Increment Strategy

To get the energy increment strategy to work here, we need two simple lemmas.

Lemma 2 Let G be a graph with vertex set V and let P = {V1, . . . , Vk} be a parti-
tion of V . For each i let Vi1, . . . , Viki be a partition of Vi and let Q be the partition
of V into the sets Vij . Then the mean square density of G with respect to Q is at
least as big as the mean square density of G with respect to P .

Proof This lemma can be proved by a direct calculation using the Cauchy-Schwarz
inequality. To see in a more conceptual way why it is true, letH be the Hilbert space
of real-valued functions defined on V ×V with the norm ‖f ‖ = (Ex,yf (x, y)2)1/2.
(Here, we write Ex,y as shorthand for |V |−2∑

x,y .) Let P : H → H be the aver-
aging projection with respect to the partition of V × V into the sets Vi × Vj . That
is, if (x, y) ∈ Vi × Vj , then Pf (x, y)= Eu∈Vi,v∈Vj f (u, v). Similarly, let Q be the
averaging projection that averages over the sets Vij × Vrs . Then P and Q are or-
thogonal projections, and PQ = P . Also, if f is the characteristic function of the
graph G, then ‖Pf ‖2 and ‖Qf ‖2 are the mean square densities of G with respect
to the partitions P and Q, respectively. But ‖Pf ‖2 = ‖PQf ‖2 ≤ ‖Qf ‖2, so the
lemma is proved. �

For the next lemma we need to adapt the notion of mean square density to bi-
partite graphs. If we have a bipartite graph G with vertex sets X and Y and we
have partitions X = X1 ∪ · · · ∪ Xr and Y = Y1 ∪ · · · ∪ Ys , we say that the mean
square density with respect to the two partitions is

∑
i,j μiνj d(Xi,Yj )

2, where
μi = |Xi |/|X| and νj = |Yj |/|Y |. For the next lemma it will be useful to interpret
the mean square density probabilistically. Let D be the random variable that takes a
random (x, y) ∈X× Y to the density d(Xi,Xj ) for the unique pair (i, j) such that
x ∈Xi and y ∈ Yj . Then the mean square density is simply ED2.

Lemma 3 Let G be a bipartite graph with vertex sets X and Y and density p.
Suppose that there are subsets X0 ⊂ X and Y0 ⊂ Y such that |X0| ≥ ε|X|, |Y0| ≥
ε|Y | and |d(X0, Y0)− p| ≥ ε. Let X1 = X \ X0 and Y1 = Y \ Y0. Then the mean
square density of G with respect to the partitions X =X0 ∪X1 and Y = Y0 ∪ Y1 is
at least p2 + ε4.



468 W.T. Gowers

Proof Again this lemma can be proved by direct calculation. However, it is nicer to
use a probabilistic argument. As we have just commented, the mean square density
is ED2, where D is the random variable that tells you the density of G in the pair
Xi ×Xj that your point lies in. Now ED = p, so ED2 = p2 + Var(D). Since the
probability that a random point (x, y) ∈ X × Y lies in X0 × Y0 is at least ε2, the
hypotheses of the lemma imply that the variance of D is at least ε2.ε2 = ε4, which
proves the lemma. �

We shall now be a little more sketchy. Recall that we are supposing that we have
a partition V = V1 ∪ · · · ∪ Vr that is not ε-regular, and we would like to find a
refinement that has a slightly larger mean square density. Again, let μi = |Vi |/|V |
and let B be the set of all pairs (i, j) such that the pair (Vi,Vj ) is not ε-regular. Let
us write G(Vi,Vj ) for the bipartite graph we obtain if we restrict G to Vi × Vj .

By Lemma 3, for each pair (i, j) ∈ B , we can find partitions Vi = V 0
ij ∪ V 1

ij and

Vj = V 0
ji ∪V 1

ji such that the mean square density ofG(Vi,Vj ) with respect to these

two partitions is at least d(Vi,Vj )2 + ε4.
For each i, we now pick a common refinement of all the partitions Vi = V 0

ji ∪
V 1
ji . We can do this with si ≤ 2r sets Vi1, . . . , Visi . Then by Lemma 2, for each
(i, j) ∈ B , the mean square density of G(Vi,Vj ) with respect to the partitions Vi =
Vi1 ∪ · · · ∪ Visi and Vj = Vj1 ∪ · · · ∪ Vjsj is at least d(Vi,Vj )2 + ε4. For all other
pairs (i, j), Lemma 2 implies that the mean square density is at least d(Vi,Vj )2.
Since a random pair (x, y) ∈ V 2 has a probability at least ε of belonging to Vi ×Vj
for some (i, j) ∈ B , this implies that the mean square density of G with respect to
the partition into the sets Vij exceeds the mean square desnity of G with respect to
V1, . . . , Vr by at least ε5.

This completes the energy increment strategy and shows that we can find an ε-
regular partition into at most K =K(ε) sets, where K is the function obtained by
starting with 1 and iterating the function r �→ r.2r ε−5 times. In other words, K has
a tower-type dependence on ε.

When we stated the regularity lemma earlier we included an extra condition that
said that the sets Vi in the partition had roughly equal size. For most applications
this is not necessary, but it can be quite convenient. To obtain it, one runs the above
argument but at each iteration one approximates the partition one has obtained by
one in which the sets all have roughly equal size. We omit the details.

3.4 The Regularity Lemma and Szemerédi’s Theorem

For an excellent account of why the regularity lemma was useful to Szemerédi for
proving his theorem on arithmetic progressions, I recommend a blog post on the
topic by Terence Tao [28]. Here I shall attempt to convey the idea very briefly—the
arguments are explained in more detail in the blog post.

Let A be a subset of {1,2, . . . ,N}. Recall from the discussion of Szemerédi’s
theorem that the density increment strategy allows us to assume that |A∩P | ≤ (δ+
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c(δ))|P | whenever P is an arithmetic progression of lengthm, provided only thatm
tends to infinity with N . Therefore, by averaging it follows that |A∩ P | ≈ δ|P | for
almost all such progressions P . The same is true of more general sets that are made
out of arithmetic progressions, such as sets of the form P1+· · ·+Pk where each Pi
is an arithmetic progression. (A set of this kind is called a k-dimensional arithmetic
progression.) Let us refer loosely to sets for which this kind of conclusion follows
as “structured sets”.

If we now take a structured set P and look at a set of translates P,P + r,
P + 2r, . . . ,P + (M − 1)r , we can define a sequence of subsets A0,A1, . . . ,AM−1
of P by setting Ai = A ∩ (P + ir) − ir = {x ∈ P : x + ir ∈ A}. Not only do we
expect almost all the Ai to have density roughly δ, but there are also interesting re-
lationships between the Ai . To give a simple example, no element x ∈ P can belong
to more than (δ+ c(δ))M of the sets Ai , since otherwise more than (δ+ c(δ))M of
the elements of the arithmetic progression x, x+ r, . . . , x+ (M − 1)r would belong
to A. It follows by averaging that if E is any subset of P , then there exists i such
that |Ai ∩E| ≤ (δ + c(δ))|E|.

With the help of van der Waerden’s theorem, one can improve this result to one
about several sets E1, . . . ,Em. Suppose that we cannot find i such that |Ai ∩Ej | ≤
(δ+c(δ))|Ej | for every j . Then we canm-colour the set {0,1, . . . ,M−1} by taking
the colour of i to be some j such that |Ai ∩Ej |> (δ + c(δ))|Ej |. But then van der
Waerden’s theorem gives us a long arithmetic progression of numbers i for which
we can take the same j , and that, by a small modification of the remarks in the
previous paragraph, cannot happen.

If we apply this result not just to the Ej but also to their complements, then we
may conclude further that |Ai ∩ Ej | ≈ δ|Ej | for every j . (By “≈” here, we mean
that the difference between the two sides is at most a small multiple of |P |, so if Ej
is a very small set, then it tells us nothing.)

Unfortunately, m is so small compared with M that this observation is not very
helpful on its own. It is here that the regularity lemma comes in. Let E1, . . . ,EN
be a collection of subsets of P , where N may be arbitrarily large. We shall use the
regularity lemma to find i such that |Ai ∩ Ej | ≈ δ|Ej | for almost every j . Thus,
we have made a small loss—having to change from “every” to “almost every”—but
have also made a big gain—going from m sets, where m is much less thanM , to N
sets, where N can be as large as we like.

Whenever one has a collection of subsets of a finite set, one can think of it as a
bipartite graph in which the subsets are neighbourhoods. Here we take the vertex
sets as P and {1, . . . ,N}, joining x ∈ P to j if and only if x ∈Ej . (Thus, Ej ⊂ P is
the neighbourhood of j .) Let us apply the regularity lemma to this graph, obtaining
partitions of P and {1, . . . ,N} into a bounded number of sets. Let the partition
of P be P1 ∪ · · · ∪ Pm. Then we can apply the earlier result to obtain i such that
|Ai ∩ Ps | ≈ δ|Ps | for every s.

Now if (U,V ) is a regular pair of density α and A ⊂ U , then the regularity
condition implies that for almost every v ∈ V the neighbourhood of v inU intersects
A in a set of size approximately α|A|. Since almost all pairs are regular after we have
applied the regularity lemma, for most Ps we can conclude that |Ai ∩ Ps ∩ Ej | ≈
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δ|Ej ∩Ps | for almost every j . Summing over all s, it follows that |Ai ∩Ej | ≈ δ|Ej |
for almost every j , as claimed.

Of course, it is far from obvious how these ideas lead to a proof of Szemerédi’s
theorem, but that is beyond the scope of this article. At least the above argument
makes it plausible that the regularity lemma could be of use.

4 The Triangle Removal Lemma

In this section we present a beautiful result of Ruzsa and Szemerédi [22], which
amongst other things gives us an alternative proof of Theorem 2 and makes full use
of the regularity lemma.

Theorem 4 For every ε > 0 there exists δ > 0 such that if G is any graph with n
vertices and at most δn3 triangles, then one can remove a set of at most εn2 edges
from G and obtain a graph that is triangle free.

In short: every graph with few triangles can be approximated by a graph with no
triangles.

One might have thought that this result would either be false, or be true with a
more or less trivial proof. However, it is neither: it is true with a non-trivial proof,
and to determine even very roughly the correct dependence of δ on ε is still an
important open problem. (The best known bound, due to Jacob Fox, is that δ can be
taken to be 1/T (log(1/ε)), where T is a tower-type function. In the other direction,
it is known that δ cannot be greater than exp(− log(1/ε)2), which is just a little bit
worse than a power dependence.)

4.1 Sketch Proof of the Triangle Removal Lemma

The proof of the triangle removal lemma starts in a similar way to many applications
of the regularity lemma. We carry out the following three steps.

1. Apply the regularity lemma to the graphGwith a suitable parameter η, obtaining
a partition V (G)= V1 ∪ · · · ∪ Vk into sets of approximately equal size.

2. Remove from G all edges that belong to bipartite subgraphs G(Vi,Vj ) that are
not η-regular.

3. Remove fromG all edges that belong to bipartite subgraphsG(Vi,Vj ) of density
less than θ , for some suitable parameter θ .

The result is to create a graph G′ such that every bipartite subgraph G′(Vi,Vj )
that is non-empty has density at least θ and is η-regular. This is very useful, because
it means that we can apply the counting lemma.
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To see how this works for the triangle removal lemma, observe first that we have
removed at most (η + θ)n2 edges from G. Also, since G′ is a subgraph of G, we
know that G′ contains at most δn3 triangles.

But when δ is sufficiently small, this second observation actually implies that G′
contains no triangles. To see why, suppose that xyz is a triangle and let r, s and t
be such that x ∈ Vr , y ∈ Vs and z ∈ Vt . Then the three bipartite graphs G′(Vr ,Vs),
G′(Vs,Vt ) and G′(Vr ,Vt ) all contain at least one edge, from which it follows that
they are all η-regular with density at least θ . But then the counting lemma implies
(provided η is sufficiently small in terms of θ ) that those three bipartite graphs when
put together contain at least (θ3/2)|Vr ||Vs ||Vt | triangles. But each of Vr , Vs and Vt
has size approximately n/k, where k depends on η only. This is a contradiction
when δ is small enough.

Chasing the parameters, we need η+ θ ≤ ε with η at most some power of θ . And
then we can set δ = θ3/4K3, where K =K(η) is the upper bound on k that comes
from the regularity lemma. This gives the tower-type bound for 1/δ in terms of 1/ε.

4.2 Applications of the Triangle Removal Lemma

Ruzsa and Szemerédi noticed that the triangle removal lemma gave another proof
of Roth’s theorem (that is, Szemerédi’s theorem for progressions of length 3). In
this section we present a slight modification of their argument, observed by Jozsef
Solymosi [24], that yields a stronger result.

4.2.1 The Corners Theorem

Theorem 5 For every δ > 0 there exists N such that every subset A⊂ {1, . . . ,N}2
of cardinality at least δN2 contains a triple {(x, y), (x + d, y), (x, y + d)} with
d �= 0.

Configurations of the form {(x, y), (x + d, y), (x, y + d)} with d �= 0 are some-
times called corners, and this result is sometimes referred to as the corners theorem.

To deduce the corners theorem from the triangle removal lemma, we need
to construct a graph. This is done as follows. Let X = Y = {1, . . . ,N} and let
Z = {1, . . . ,2N}. We construct a tripartite graph G with vertex sets X, Y and Z
(regarding X and Y as disjoint copies of {1, . . . ,N} rather than as the same set) as
follows.

1. x ∈X is joined to y ∈ Y if and only if (x, y) ∈A.
2. x ∈X is joined to z ∈ Z if and only if (x, z− x) ∈A.
3. y ∈ Y is joined to z ∈Z if and only if (z− y, y) ∈A.

If xyz forms a triangle in G, then we can set d = z− x − y, and A contains the
three points (x, y), (x, y + d) and (x + d, y). Thus, triangles in G correspond to



472 W.T. Gowers

corners in A. Or rather, they almost do, but if x + y = z then they don’t, since in
that case d = 0 and the “corner” is just a single point.

We therefore can’t quite deduce that G contains no triangles from the fact that
A contains no corners. Surprisingly, it turns out that this is not a setback: it is of
vital importance to the proof that there should be at least some triangles in G, as
we shall see. What we can say is that there is a one-to-one correspondence between
triangles inG and points in A. It follows that the number of triangles inG is at most
N2. Since the number of vertices inG is 4N , the hypotheses of the triangle removal
lemma are very strongly satisfied. It follows that we can remove o(N2) edges from
G to form a triangle-free graph.

However, this is easily seen to be impossible. The triangles inG are edge disjoint,
since if x + y = z and x′ + y′ = z′ then any two of the equalities x = x′, y = y′ and
z = z′ implies the third. Since there are at least δN2 triangles, one must remove
at least δN2 edges from G to make it triangle free. This contradiction implies the
corners theorem.

The above proof was not the first proof of the corners theorem: that was a result of
Ajtai and Szemerédi [4] from 1975. Their proof naturally gave the slightly stronger
result that we may take d > 0. However, as was observed by Ben Green, the two
statements are equivalent, since one can begin by intersecting A with a random
translate of −A in order to obtain a dense subset B of A with the property that if it
contains a corner with d < 0 then it must also contain a corner with d > 0. As with
many of Szemerédi’s proofs that are apparently superseded, the argument of Ajtai
and Szemerédi has turned out to have unexpected importance, serving as a model for
later arguments in situations where the regularity approach cannot easily be made
to work.

4.2.2 Another Proof of Roth’s Theorem

As suggested above, the corners theorem implies Roth’s theorem. Here is the simple
deduction. Let A be a subset of {1, . . . ,N} of density δ and let A′ ⊂ {1, . . . ,2N}2
consist of all points (x, y) such that x − y ∈A. Then A′ has density at least δ/4, so
by the corners theorem it contains a triple {(x, y), (x + d, y), (x, y + d)}. But then
the three points x − y − d, x − y and x − y + d all lie in A and form an arithmetic
progression.

4.2.3 Property Testing

There is considerable interest amongst theoretical computer scientists in algorithms
that can test for properties of their input by making only a constant number of
queries. Given that the input has size n, which tends to infinity, this might seem a
hopeless task. However, one typically asks for approximate answers, and one wants
them to be correct with high probability rather than total certainty.



The Mathematics of Endre Szemerédi 473

A very simple example would be testing an input sequence of n 0s and 1s to
see whether at least half of the bits are 1s. We cannot hope to do this with only
constantly many queries, but what if we relax the requirement so that our aim is to
output one of the following two statements and be almost certain that the statement
we go for is true?

1. At least half the bits are 1s.
2. At most 51 % of the bits are 1s.

If we sample 108 bits at random, then the standard deviation of the number of
1s we get will be of order of magnitude 104, so with very high probability the
proportion of 1s in our sample will differ from the true proportion by less than
0.5 %. Therefore, we can output the first statement if the proportion of 1s in our
sample is at least 50.5 % and the second statement otherwise.

Now let us think about a more interesting problem. This time our input is a graph
G with n vertices. What we would really like to determine is whether or not the
graph contains a triangle, but we cannot hope to do that after looking at only a
constant number of edges. However, what we can do is output, with confidence, one
of the following two statements.

1. G contains a triangle.
2. G can be approximated by a triangle-free graph.

This follows directly from the triangle removal lemma. The algorithm is very
simple indeed: we randomly sample a large but constant number of triples of ver-
tices, seeing in each case whether we have the vertices of a triangle. If we ever do,
then we output “G contains a triangle” and we are 100 % certain that is correct. If
we never discover a triangle in our sample, then with high probability the proportion
of triples in G that form triangles is very small. But then, by the triangle removal
lemma, G can be approximated by a triangle-free graph.

This is typical of many property-testing results in that we either make one claim
with complete certainty or the other one with near certainty.

A great deal is now known about properties that can be tested for in this way, and
the regularity lemma is a central tool for proving such results.

5 A Sharp Upper Bound for the Ramsey Number R(3, k)

Ramsey’s theorem states that for every pair of positive integers k and l, there exists
a positive integer n such that every graphG with n vertices contains a clique of size
k or an independent set of size l. (A clique is a set of vertices such that every pair of
vertices in the set is joined by an edge. An independent set is the opposite: a set of
vertices such that no two of them are joined by an edge.)

The Ramsey number R(k, l) is the smallest n for which Ramsey’s theorem is
true. Unless k and l are small, it does not appear to be feasible to calculate Ramsey
numbers exactly, so attention has turned to asymptotics. However, even these are
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difficult to obtain with any accuracy. For example, the best known upper and lower
bounds for R(k, k) are roughly 22k and 2k/2, respectively, so the gap between them
is exponential.

A simple argument shows that R(3, k) is at most k(k + 1)/2. Indeed, let G be
a graph with n vertices. We would like to show that G contains either a triangle or
an independent set of size k. Let us assume that G does not contain a triangle. This
tells us that the neighbourhood of each vertex x (that is, the set of vertices joined
to x) contains no edges.

We shall use this observation repeatedly to create an independent set x1, . . . , xk .
Let x1 be an arbitrary vertex of G, throw away x1 and all its neighbours, and let V1
be the set of all remaining vertices. Since the neighbours of x1 form an independent
set, either we are done or there are at most k−1 of them. In the second case, let x2 be
an arbitrary vertex in V1, throw away x2 and all its neighbours from V1 and let V2 be
the set of all remaining vertices. Since the neighbours of x2 form an independent set,
which remains an independent set when x1 is included, either we are done or there
are at most k−2 of them. Continuing in this way, we end up finding an independent
set provided that n≥ k + (k − 1)+ · · · + 1= k(k + 1)/2.

This bound was improved in 1968 by Graver and Yackel [13] to Ck2 log log k/ log k.
Then in a paper published in 1981 Ajtai, Komlós and Szemerédi [2] improved the
bound to Ck2/ log k. They subsequently found a simpler argument [1] that (slightly
confusingly for the historian) was published in 1980. The 1981 paper remained
important for two reasons: it made progress on another interesting problem, and it
introduced the so-called semirandom method into combinatorics, which has become
a major tool with many further applications. We shall say a little about semirandom
methods in the next section, but here we give the simpler proof from the 1980 paper.

5.1 Choosing an Independent Set More Carefully

The basic strategy we presented above for proving the bound R(3, k)≤ k(k + 1)/2
was to choose an independent set {x1, . . . , xk} greedily, exploiting the fact that in
a triangle-free graph with no independent set of size k, no vertex has degree more
than k− 1.

If we want to improve this argument, then a natural strategy is to be slightly less
greedy. For example, perhaps we could try to find a vertex of degree less than k− 1
so that we have fewer neighbours to worry about.

In general, that may not be possible, but if we look ahead a little further, then
there is something else we can try to do, namely pick the vertices xi in such a way
that when we remove their neighbourhoods, we remove as many further edges as
we can. That way, we can hope that as the selection proceeds, the average degree
in the remaining graph goes down, which enables us to pick vertices with not too
many neighbours.

The next lemma shows how to find a vertex whose removal will cause us to
remove many edges. Let us define the second degree of a vertex x in a graph to be the
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sum of the degrees of all the neighbours of x, and denote it by d2(x). Equivalently,
it is the number of paths of length 2 that start at x (counting “paths” that begin and
end at x). We also write d(x) for the degree of x.

Lemma 4 Let G be a graph with average degree t . Then there exists a vertex x
such that d2(x)≥ td(x).

Proof We show first that
∑
x d2(x)=∑x d(x)

2. To see this, let A be the adjacency
matrix of G. Then

∑

x

d2(x)=
∑

x,y,z

A(x, y)A(y, z)=
∑

y

∑

x,z

A(y, x)A(y, z)=
∑

y

(∑

x

A(y, x)

)2

=
∑

y

d(y)2

which is of course equal to
∑
x d(x)

2. (All we have done here is count the set of
paths of length 2 in two different ways.)

It follows that Exd2(x) = Exd(x)
2. Since the variance of the degrees is non-

negative, Exd(x)
2 ≥ (Exd(x))2 = tExd(x). Therefore, there exists x such that

d2(x)≥ td(x), as claimed. �

Theorem 6 Let G be a triangle-free graph with n vertices and average degree t .
Then G contains an independent set of size at least n log t/8t .

Proof By Lemma 4 we can find a vertex x such that d2(x) ≥ td(x). If d(x) > 4t
then let us remove x from the graph, and otherwise let us remove x and all its
neighbours from the graph.

In the second case, we remove d(x) + 1 vertices from the graph, and the sum
of the degrees goes down by at least 2td(x). The latter bound follows from the fact
that G contains no triangles, which means that no edge is joined to more than one
neighbour of x.

In both cases, we can then choose the largest independent set in the remainder of
the graph; in the second case we can add x to that independent set to get a larger
independent set.

Now let us define a function φ : N2 → N as follows: φ(n,m) is the minimum
size of the largest independent set that is contained in a triangle-free graph with n
vertices and m edges. Our preliminary remarks have shown that

φ(n, tn)≥min
{
φ
(
n− 1, t (n− 4)

)
,1+ min

d≤4t
φ
(
n− d − 1, t (n− 2d)

)}
.

Let us now prove by induction that φ(n,m)≥ n2m−1 log(m/n)/8= n log(m/n)/
8(m/n). Note that 2m/n is the average degree of the graph, so up to a constant a
bound of n/(m/n) is the simple-minded bound one would get if G was regular and
one just removed an arbitrary vertex and its neighbours at each stage. The interest
is in the logarithmic improvement.
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A simple back-of-envelope calculation shows that

(n− 1)2

t (n− 4)
log

(
t
n− 4

n− 1

)
≥ n
t

log t

if log t ≥ 6.This proves the inductive step in the case that φ(n, tn) ≥ φ((n −
1), t (n− 4)), provided that the average degree is not too small.

Another simple back-of-envelope calculation shows that

(n− d − 1)2

8t (n− 2d)
log

(
t
n− 2d

n− d − 1

)
+ 1≥ n

8t
log t

provided that d ≤ 4t . Let us actually do this second calculation, since it is the im-
portant case—that is, the case that tells us what happens when we remove a vertex
of roughly average degree and reasonably high second degree.

Since (n− d − 1)2 = n2 − 2(d − 1)n+ (d − 1)2 > n(n− 2d), we can bound the
first fraction on the left-hand side below by n/8t . Therefore, it remains to prove the
inequality

log t + log

(
n− 2d

n− d − 1

)
+ 8t

n
≥ log t,

which is equivalent to the inequality

log(1− 2d/n)− log
(
1− (d − 1)/n

)+ 8t/n≥ 0.

Using the approximation log(1+ x)≈ x (and not being too careful about justifying
it—let us assume that d/n is reasonably small and take on trust that the argument
can be made completely rigorous) we need to show that 8t/n ≥ (d + 1)/n, which
is true since d ≤ 4t . (The extra elbow room here compensates for the sloppiness
before.)

We haven’t quite finished, since it remains to discuss what happens if log t < 6. In
this case, we use the fact that the logarithmic improvement is just a constant. To be
efficient about it, we use Turán’s theorem, which implies that the largest independent
set in a graph of average degree t has size at least 1+ (n− 1)/t . We need this to be
at least n log t/8t , which it is, since log t < 6. This completes the proof. �

Corollary 1 The Ramsey number R(3, k) is bounded above by Ck2/ logk for an
absolute constant C.

Proof The bound on R(3, k) is equivalent to the assertion that a triangle-free graph
G with n vertices contains an independent set of size at least c

√
n logn for an abso-

lute constant c. This is certainly true if there is a vertex of degree at least
√
n logn,

since the neighbourhood of that vertex is an independent set. If not, then the average
degree is at most

√
n logn, and then Theorem 6 tells us that there is an independent

set of size at least c′n log(
√
n logn)/

√
n logn= c√n logn. �

In another famous result, Jeong Han Kim proved in 1995 a lower bound for
R(3, k) that matches the upper bound of Corollary 1 to within a constant [16]. Thus,
the result of Ajtai, Komlós and Szemerédi was shown by Kim to be best possible.
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6 A Counterexample to Heilbronn’s Triangle Conjecture

Suppose that you take n points in a unit disc. Then any three of those points define
a (possibly degenerate) triangle. How large can the area of the smallest of these
triangles be? A trivial upper bound is Cn−1: by the pigeonhole principle there must
be three points that have x-coordinates equal to within Cn−1/2, and the triangle
defined by those three points then cannot have area greater than Cn−1.

There is also a fairly simple lower bound of cn−2, due to Erdős. For convenience
let n be a prime p, and letX be the set of all points of the form (x/p,y/p) such that
0≤ x, y ≤ p− 1 and y ≡ x2 mod p. In other words, X is basically the graph of the
function x �→ x2 mod p. Now no three of these points lie in a line, since if they did,
then they would also lie in a line mod p, and a quadratic function can equal a linear
function in at most two places. Therefore, X contains no degenerate triangles. But
the smallest possible area of a non-degenerate triangle with vertices in Z2 is 1/2, so
the smallest triangle with vertices in X has area at least p−2/2.

Heilbronn’s conjecture was that the lower bound of cn−2 was correct. The
gap between n−2 and n−1 is embarrassingly large, and initial work of Roth and
Schmidt brought it down only very slightly: Roth [19] obtained an upper bound of
Cn−1(log logn)−1/2 in 1950, then Schmidt [23] reduced that to Cn−1(logn)−1/2 in
1972. Also in 1972, Roth [21] eventually managed to obtain an improvement in the
power of n, but to nowhere near n−2.

In 1982 (the paper was received in 1980), Komlós, Pintz and Szemerédi dis-
proved Heilbronn’s conjecture by proving the following result [18].

Theorem 7 It is possible to choose n points in the unit disc such that no three form
a triangle of area less than cn−2 logn.

That is, they obtained a logarithmic improvement over Erdős’s lower bound.
Of course, a logarithmic improvement is quite small, and one could respond by

modifying the conjecture to say that the smallest triangle has area at most n−2+ε .
However, the proof was very interesting and influential.

One particularly interesting aspect of the argument was that it reduced a geomet-
rical problem to a purely combinatorial one about hypergraphs. A k-uniform hyper-
graph is a set V of vertices and a set E of k-tuples of vertices. The k-tuples are
called hyperedges, but they are often simply called edges. A 2-uniform hypergraph
is just a graph in the normal sense.

An independent set in a k-uniform hypergraph is the obvious generalization of
what it is for a graph: it is a set of vertices such that no k of them form an edge.

The basic strategy that Komlós, Pintz and Szemerédi used to obtain their lower
bound for the Heilbronn problem was as follows.

• Begin by dropping n1+α random points into the unit disc for some small constant
α > 0.

• Define a 3-uniform hypergraph H by taking the random points as its vertices and
all triples of points that form triangles of area less than cn−2 logn as its edges.



478 W.T. Gowers

• Show that with high probabilityH has certain combinatorial properties that show
that it is “locally sparse”.

• Deduce from these local sparseness properties thatH contains an independent set
of size n.

Since an independent set in H is a set of points in the unit disc such that no three
form a triangle of area less than cn−2 logn, this strategy, if it can be carried out,
disproves the Heilbronn conjecture.

Before we discuss this strategy further, it is worth looking at an observation that
Komlós, Pintz and Szemerédi make in their paper, which is that selecting points
from a random set can be used to give a different proof of Erdős’s lower bound. To
see this, let us first consider the probability that three random points form a triangle
of area less than a. If the distance between the first two points is r , then the third
point needs to lie within a strip of width 4a/r . The probability that the distance
between the first two points lies between r and r + δr is at most about 2πrδr , so an
upper bound for the probability that the three points form a triangle of area at most
a is

∫ 2
0 (4a/r)(2πr)dr = 16πa.

Therefore, if we drop 2n random points into the unit disc, the expected number
of triangles of area at most a is at most 16πa

(
n
3

) ≤ 10an3. If we choose a to be
n−2/10, then this is at most n. Therefore, we can remove n points from the set and
obtain a set of n points with no triangles of area less than n−2/10.

Why should it be possible to gain anything over this simple approach if we
choose, and then discard, more points? Let me quote from an article by Imre
Bárány [5].

According to his coauthors, Szemerédi’s philosophy, that random sub-
graphs of a graph behave very regularly, and his vision that such a proof should
work, proved decisive. Since then, the method has been applied several times
and with great success.

Bárány was in fact referring to the first proof of Theorem 6 above. However, the
results are closely connected: in both cases, there is some kind of sparseness condi-
tion that allows one to find a slightly larger independent set than one might naively
think is possible. To make the connection clearer, let us look at the simple argument
above in a slightly different way. Suppose we havem random points in the unit disc,
forming a set S, and we want to choose as many of them as we can while avoiding
a triangle of area a. The expected number of triangles of area a is, as we have al-
ready seen, at most 16πam3. Therefore, each point belongs, on average, to at most
16πam2 such triangles. So if a is small enough for 16πam2 to be substantially less
thanm, then we could imagine an algorithm that simply picks a random point x ∈ S,
then throws away it and all other points y ∈ S such that there is a point z ∈ S for
which the triangle xyz has area at most a. Typically, we will throw away at most
16πam2 points at each stage, so we can hope to obtain a subset of S with at least
m−1a−1/16π points.

Forgetting about the absolute constants, if m−1a−1 = n and m ≥ n, then a−1 ≥
n2, and the larger m is, the worse a becomes. So at first it looks as though the
strategy outlined above is doomed to fail. However, the argument we have just given
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is quite clearly very inefficient: if xyz is a triangle of small area, there is no need
to throw away both y and z: it is enough to throw away just one of them. To see
why this is a big help when m is large, note that if x and y are very close, then the
argument above requires us to throw away all points z in quite a wide strip about the
line that joins x and y, when to avoid all those triangles of small area it would be
enough just to throw away y.

Let us now see what the local sparseness properties are that enable one to choose
a large independent set in a hypergraph. Once we have dropped n1+α random points
into the unit disc, the expected number of pairs of points within distance n−2/3 is
at most n−4/3n2+2α = n2/3+2α . If α is small enough, this is substantially less than
n, so we can discard a small fraction of the points and end up with no two of them
closer than n−2/3.

We have already seen how to estimate the number of edges in the hypergraph H .
If a = n−2, then it is at most 16πn1+3α , so on average each vertex belongs to at
most 16πn3α edges.

Define a 2-cycle in a 3-uniform hypergraph to be a pair of edges that intersect
in a set of size 2, a simple 3-cycle to be a triple of edges of the form abx, bcy,
acz, where all of a, b, c, x, y, z are distinct, and a simple 4-cycle to be a quadruple
of edges of the form abx, bcy, cdz, adw, where again different letters stand for
distinct vertices. In a similar way to the way we estimated the number of edges, one
can show that if α is small enough, then the numbers of 2-cycles, simple 3-cycles
and simple 4-cycles are all substantially less than n, so we can remove a small
fraction of the vertices and obtain a hypergraph with no 2-cycles, simple 3-cycles or
simple 4-cycles. Komlós, Pintz and Szemerédi called such a hypergraph uncrowded
(though they say that the term was in fact invented by Joel Spencer—indeed, the
phrasing in terms of hypergraphs was Spencer’s idea as well).

The main result that Komlós, Pintz and Szemerédi proved was the following
result about 3-uniform hypergraphs. Define the degree of a vertex to be the number
of edges that contain that vertex.

Theorem 8 Let G be an uncrowded 3-uniform hypergraph with n vertices and
average degree d . Suppose that d is sufficiently large, and also at most n1/20. Then
G contains an independent set of size at least c(n/d1/2)(logd)1/2.

We shall not prove this theorem here, but we can make a few remarks. First, note
that there is an easy bound of cn/d1/2, proved as follows. If you pick a triple at
random, then the probability that it is an edge is proportional to d/n2. Therefore, if
you pick m vertices at random, then the expected number of edges that they span is
Cm3d/n2. If this is less than m/2, then you can discard at most m/2 vertices and
end up with an independent set. Solving for m we obtain the bound claimed. This is
essentially the argument we used above to rederive the Erdős lower bound.

Easy examples show that this bound is best possible if we do not impose the
uncrowdedness assumption. So what is that assumption doing for us?

To answer that question, note first that a very similar situation applied with The-
orem 6. If G is a graph (that is, a 2-uniform hypergraph) with average degree t ,
then a random set of m vertices spans Ctm2/n edges on average, and for this to be
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less than m/2 we need m= cn/t . Theorem 6 improves this bound by a logarithmic
factor under the additional assumption that G is triangle free, which is equivalent to
saying that the neighbourhood of each vertex forms an independent set.

This suggests that we should look for a condition on hypergraphs that could play
a similar role. The uncrowdedness assumption implies the following. Suppose we
pick a vertex in an uncrowded hypergraph and throw away all vertices that belong to
edges that contain x. If y and z are two such vertices, then we will lose all edges that
contain either y or z. With the uncrowdedness assumption, the edges that contain y
are all disjoint from the edges that contain z. That is because an edge that contains
both y and z would form a 2-cycle or a simple 3-cycle, and if an edge containing
y overlaps an edge containing z, then we would have either a 2-cycle or a simple
4-cycle.

There is, however, an important respect in which Theorem 8 differs from Theo-
rem 6. In the case of graphs, each time we pick a vertex to go into our independent
set, we must throw away all its neighbours. But with a 3-uniform hypergraph, if we
pick a vertex x, then what we must ensure is that for every edge xyz we do not pick
both of y and z. If we do this in a crude way by discarding all vertices that belong
to an edge that contains x, then on average we throw away d vertices each time,
and even if we can make some kind of logarithmic gain, we will end up with the
wrong power of d in our final answer. In other words, a greedy algorithm, even if
the hypergraph is very regular, gives a much worse bound than the simple random
selection described earlier.

Very roughly, the strategy of the proof is this. Instead of choosing a single point
at a time, one chooses small random sets of points to add to the independent set. If
C is the set of points that have already been chosen, then it is necessary to discard
every point z such that there exist x, y ∈ C such that xyz is an edge. So each time
a few more random points are added to C, one discards the points that need to be
discarded and then chooses the next small random set from the points that remain.

At each stage s, if Cs is the set of points chosen so far and Rs is the set of points
that remain, there is an important graph with vertex set Rs , and also an important
hypergraph. The hypergraph is just the restriction of the original hypergraph G to
Rs . The graph is the set of all pairs yz in Rs such that xyz is an edge of G for some
x ∈ Cs . For the proof to work, it is vital that when we add some randomly chosen
points from Rs to Cs to create the set Cs+1 and pass to a new set Rs+1, the set Rs+1
should resemble a randomly chosen subset of Rs , in the sense that the degrees in the
graph and hypergraph should go down in roughly the expected way.

This kind of technique has become known as the semirandom method, and has
been used to solve many problems in extremal combinatorics that had previously
appeared to be hopelessly difficult.

7 An Optimal Parallel Sorting Network

A well-known mathematical problem is to minimize the number of pairwise com-
parisons needed to sort n objects that are linearly ordered. A simple argument shows
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that log2(n!)= cn logn comparisons are necessary. Indeed, before we do any com-
parisons there are n! possible orderings compatible with the information we have
so far. But each time we do a comparison, there are two possible results, so in the
worst case the number of compatible orderings is over half what it was before the
comparison. This implies the bound stated.

It is also not very hard to match this lower bound with an upper bound of the
same form, using a recursively defined algorithm known as Mergesort. Take your
n objects and divide them into two groups of size n/2 (for convenience let us as-
sume that n is a power of 2—it is easy to remove this condition afterwards). Apply
Mergesort to each group (which we know how to do by induction). We now have
two ordered groupsA and B of n/2 points, which we “merge” into an ordering of all
n points as follows. Let the elements of A be a1 < · · ·< am and let the elements of
B be b1 < · · ·< bm. Then we compare a1 with b1, then b2, and so on until we reach
i such that bi < a1 < bi+1. We then compare a2 with bi+1, bi+2 and so on until we
find where we can slot in a2. We keep going like this until the two sets have been
fully merged. The number of comparisons we make when doing this process is at
most 2m= n, since the number i+j increases each time we move to a new compar-
ison between some ai and some bj . Therefore, if we define f (k) to be the time that
mergesort needs to sort 2k objects, we have the recursion f (k) ≤ 2f (k − 1)+ 2k .
We also know that f (1)= 1. It follows easily by induction that f (k)≤ k.2k . Setting
n= 2k , we obtain a bound of Cn logn. (If n is not a power of 2, we can add some
dummy objects to bring the number up to the next power of 2.)

Given two bounds that are obtained by simple arguments and are equal up to
a constant, one might think that there was little more to say. However, this is not
the case. A general question of major importance in computer science is whether
algorithms can be parallelized. That is, if you have a large number of processors
(growing with the size of the problem), can you get the algorithm to run much faster?

Rather than discuss what parallel computation is in general, let us look at a simple
model that is sufficient for understanding this problem. Imagine that we have n rocks
that all look quite similar but that all have slightly different weights. Imagine also
that we have a very accurate balance that will take at most one rock on each side.
The sorting problem just discussed is equivalent to asking how many times we need
to use the balance if we want to order the rocks by weight.

For the parallel sorting problem, we can have as many balances as we like. Let us
assume that comparing two rocks takes some fixed time such as one minute. Then
what we would like to minimize is the total time needed to determine the order of the
rocks. Since we can do up to n/2 comparisons at the same time, and since cn logn
comparisons are needed, we will need to take at least c logn minutes. But can we
achieve a growth rate that is anything like as small as logarithmic?

Before I answer that question, I need to mention another word from the title of
this section. I have been discussing the word “parallel” but have not yet paid any
attention to the word “network”, which is also a critical part of what Ajtai, Komlós
and Szemerédi did. The idea here is that we decide in advance all the comparisons
we are going to do.
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More formally, a comparator network is a sequence of partitions of {1, . . . , n}
into n/2 pairs. Given a comparator network, we define a sorting algorithm as fol-
lows. At the ith stage, we use the ith partition to decide which rocks to compare: if
r and s are paired, then we take the rocks in the r th and sth places, compare them,
and put them back in the two places they came from, but switching them round if
necessary so that the heavier rock is to the right of the lighter one. The depth of a
comparator network is just the length of the sequence of partitions. If the network
correctly sorts every permutation of the rocks, then it is a sorting network.

It is initially somewhat counterintuitive that efficient sorting networks exist, since
the comparisons that are made do not depend at all on the results of earlier compari-
sions (which is quite unlike the behaviour of Mergesort). However, in 1968, Batcher
[6] constructed a relatively simple sorting network of depth C(logn)2. Here, briefly,
is how it works.

First, he shows inductively that merging two increasing sequences of length 2k−1

can be done with a comparator network of depth k. The idea is straightforward. The
odd terms of the sequences form two increasing sequences of length 2k−2, so by
induction they can be merged with a network of depth k − 1. In parallel, one can
merge the even terms. This now gives a sequence such that the odd terms are in the
right order and the even terms are as well. But it is not hard to check that because
the original sequence was increasing in both halves, the only way that the final
sequence can be out of order is if the terms in places 2r and 2r + 1 are the wrong
way round. This can be cured with one final round of comparisons, which makes a
depth of k.

This enables Mergesort to be carried out on 2k objects with a sorting network of
depth k(k + 1)/2, since if the depth needed is d(k), then d(k) ≤ d(k − 1)+ k: the
d(k − 1) is needed to sort each half and the k is needed to do the merging. That
gives the C(logn)2 claimed, with a good constant C. There are reasons to think
that improving on a (logn)2 bound might be difficult, but the remarkable result of
Ajtai, Komlós and Szemerédi [3] is that there is a sorting network with the trivially
optimal depth of C logn.

The full proof of this result is quite technical, though it has been simplified over
the years. However, it is possible to give a flavour of the ideas. Let us begin with the
concept of an ε-approximate halver. Let us say that a rock is in the correct half if it
is one of the n/2 lightest rocks and is in one of the first n/2 places, or is one of the
n/2 heaviest rocks and is in one of the last n/2 places. An ε-approximate halver is a
comparator network such that for every initial permutation of the rocks, at most εn
of them do not end up in the right half when we perform the corresponding sorting
algorithm.

A natural way to build an ε-approximate halver of low depth is just to choose d
partitions randomly. Suppose we do that and then perform the algorithm. Let us say
that a place has a rock of the right type if the rock in that place is in the correct half.
If at any stage, a place has a rock of the right type, then it will have a rock of the
right type from that moment on. For instance, if one of the n/2 lightest rocks is in
one of the first n/2 places, then it can only ever be replaced by a lighter rock, so the
place will continue to have a rock of the right type.
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But at each stage of the process, if there are θn rocks in the wrong half and hence
θn/2 wrong rocks in each half, the probability that a rock in the wrong half gets
compared with a wrong rock in the other half is at least θ , and if such a comparison
takes place, then the two places are filled with rocks from the correct halves. So
to argue very crudely, for as long as there are εn rocks in the wrong half, each
place with a rock of the wrong type has a probability ε of being filled with a rock
of the correct type. So after d rounds, it has a probability at least 1− (1 − ε)d ≈
1− exp(−dε) of being filled with a rock of the correct type. Therefore, we can take
d to be around ε−1 log(ε−1).

If we could move all rocks to the correct half in a constant number of rounds,
then we would almost be done: all we would have to do is repeat the procedure
(in parallel) inside each half so that each rock was in the correct quarter, and so
on all the way down. But it is easy to see that this is impossible. If there are fewer
than n/2 rounds and we only ever compare rocks from different halves, then for
each place in the first half there is some place in the second half that it never gets
compared with. Pick an arbitrary place r in the first half and a place s in the second
half that is never compared with r . Then put the lightest n/2 rocks in the first half
and the heaviest n/2 rocks in the second half, except in places r and s. In those
places put rocks of the wrong type. Then none of the comparisons will move any of
the rocks.

That changes if one is allowed to make comparisons within each half, but even
then a depth of c logn is necessary. The reason is that if the depth is d then there are
at most 2d places that can hold rocks that end up in any given place, so we can put
a rock of the wrong type in the first place, say and also in all the 2d places that can
hold rocks that end up in the first place, then there will be a rock of the wrong type
in the first place at the end of the process.

To get round this difficulty, Ajtai, Komlós and Szemerédi invented a complicated
and extremely ingenious scheme for ensuring that rocks that get “left behind” are
moved at a later stage. Thus, in a sense, their network was an approximation of the
kind of network that we have just seen cannot exist.

There was one final ingredient of their argument, which turned the above ideas
from a random sorting network into a deterministic one. That was to use bipartite
expander graphs. A bipartite graph with vertex sets X and Y of the same size is
called a (λ,α, d)-expander if for every subset A ⊂ X of size at most α|X|, the
number of vertices in Y that are joined to at least one vertex in A is greater than
λ|A|, and the same for subsets of Y .

It can be shown that whenever λα < 1 and n is sufficiently large, there exists d
depending on λ and α only, and a collection of d perfect matchings between two
sets X and Y of size n, such that the union of these perfect matchings is a (λ,α, d)-
expander.

To see how this might be useful, suppose we use such a collection of matchings
to form a comparator network of depth d , taking α = ε and λ= (1− ε)/ε. It is easy
to see that after applying the corresponding sorting algorithm, we cannot be left
with εn/2 heavy rocks in the light places and εn/2 light rocks in the heavy places.
To see this, suppose that we have a set A of εn/2 places on the light side and a set
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B of εn/2 places on the heavy side. In each place on the light side, rocks only ever
get lighter, and in each place on the heavy side, rocks only ever get heavier. The
expansion property guarantees that there is an edge in the graph between A and B .
Therefore, a comparison must have happened between a rock at place a ∈ A and
a rock at place b ∈ B , after which the rock in place a will always be lighter than
the rock in place b. This shows that it cannot be the case that after the compar-
isons, all the rocks in A are in the heavy half and all the rocks in B are in the light
half.

8 A Theorem on Point-Line Incidences

Suppose that you have n points x1, . . . , xn and m lines L1, . . . ,Lm in the plane. An
incidence is simply a pair (i, j) such that xi ∈ Lj . The following question sounds
almost too simple to be interesting: how many incidences can there be? The answer,
discovered by Szemerédi and Trotter, turned out to be very interesting indeed: their
result is not simple at all, and its numerous consequences have made it a central
result in combinatorial geometry.

The Szemerédi–Trotter theorem is the following statement [27].

Theorem 9 Amongst any n points and m lines the number of incidences cannot be
greater than C(m+ n+ (mn)2/3).

This bound looks a little strange at first, but a few observations make it
seem more natural. To begin with, we could equally well write the bound as
Cmax{m,n, (mn)2/3}. The form of the bound is telling us that there are essentially
three competing examples, and which one is best depends on the relative sizes of m
and n.

It is easy to see that we can have m incidences or n incidences: we just take
m lines containing a point or n points along a line. To see how to obtain (mn)2/3

incidences, consider the grid {1,2, . . . , r} × {1,2, . . . , s} in Z2. For each pair of
points (a,1) and (a+ d,2) such that 1≤ a ≤ r/2 and 1≤ d ≤ r/2s, the line joining
(a,1) to (b,2) intersects this grid at all the s points (a,1), (a+ d,2), . . . , (a+ (s−
1)d, s). There are r2/4s such lines.

Therefore, we can find a set of rs points and r2/4s lines with r2/4 incidences.
So for given m and n we need to solve the equations rs = n and r2/4s = m. This
requires n to be at most m2 (up to a constant) and m to be at most n2 (also up to a
constant). But if these inequalities do not hold, then one of m and n is bigger than
(mn)2/3.

This shows that the bound obtained by Szemerédi and Trotter is best possible.
For almost all of this article, I have focused on Szemerédi’s original arguments,

or slightly cleaned up versions of the arguments that have been produced since.
In this case, however, there is a beautiful short proof discovered by Székely [25]
that can be presented in full, and it seems a pity not to give it. As with most of
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Szemerédi’s proofs, however, his original proof of Theorem 9 is still interesting and
important: there are certain generalizations that can be proved with his method that
do not appear to be provable using the technique I am about to describe.

8.1 Székely’s Proof of the Szemerédi–Trotter Theorem

The observation on which Székely’s proof crucially depends is that a set of points
and lines can be used to define a graph, and that graph has many vertices and edges.
The graph is a very obvious one: its vertices are the points, and two vertices are
joined if they appear consecutively along one of the lines.

If there are n points, m lines and t incidences, then the graph has n vertices and
t −m edges. The reason for the last assertion is that a line with k points on it gives
rise to k − 1 edges. (I am assuming here, as I may, that each line contains at least
one of the points.)

Something else that we know about this graph is that it can be drawn in the plane
with at most

(
m
2

)
crossings—that is, edges that are represented by intersecting curves

(which happen in this case to be line segments). However, it turns out that we can
also get a lower bound on the number of crossings, and that means that we are in
business.

Lemma 5 Let G be a graph with n vertices and m edges. Then any drawing of G
in the plane (whether edges are represented by line segments or by more general
curves) must have at least m3/72n2 crossings.

Proof Euler’s formula tells us that if G is a planar graph with V vertices, E edges
and F faces, then V − E + F = 2. Since every face is bounded by at least three
edges (if V ≥ 3), and every edge is contained in at most two faces, 2E ≥ 3F , so
V −E + 2E/3≥ 2, which implies that E ≤ 3V − 6.

To put this result a different way, if we have a drawing of a graph with n vertices
and more than 3n − 6 edges, then there must be at least one crossing. It follows
that a drawing of a graph with n vertices and m edges must have at least m− 3n
crossings, since we can repeat the following process at leastm−3n times (in fact, at
least m− 3n+ 6 times): find an edge involved in a crossing and remove it, thereby
destroying that crossing.

Now a simple averaging argument allows us to improve this bound for large m.
Let G be a graph with n vertices and m edges, and choose a random subgraph H
of G by picking each vertex independently with probability p. Suppose that G has
been drawn with t crossings. Then the expected number of vertices in H is pn
and the expected number of crossings is p4t , since for a crossing to belong to the
subgraph, all four vertices of the two crossing edges must survive.

But the expected number of edges is p2m, so the expected number of crossings
is also at least pm − 3pn by the bound above. It follows that p4t ≥ p2m − 3pn.
Choosing p to be 6n/m, we find that t ≥ p−2m/2=m3/72n2. �
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Applying Lemma 5 to the graph described above, we deduce that
(
m
2

) ≥ (t −
m)3/72n2. Therefore, if t ≥ 2m, we may deduce that m2 ≥ ct3/n2, which gives us
the upper bound t ≤ C(mn)2/3.

8.2 An Application of the Szemerédi–Trotter Theorem

A major conjecture in additive combinatorics, due to Erdős and Szemerédi [11],
states that if A is a set of integers of size n, then one of A+A= {x + y : x, y ∈A}
and A.A = {xy : x, y ∈ A} must have size at least n2−ε . Since the largest possible
size of the sumset or product set is n(n+ 1)/2, this is saying that one or other of the
two sets must have near-maximal size.

It is not easy to obtain any non-trivial lower bound, but with the help of the
Szemerédi–Trotter theorem one can show that either A+A or A.A has size at least
n5/4. More precisely, we have the following result. The beautiful proof is due to
Elekes [9].

Theorem 10 Let A be a set of size n. Then |A+A||A.A| ≥ cn5/2.

Proof As our set of points we take the Cartesian product (A + A) × (A.A) and
suppose that this set has size t . As our lines we take every line of the form {(a +
λ,λb) : λ ∈ R} with a, b ∈ A. Each such line intersects (A + A) × (A.A) once
for every λ ∈ A, and therefore in n points. Therefore, since there are n2 lines, the
number of incidences is n3. By the Szemerédi–Trotter theorem it follows that n3 ≤
Cmax{t, n2, t2/3n4/3}. It follows that either t ≥ cn3, in which case we are trivially
done, or Ct2/3n4/3 ≥ n3, which translates into the stated bound t ≥ cn5/2. �

The Szemerédi–Trotter theorem and modifications of it have been used to obtain
many partial results in combinatorial geometry. Some of these exploit the fact that
we can replace the lines in the theorem by any collection of curves, provided that no
two of those curves intersect in more than a bounded number of points. For example,
the Erdős distance problem asks whether given any set of n points in the plane
there must be at least n1−ε distinct distances between them. If there are very few
distances, then there are many circles about points in the set that contain many other
points in the set. This gives us a set of curves with many point-curve incidences. The
argument is not as straightforward as that makes it sound, because two points can
belong to several different circles, so the crossing lemma needs to be generalized
to graphs with multiple edges and applied accordingly. But if two points x and y
belong to many circles, then the centres of those circles all lie in a line. Therefore,
if we have many examples of pairs of points that belong to many circles in the set,
we have a system of lines that contain many points in the set and can apply the
Szemerédi–Trotter theorem again.

Recently, in a major breakthrough, the Erdős distance problem was solved by
Guth and Katz using different methods [14]. However, the Szemerédi–Trotter theo-
rem continues to be a very important tool.
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8.3 What Are the Extremal Sets in the Szemerédi–Trotter
Theorem?

Let us end this section with a fascinating and somewhat open-ended question (which
I learned from Jozsef Solymosi).

Question 1 Let P be a set of n points and let L be a set of n lines. Suppose that
there are at least 10−10n4/3 incidences between P and L. What can be said about
the structures of P and L?

An answer to this question would fit very well a recurring theme in extremal
combinatorics, which is to take an extremal result and to ask what happens in the
near-extremal cases. For most such problems, we have an inequality and can say
what happens when equality occurs. To give a simple example, if A is a set of n
numbers, then |A + A| ≥ 2n − 1, and equality holds if and only if A is an arith-
metic progression. However, with the Szemerédi–Trotter theorem, the exact best
possible bound is not known, so obtaining a structural result for any bound seems to
be challenging. In the case of sumsets, a beautiful theorem of Freiman completely
characterizes, at least qualitatively, all sets A such that |A + A| ≤ C|A| for some
fixed constant C: each such set has to be a large subset of a generalized arithmetic
progression of low dimension. Here, one might be looking for some kind of grid-
like structure. This would follow from known results (one of which is Freiman’s
theorem itself) if one could show that there had to be cn3 quadruples of points in P
that formed the vertices of (possibly degenerate) parallelograms.

9 The Probability that a Random ±1 Matrix is Singular

LetM be a random n×nmatrix where each entry has a 50 % chance of being 1 and
a 50 % chance of being −1, with all choices independent. What is the probability
thatM is singular? Equivalently, what is the probability that if you choose n random
01-sequences of length n, then one of them will be in the linear span of the others?

This very basic question is surprisingly difficult to answer. Even to show that
the probability tends to zero was a non-trivial open problem, solved by Komlós in
1967 [17]. (In this case the discrepancy between publication date and the date of
the actual proof is quite large: the result was obtained in 1963.) He proved that the
probability is at most C/

√
n.

There is a natural conjecture for the correct bound, which is (2+o(1))(n2
)
2−(n−1).

The heuristic argument for this is that by far the easiest way to obtain a linear de-
pendence amongst the rows of a random ±1 matrix ought to be to have two rows or
two columns that are equal up to a ±1 multiple.

The truth of this conjecture is still an open problem, and one that appears to need
a major new idea. Given that situation, the next strongest aim it was reasonable to
have was to prove that the probability was exponentially small. This too seemed out
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of reach, so it was a big surprise when Kahn, Komlós and Szemerédi proved it in
1995 [15]. In the remainder of this section, let us look at some of the ideas that were
involved in their proof.

9.1 The Need to Consider Dependences

One might attempt to prove the result in the following way, which works for many
problems.

• Express the event E whose probability we are trying to estimate as a union of
simple events.

• Give upper bounds for the probabilities of the simple events.
• Use the trivial “union bound” (that is, just add up the probabilities of the simple

events) as an upper bound for the original event E.

In our case, E is the event that a random n × n ±1 matrix M is singular. But
M is singular if and only if Ma = 0 for some a ∈ Rn, so an obvious candidate for
the set of simple events is to take all events of the form “Ma = 0”. Let us call this
event Ea .

Obviously this won’t do as it stands, since there are infinitely many possible a.
However, we could try to identify a finite setA of vectors a such that ifM is singular
then there exists a ∈A such thatMa = 0. Such sets trivially exist: for each singular
matrix M we pick a vector a such that Ma = 0 and then we put together these
vectors to form our set A. However, they do not necessarily help us. For example,
let F be the set of all ±1 matrices that have two pairs of equal columns. For each
matrix M ∈ F , let a be a vector with four non-zero coordinates that take the values
±λ and ±μ in such a way thatMa = 0, and make sure that no one of these vectors
is a multiple of another. The number of vectors we create is at least 2n(n−2), and for
each such vector a the probability that Ma = 0 is at least 2−2n. Multiplying these
numbers together we get 2n(n−4), which is far bigger than 1 and therefore tells us
nothing.

Of course, it was perverse of us to make sure that no two of the vectors were
multiples of each other: if we had taken λ= μ= 1 for every single vector, then the
number of vectors would have dropped to cn4. But the point is nevertheless made
that for a union bound to work one would have to obtain a great deal of duplication
of this kind, which is not obviously possible.

Kahn, Komlós and Szemerédi use a natural generalization of this approach. In-
stead of using the trivial fact that if a = b then the events Ea and Eb are the same,
so that only one of them needs to be considered in a union bound, they show that if
several vectors ai belong to a low-dimensional subspace S, then the events Eai are
highly correlated, with the result that the event

⋃
i Eai has a much smaller probabil-

ity than
∑
i P (Eai ). In other words, linear dependencies lead to useful probabilistic

dependencies.
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9.1.1 The Probability that Ma = 0

Nevertheless, it is useful to think about the events Ea and in particular about their
probabilities. Given a vector a, let p(a) be the probability that

∑
i εiai = 0, where

(ε1, . . . , εn) is a random ±1 sequence. Then the probability thatMa = 0 is p(a)n.
What sort of values can p(a) take?

• If a is the vector (1,1, . . . ,1), then p(a) is around n−1/2.
• More generally, if a takes the value ±1 d times and 0 otherwise, then p(a) is

around d−1/2.
• The Littlewood-Offord inequality, or rather a slight improvement of it due to

Erdős, implies a sort of converse to this observation: if the support of a has size
d , then p(a)≤ d−1/2.

• Sárközy and Szemerédi proved that if a1, . . . , an are distinct, then p(a) ≤
Cn−3/2.

Thus, for p(a) to be large, we need a to have small support and many repeated
entries.

9.1.2 Dealing with Vectors a for which p(a) Is Very Small

A simple lemma shows that we can at least disregard all vectors a for which p(a) is
exponentially small.

Lemma 6 For every p ∈ [0,1] the probability that there exists a such that p(a)≤ p
andMa = 0 is at most np.

Proof Let E(p) be the event that such a vector a exists. Let us condition on the
entire matrixM apart from the ith row, and bound from above the probability, given
those n(n− 1) values, that E(p) holds and the ith row is in the linear span of the
other rows.

Now forE(p) to hold conditional on these values, there must exist a with p(a)≤
p that is orthogonal to all rows apart from the ith. Pick any such vector a. For the
ith row to be a linear combination of the other rows, it is necessary that it too should
be orthogonal to a, and this happens with probability at most p.

For E(p) to hold in general, there must exist a row ofM that is in the linear span
of the other rows. The lemma follows. �

9.1.3 Applying Linear Dependence

A similar argument shows that we can improve the bound in Lemma 6 if we insist
that a belongs to a k-codimensional subspace.

Lemma 7 Let S be a k-codimensional subspace and let 0≤ p ≤ 1. Then the prob-
ability that there exists a ∈ S such that p(a)≤ p andMa = 0 is at most

(
n
k+1

)
pk+1.
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Proof For such an a to exist, it is necessary that the kernel ofM intersects S. There-
fore, writing Vj for the orthogonal complement of the span of the first j rows ofM ,
there can be at most n− k − 1 values of j for which Vj ∩ S is a proper subset of
Vj−1 ∩ S.

Now let us fix a set J of size n−k−1 and assume that j ∈ J whenever Vj ∩S ⊂�=
Vj−1 ∩ S. Let us condition on the values ofM in the n− k− 1 rows corresponding
to J .

Now let j /∈ J . By construction, Vj ∩S = Vj−1∩S, so ifMa = 0 with p(a)≤ p,
then a ∈ Vj−1, which implies that a ∈ Vj and hence that a must be orthogonal to
the j th row of M , which happens with probability at most p. We can apply this
argument to each of the k + 1 rows not corresponding to elements of J , and since
those rows are independent, we obtain an upper bound of pk+1 for that choice of J .
Applying the law of total probability and summing over all J gives the result. �

9.2 The Main Idea

Let us informally refer to a vector a as bad if p(a) is large (meaning greater than
(1 − ε)n for some suitable ε). For Lemma 7 to be useful, we need to be able to
show that we can cover the bad vectors efficiently with subspaces of fairly low
dimension. To this end, Kahn, Komlós and Szemerédi prove a result that seems
at first glance to be rather unlikely to be true. Let a1, . . . , an are integers and let
μ > 0 be a smallish absolute constant. Consider the following two random walks.
At time t , the first walk chooses a random step of ±at , each with probability 1/2.
The second walk chooses a random step of ±at , each with probability μ, and a step
of 0 with probability 1− 2μ. Their result is that, no matter what the initial sequence
a1, . . . , an was, as long as it has a reasonably large support, the probability that the
first walk ends up at 0 is smaller by a factor of O(

√
μ) than the probability that the

second walk ends up at 0.
Because the binomial distribution is highly concentrated about its mean, the sec-

ond walk is similar, but not identical, to a walk where we first randomly choose
d = 2μn of the ai , replace all the others by 0, and then do a normal random walk
with the new sequence. So it might seem that the result cannot be true if, for ex-
ample, we take the sequence 1,2,4, . . . ,2n−2,−(2n−1 − 1), in which case the only
way of getting back to the origin is to take all signs positive or all signs negative.
However, in this case the probability of ending at 0 with the first walk is 2−(n−1),
while the probability with the second walk is 2μn+ (1−2μ)n, which is much larger
as long as μ is smaller than 1/4. However, in this case the result is not really telling
us very much: for it to be useful we need p(a) not to be too small, which, roughly
speaking, allows us to assume that the higher probability in the second walk arises
for non-trivial reasons.
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9.2.1 A Very Rough Sketch of the Main Argument

To see how all this helps, recall that our aim is to choose a collection of subspaces
of not too large dimension that cover all the “bad” vectors a. A bad vector is one for
which p(a) is large, and the main step described above implies that if p(a) is large,
then for some d close to λn, the probability that a random ±1 sum of d randomly
chosen entries of a is 0 is larger than p(a) by at least a factor c

√
λ.

Now let us choose a subspace S randomly as follows. Define a d-vector to be a
vector in {1,−1,0}n that takes non-zero values exactly d times. Also, given a vector
a, define a d-sum of a to be a ±1-sum of d terms of a. Equivalently, it is the inner
product of a with a d-vector. For a suitable γ , choose (1− γ )n d-vectors at random
and let S be the orthogonal complement of the space spanned by these d-vectors.
Thus, a ∈ S if and only if every d-sum of a that corresponds to one of the d-vectors
we have chosen is 0. If we know that the probability that a random d-sum of a is
0 is greater by a factor c

√
λ than p(a), then the probability that a belongs to the

γ n-dimensional subspace S is greater by a factor (c
√
λ)(1−γ )n than the bound of

roughly p(a)(1−γ )n that comes from Lemma 7.
We can now partition the interval [(1 − ε)n,1] into not too many subintervals

of ps of approximately the same size. If we apply Lemma 7 to a particular value
of p, then each subspace we apply it to contributes roughly p(1−γ )n (the binomial
coefficient turns out not to make too much difference so I am ignoring it). But since
the probability that a vector a with p(a)≈ p belongs to a random such subspace is
more like (Cλ−1/2)np(1−γ )n, the number of such subspaces that we need to cover
all the a with p(a) ≈ p is roughly (cλ1/2)np−(1−γ )n, and the total contribution is
(cλ1/2)n, which is exponentially small. Adding up the contributions of this kind, we
find that they are dominated by the contribution of n(1− ε)n that came from the a
for which p(a) is very small, and the result is proved.

9.3 Subsequent Improvements

The bound obtained by Kahn, Komlós and Szemerédi was around (0.999)n. In 2006
this was slightly improved, to (0.953)n, by Tao and Vu [29]. The following year
they obtained a bound of (3/4+ o(1))n using methods from additive combinatorics
[30]. The current record is (1/

√
2+ o(1))n. This is a very recent result (it appeared

in 2013) of Bourgain, Vu and Wood [7].

10 Conclusion

Szemerédi’s work has several qualities that make it stand out and that make him
one of the great mathematicians of the second half of the twentieth century, not to
mention the beginning of the twenty-first. An obvious one is the sheer difficulty of so
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many of his results. He has often solved open problems on which the mathematical
community had become completely stuck, and his ingenious and delicate solutions
have often left other mathematicians feeling that they were in a sense right to be
stuck. Another quality that many of his results have had, and that the very best
results in combinatorics have, is that the proofs have introduced techniques and
ideas with applications that go far beyond the original problems that Szemerédi
was solving. His influence permeates the whole of combinatorics and theoretical
computer science, fully justifying the award of the Abel Prize.
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[64] (with V. Chvátal). On the Erdős–Stone theorem. J. London Math. Soc. (2),
23(2):207–214.

[65] (with J. Komlós and J. Pintz). On Heilbronn’s triangle problem. J. London
Math. Soc. (2), 24(3):385–396.

1982

[66] (with M. Ajtai, V. Chvátal, and M.M. Newborn). Crossing-free subgraphs.
In Theory and practice of combinatorics, volume 60 of North-Holland Math.
Stud., pages 9–12. North-Holland, Amsterdam.

[67] (with M. Ajtai, J. Komlós, J. Pintz, and J. Spencer). Extremal uncrowded
hypergraphs. J. Combin. Theory Ser. A, 32(3):321–335.

[68] (with M. Ajtai, J. Komlós, and V. Rödl). On coverings of random graphs.
Comment. Math. Univ. Carolin., 23(1):193–198.

[69] (with M. Ajtai and J. Komlós). Largest random component of a k-cube. Com-
binatorica, 2(1):1–7.

[70] (with V. Chvátal). On an extremal problem concerning intervals. European J.
Combin., 3(3):215–217.
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Math. J., 129(1):129–155.

[156] (with V.H. Vu). Long arithmetic progressions in sum-sets and the number of
x-sum-free sets. Proc. London Math. Soc. (3), 90(2):273–296.

2006

[157] (with A. Gyárfás, M. Ruszinkó, and G.N. Sárközy). An improved bound
for the monochromatic cycle partition number. J. Combin. Theory Ser. B,
96(6):855–873.

[158] (with A. Gyárfás, M. Ruszinkó, and G.N. Sárközy). One-sided coverings of
colored complete bipartite graphs. In Topics in discrete mathematics, vol-
ume 26 of Algorithms Combin., pages 133–144. Springer, Berlin.

[159] (with A. Khalfalah). On the number of monochromatic solutions of x + y =
z2. Combin. Probab. Comput., 15(1-2):213–227.

[160] (with J. Polcyn, V. Rödl, and A. Ruciński). Short paths in quasi-random triple
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[172] (with V. Rödl and A. Ruciński). An approximate Dirac-type theorem for k-
uniform hypergraphs. Combinatorica, 28(2):229–260.

2009

[173] (with A. Gyárfás and G.N. Sárközy). Stability of the path Ramsey number.
Discrete Math., 309(13):4590–4595.
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A Letter from Niels Henrik Abel
to August Leopold Crelle
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Alf Bjørseth hands over the Abel manuscripts to Vigdis Moe Skarstein, National
Librarian at The National Library of Norway, Oslo. (Photo: Heiko Junge/Scanpix)

The letter appeared as one of three handwritten Abel manuscripts acquired in
2007 from Institut Mittag-Leffler, Sweden, by Alf Bjørseth and his company Scatec
and donated to the Norwegian Academy of Science and Letters on the occasion of
its 150th anniversary. The originals are kept at the National Library of Norway. The
letter is the last page of a manuscript of eight pages. The first seven pages contain
the manuscript “Note sur quelques formules elliptiques” which appeared in Crelle’s
Journal, Band 4, pages 85–93 (1829). The article is contained in both editions of
Abel’s Collected Works. For further information regarding all the manuscripts ac-
quired, please see A. Stubhaug: I sporet etter Abel/Tracing Abel, Scatec, n.d.
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Christiania 25 Sept. 1828

Ihren lieben Brief vom 10 ds habe ich vor einigen Tagen erhalten und danke ihnen
dafür recht sehr. Er hat mir um so Freude gemacht als ich nicht so bald Antwort er-
wartet hätte. – Ich hätte ihnen eher geschriben, aber ich wollte gern die Gelegenheit
zur Sendung eines kleinen Aufsatzes benutzen. Das die Hoffnung wegen meiner
Berliner Anstellung gut ist freuet mich naturlicher Weise sehr und ich danke ihnen
schon im voraus für ihre Bemühungen. – Aber ich bitte Sie so bald etwas abge-
macht, efreuliches oder nicht, mir davon in Kenntniss zu setzen so bald möglich;
denn wenn es nicht dort nach Wunsch gehet so muss ich daran bedenkt seyn meine
Sachen hier zu bessern, allein ich kann hier keinen Schritt thun ehe ich weiss wie es
geht. Diese bitte gewähren Sie mir doch. –

Sehr danke ich ihnen dafür dass Sie sich die Mühe gegeben haben die angeführ-
ten Stellen aus den Briefen von Jacobi und Legendre abgeschrieben. Sie können
denken mit welcher Freude ich es gelesen habe. Hr Jacobi sagt zwar zu viel. Ich
sehe aus seinen Äusserungen dass er auf einen anderen Weg als ich zu der Theorie
der Transformation gekommen, aber wenn er etwas durchaus allgemeines gefunden
hat so begreife ich nicht wie er dazu gekommen ist, und ich bin sehr neugierig um
seine Methode kennen zu lernen. – Sie müssten ihn doch anspornen mit etwas zu
kommen denn es ist klar dass er in Besitz vorzüglichen Sachen ist. – De obigen
Bemerkungen über die elliptischen Functionen bitte ich Sie gefälligst ins Journal
aufnehmen zu wollen. Hätten Sie vielleicht im vierten Heft eine Paar Seiten übrig.
Es ist ja nicht viel wie Sie sehen. – Dass Sie die “Précis d’une théorie des fonctions
elliptiques” annehmen wollen freut mich sehr. Ich werde mich anstrengen um diese
Abhandlung so deutlich und gut als mir nur möglich ist zu machen, und ich hoffe
dass Sie mir gelingen solle. Glauben Sie aber nicht es wäre dass beste mit dieser
Abhandlung statte mit der über die Gleichungen den Anfang zu machen? Dieses ist
auch eine dringende Bitte an Sie, denn erstens glaube ich dass die elliptischen Func-
tionen mehr Interesse haben wird und zweitens so wird meine Gesundheit mir kaum
erlauben mich mit der Gleichungen in einiger Zeit zu befassen. Ich bin nämlich län-
gere Zeit krank gewesen so dass ich das Bett hüten musste, und ob ich gleich jetzt
restituert bin so wird mir doch, wie der Arzt sagt, viel Anstrengung sehr nachthei-
lig seyn. Nun aber wird mir die Gleichungen unverhältnismässig mehr Anstrengung
kosten als die elliptischen Functionen. Wenn Sie also nicht die Abhandlung über
die Gleichungen verlangen (denn in diesem Falle sollen Sie sie haben) so werde ich
mit der über die ell: Funct: anfangen. Übrigens soll die Gleichungen bald nachfol-
gen und wenn Sie nichts dawieder haben so denke ich die Abtheilungen so klein zu
machen dass in jedem Heft etwas über elliptische Funct und etwas über die Glei-
chungen vorkommt. Nur für das erste Heft mögte ich gern bloss ellipt: F: schicken.
–Lassen Sie mir doch, ich bitte, ihre Meinung darüber wissen. –

Ihr ergebenster
N. Abel
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Christiania September 25, 1828

I received your kind letter dated September 10 some days ago and I thank you
greatly for it. It made me extra glad since I had not expected such a quick answer.
I would have written you earlier, but I wanted to take the opportunity to also send
you a short manuscript.

It pleases me greatly, of course, that the hope of an appointment in Berlin is good
and I thank you in advance for your efforts. But I implore you, let me know as soon
as possible when anything has been decided, be it favorable or not, for if it does not
work out as I hope I must be prepared to improve on my conditions here.

I can take no steps until I know what happens. This request you will certainly
grant me.

Thank you very much for taking the trouble to copy and send me excerpts from
the letters you received from Jacobi and Legendre. You can just imagine with which
pleasure I have read this. Herr Jacobi says indeed too much. I see from his remarks
that he has arrived at the transformation theory (for elliptic functions (translator’s
note)) by taking a different path than I did, but if he has throughout found something
general then I can not comprehend how he has arrived at this, and I am very curious
to learn about his method. Please spur him on to reveal something, for it is clear that
he is in possession of excellent things.

If you do not mind I would appreciate if you would publish in the journal the
remarks on elliptic functions that are enclosed. Perhaps you have a few pages to
spare in the upcoming fourth issue.

It pleases me greatly that you will print my “Précis d’une théorie des fonctions
elliptiques”. I shall exert myself to make it as clear and good as possible, and hope
I shall succeed. But do you not think that it would be better to commence with this
paper instead of the one on the equations? I ask you urgently.

Firstly, I believe that the elliptic functions will be of greater interest; secondly,
my health will hardly permit me to occupy myself with the equations for a while.
I have been ill for a considerable period of time, and compelled to stay in bed. Even
if I am now recovered, the physician has warned me that any strong exertion can be
very harmful.

Now the situation is this: the equations will require a disproportionately greater
effort on my part than the elliptic functions. Therefore, I should prefer, if you do
not absolutely insist on the article on equations – in that case you shall have it –
to begin with the elliptic functions. The equations will follow soon afterward. If
you have nothing against it, I would prefer to divide it into short sections, so that
something about elliptic functions and something about equations could appear in
each issue; for the first issue I should like to send only elliptic functions.

Please let me hear your opinion on this.

Yours sincerely,
N. Abel



Abel and the Theory of Algebraic Equations

(Reflections Stimulated by the Letter Abel Sent
to Crelle on September 25, 1828)

Christian Skau

The letter exhibited is a copy of the original letter that Abel sent from Christiania
(today’s Oslo) September 25, 1828, to Crelle in Berlin in reply to a letter Crelle
had sent to Abel on September 10. The annotations within the letter are in Crelle’s
handwriting. Crelle, who was the founder and editor of Journal für die Reine und
Angewandte Mathematik (in the sequel referred to as Crelle’s journal), was Abel’s
close friend who worked tirelessly to secure a professorship for him in Berlin. Abel
published almost all his papers in Crelle’s journal. For example, the first year the
journal appeared, in 1826, six of the articles were written by Abel, among them the
proof of the algebraic unsolvability of the general equation of degree higher than
four. The Abel letter was discovered, and thus rescued from oblivion, by Mittag-
Leffler, the founder and editor of Acta Mathematica. It became known to the math-
ematical community for the first time when a facsimile of the letter appeared in the
1903 edition of Acta Mathematica. The 1902, 1903 and 1904 editions of Acta, with
the frontispiece: “Niels Henrik Abel—In Memoriam”, were dedicated to Abel and
his mathematical legacy on the occasion of the centennial of his birth. It contained
articles by the most prominent mathematicians at the time, among them Hilbert,
Frobenius, Minkowski, Picard and Poincaré, about theories and results that had their
genesis in Abel’s own discoveries.

1 Historical Context

The Abel letter to Crelle is of great interest because it throws considerable light on
Abel’s mathematical preoccupation the 14 weeks he had left before he was incapac-
itated and bedridden with tuberculosis and unable to work anymore—dying three
months later on April 6, 1829, at the age of 26 years and 8 months. The letter raises
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the intriguing question of how the theory of equations would have evolved if Abel
had not been impeded by poor health to write up his discoveries, as Crelle had urged
him to do. In all likelihood the impact of Galois’ work would have been less in a field
which it came to dominate. According to Auguste Chevalier, Galois’ close friend,
it was in the year 1829 of Abel’s death, that Galois (1811–1832), at the age of 17,
made great advances in the theory of equations. At the end of 1831 Galois wrote a
note on his relationship to Abel, probably provoked—if not angered—by the referee
report by Poisson and Lacroix rejecting for publication his groundbreaking memoir
Sur les conditions de résolubilité des équations par radicaux [6]. (Abel’s work was
referred to in the report.) Galois vehemently asserts his independence of Abel when
he himself made his first important discoveries in the theory of equations. There is
no reason to doubt that, but a familiar misquotation of a line spoken by the queen
in Shakespeare’s Hamlet, “methinks he doth protest too much”, is highly pertinent,
and we will get back to this issue. On the other hand, in the same note Galois also
generously writes [15, pp. 238–239]:

Depuis une lettre particulière adressée par Abel à M. Legendre, annonçait
qu’il avait eu le bonheur de découvrir une règle pour reconnaître si une
équation était résoluble par radicaux; mais la mort anticipée de ce géomètre
ayant privé la science des recherches * promises dans cette lettre, il n’en était
pas moins nécessaire de donner la solution d’un problème qu’il m’est bien *
pénible de posséder, puisque je dois cette possession à une des plus grandes
pertes qu’aura faite la science.

[According to a certain letter addressed by Abel to Mr Legendre, he an-
nounced that he had the good fortune of finding a rule for recognizing if an
equation is solvable by radicals, but the premature death of this geometer hav-
ing deprived science of the research promised in this letter it became no less
necessary to give to the world of learning the solution of a problem which is
more painful to me to possess, because I owe this possession to one of the
greatest losses science has suffered.]

Galois has a point here, as we will try to elucidate. However, none of this detracts
from Galois’ contribution. After all it is his admirable fundamental theorem, which
goes far beyond the quest for a criterion for algebraic solvability of equations, that
ranks as a watershed in mathematical history and from which emerged the funda-
mental group concept. We will give more details about what we have intimated at
above, but first we will set this in a historical context and give some relevant back-
ground.

When Sylow in 1902 at the centennial celebration of Abel’s birth wrote a lengthy
survey [18] of Abel’s discoveries, he was not aware of the letter to Crelle. At the 3rd
Scandinavian Mathematical Congress in Oslo in 1913 Sylow gave the introductory
talk [19]. The title of his talk was: On Abel’s work and his plans during the last
phase of his life illuminated by documents that have come to light after the second
edition of his collected works. The second edition of Abel’s Oeuvres Complètes was
published in 1881 [2, 3] ([3] contains the posthumous articles). The editors were Lie
and Sylow, and it contained detailed annotations, in contrast to the first edition that
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was published in 1839 [1], the editor being Holmboe, Abel’s math teacher at the
Cathedral School in Oslo. Sylow’s main sources for his talk were the Abel letter
together with a “lost” manuscript by Abel on the transformation theory of ellip-
tic functions, including complex multiplication, and the various algebraic equations
that are associated with this theory. Mittag-Leffler was able to trace this manuscript
and published it in the aforementioned 1902-edition of Acta. Sylow had held the
view that it was the competition between Abel and Jacobi in developing the theory
of elliptic functions that was the reason Abel did not get around to write up his dis-
coveries in the theory of equations. This he had to admit was only partially true.
It was his poor health that held him back. Abel’s letter shows that there had been
an agreement between him and Crelle that he should first write about the theory
of equations and then later about elliptic functions. (Abel had earlier published in
Crelle’s journal a long memoir on elliptic functions with the title Recherches sur
les fonctions elliptiques [2, XVI].) Abel fears that the work on equations will be a
much more arduous task than writing up a comprehensive survey article on elliptic
functions demonstrating his methods. So following his doctor’s advice about avoid-
ing strenuous work he suggests to Crelle that he starts with the article on elliptic
functions, but he writes that if Crelle insists he will instead start with the theory of
equations. Crelle, of course, writes back and tells him to follow his doctor’s advice.
Abel’s health was deteriorating during the autumn of 1828. Writing up the memoir
Précis d’une théorie des fonctions elliptiques [2, XXVIII] (referred to as Précis in
the sequel), took virtually all the time and strength he had left for work. Précis, or
rather the part of it that he managed to complete, was published in Crelle’s journal
in June 1829 after his death. In the introduction Abel says that Précis will consist of
excerpts from a monograph he had planned to write on the theory of elliptic func-
tions. Its aim was to show his method and its breathtaking scope. It was to consist
of two parts, but he only had time to finish the first part. Loosely speaking one can
say that in Précis Abel treats the theory of elliptic functions essentially from an
algebraic point of view.

2 Correspondence with Legendre

On November 25, 1828, Abel sent a letter to Legendre in reply to a letter he had
received from him—sent from Paris on October 25. (The letter from Abel was pub-
lished in Crelle’s journal in 1830.) Besides answering questions that Legendre poses
he gives a survey of his latest discoveries, some of which were to appear in Précis.
It is almost touching to see the effort Abel makes to explain his theory to the aging
Legendre, who had great difficulties understanding what Abel and Jacobi had done,
the two of them having revolutionized the theory of elliptic integrals. Legendre had
written a monograph on this subject, and he wanted to publish a supplement and
include some of the new discoveries. Abel ended the letter with these words:

J’ai été assez heureux pour trouver une règle sure à l’aide de laquelle on
pourra reconnaitre si une équation quelconque proposée est resoluble á l’aide
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de radicaux ou non. Un corollaire de ma théorie est qu’il est impossible de
resoudre les équations générales superieures au quatrième degré.

[I have had the good fortune in finding a definite rule with whose help one
can recognize whether any given equation can be solved by radicals or not. A
corollary of my theory is that it is impossible to solve the general equation of
degree greater than four.]

Legendre writes back on January 16, 1829, ending the letter by urging Abel to
publish his discoveries in the theory of equations:

Vous m’annoncez, Monsieur, un très beau travail sur les équations al-
gébriques, qui a pour objet de donner la résolution de toute équation
numérique proposée, lorsqu’elle peut être développée en radicaux, et de dé-
clarer insoluble sous ce rapport, toute équation qui ne satisferait pas aux
conditions exigées; d’où résulte comme conséquence nécessaire que la réso-
lution générale des équations au delà du quatrième degré, est impossible. Je
vous invite à publier le plutôt que vouz pourrez, cette nouvelle théorie; elle
vous fera beaucoup d’honneur, et sera généralement regardée comme la plus
grande découverte qui restait à faire dans l’analyse.

[You announce to me, Sir, a very beautiful work on algebraic equations
that has as object to resolve for each given numerical equation whether it can
be solved by radicals, and to declare unsolvable those equations that do not
satisfy the required conditions. A necessary consequence of this theory is that
the general equation of degree higher than four can not be solved. I urge you
to let this new theory appear in print as quickly as you are able. It will be of
great honour to you, and will universally be considered the greatest discovery
which remains to be made in mathematics.]

When the letter reached Abel the tuberculosis had incapacitated him and he was
unable to work anymore. Legendre spread the rumour in the mathematical circles in
Paris about Abel’s claim that he had found a criterion to decide when a numerical
equation could be solved algebraically (“by radicals”), and this we know also came
to Galois’ attention (cf. Galois’ note referred to above).

3 The Addition Theorem

We will digress a little from our main story, but it is not irrelevant as it relates to
the last few months of Abel’s life. The correspondence between Abel and Legendre
invites namely an obvious question: Why did Abel not remind and inquire Legen-
dre about the great memoir (later given the sobriquet the Paris Memoir) that he had
submitted to l’Académie des Sciences on October 30, 1826, during his soujourn in
Paris? Abel knew that Legendre was one of the referees (the other was Cauchy),
and even some of the results Legendre had asked about in his letter to Abel could be
found in the memoir. Legendre had unquestionably forgotten the memoir as well as
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the fact that he had met Abel in Paris. Abel’s manuscript sank deeper and deeper in
the piles in Cauchy’s study, and Legendre later confessed that he had never had it in
his hands. Abel himself must have feared that his memoir had been lost. In a paper
on hyperelliptic functions printed in Crelle’s journal (appearing December 3, 1828)
Abel mentioned its existence in a few words [2, XXI, footnote p. 445]. Jacobi, who
immediately realized its importance, wrote to Legendre expressing his astonishment
that Abel’s masterpiece had not been published. In time this inquiry—after a convo-
luted process—led to the recovery and eventual publication of the memoir in 1841,
twelve years after Abel’s death [2, XII]. As a last effort, before tuberculosis had
weakened him so much that he was not able to work anymore, he wrote a four-page
letter to Crelle containing the statement and proof of the theorem that appears at the
very outset of his Paris Memoir—later called Abel’s addition theorem. This is the
basic theorem upon which all the other results in the Paris Memoir depend—among
these should be mentioned the first appearance ever in the mathematical literature
of the genus concept for algebraic functions (or curves), which is included in a the-
orem, thus giving it life and significance. The date of the letter sent to Crelle is
January 6, 1829, and it was published as a two-page article in Crelle’s journal on
March 28, 1829 [2, XXVII], nine days before Abel’s death and eleven days before
Crelle wrote triumphantly to Abel that he had secured a professorship for him in
Berlin. The article contained no introduction, no superfluous remarks, no applica-
tions. It was a monument resplendent in its simple lines—the main theorem from his
Paris Memoir, formulated in a few words. Abel fully understood the beauty of his
result. In the last few lines he promised to give applications which would throw new
light on analysis. Abel’s addition theorem in its most general form can be stated, by
a slight variant of how it is stated in [2, XXVII], like this:

Let y be an algebraic function of x given by an algebraic equation f (x, y)= 0.
Let λ(x, y) = 0 be another algebraic equation, where the coefficients are certain
parameters a, a′, a′′, . . . , and let (x1, y1), (x2, y2), . . . , (xμ, yμ) be the intersection
points of the two curves f (x, y) = 0 and λ(x, y) = 0. Let R(x, y) be a rational
function of x and y, and let ψ(x)= ∫ R(x, y)dx. (

∫
R(x, y)dx is called an Abelian

integral.) Then

ψ(x1)+ψ(x2)+ · · · +ψ(xμ)= u+ k1 logv1 + k2 logv2 + · · · + kn logvn

where u,v1, v2, . . . , vn are rational functions of a, a′, a′′, . . . , and k1, k2, . . . , kn are
constants.

Abel’s addition theorem was given the epithet Monumentum aere perennius
[A monument more lasting than bronze] by Legendre, and Jacobi called it . . . die
grösste mathematische Entdeckung unserer Zeit, obgleich erst eine künftige grosse
Arbeit ihre ganze Bedeutung aufweise könne. [. . . the greatest mathematical discov-
ery of our time, even though only a great work in the future will reveal its full sig-
nificance.] With the vantage point at the end of the 19th century—after Riemann’s
and Weierstrass’ fundamental work on algebraic functions and curves—Picard gave
the following assessment of Abel’s addition theorem:
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Le théorème parait tout à fait élémentaire, et il n’y a peut-être pas, dans
l’histoire de la Science, de proposition aussi importante obtenue à l’aide de
considérations aussi simples.

[The theorem appears as completely elementary, and perhaps there has
never occurred in the history of science a proposition so important which is
obtained by so simple considerations.]

In the proof of the addition theorem Abel uses the fundamental theorem of sym-
metric polynomials in an ingenious way. Recall that the fundamental theorem says
that if f (x1, . . . , xn) is a symmetric polynomial in the variables x1, . . . , xn over the
domain of rationality F (today we would say field), then f (x1, . . . , xn) can be writ-
ten as a polynomial in the elementary symmetric polynomials s1, s2, . . . , sn, where

s1 =
n∑

i=1

xi, s2 =
∑

1≤i<j≤n
xixj , . . . , sn = x1x2 · · ·xn.

(Note that si = (−1)iai , where (x − x1)(x − x2) · · · (x − xn) = xn + a1x
n−1 +

a2x
n−2 + · · · + an.)

We shall see below effective and ingenious application of the fundamental theo-
rem of symmetric polynomials in the context of algebraic equations.

4 Algebraic Equations—Primitive Elements

In a letter to Holmboe [3, XX, p. 260] in Oslo, sent from Paris and dated October
24, 1826, Abel says that he is working on his favorite topic, the theory of equations.
[Jeg arbeider nu paa Ligningernes Theorie, mit Yndlingsthema.] He tells Homboe
that he sees a way to solve the following general problem (which he formulates in
French): Déterminer la forme de toutes les équations algébriques qui peuvent être
resolues algebriquement. [Determine the form of all algebraic equations that can
be solved algebraically.] He had earlier communicated to Crelle (in a letter dated
March 14, 1826) the solution for equations of degree five (with rational coefficients,
but it also holds for coefficients in any field of characteristic zero), saying that he is
in possession of similar results for equations of degree 7, 11, 13, etc. The letter was
printed in Crelle’s journal in 1830 and reads in its entirety:

Wenn eine Gleichung des fünften Grades, deren Coëfficienten rationale
Zahlen sind, algebraisch auflösbar ist, so kann man immer den Wurzeln fol-
gende Gestalt geben:

x = c+A.a 1
5 . a

2
5
1 . a

4
5
2 . a

3
5
3 +A1 . a

1
5
1 . a

2
5
2 . a

4
5
3 . a

3
5 +A2 . a

1
5
2 . a

2
5
3 . a

4
5 . a

3
5
1

+A3 . a
1
5
3 . a

2
5 . a

4
5
1 . a

3
5
2 (†)
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wo

a =m+ n
√

1+ e2 +
√
h
(
1+ e2 +

√
1+ e2

)

a1 =m− n
√

1+ e2 +
√
h
(
1+ e2 −

√
1+ e2

)

a2 =m+ n
√

1+ e2 −
√
h
(
1+ e2 +

√
1+ e2

)

a3 =m− n
√

1+ e2 +
√
h
(
1+ e2 −

√
1+ e2

)

A=K +K ′a +K ′′a2 +K ′′′aa2, A1 =K +K ′a1 +K ′′a3 +K ′′′a1a3,

A2 =K +K ′a2 +K ′′a +K ′′′aa2, A3 =K +K ′a3 +K ′′a1 +K ′′′a1a3.

Die Grössen c,h, e,m,n,K,K ′,K ′′,K ′′′ sind alle rationale Zahlen.
Auf diese Weise lässt sich aber die Gleichung x5 + ax + b = 0 nicht au-

flösen, so lange a und b beliebige Grössen sind.
Ich habe ähnliche Lehrsätze für Gleichungen vom 7ten, 11ten, 13ten etc.

Grade.

Abel’s mathematical diary from Paris contains 13 pages that gives evidence that
he was thinking about algebraic equations. Here occurs an auxiliary quantity that
Abel also introduced in Précis [2, XXVIII, p. 547], and which he uses as a powerful
tool to prove some of his results. The same quantity occurs in his posthumously
published and incomplete manuscript Sur la résolution algébriques des équations
[3, XVIII]. In his memoir Sur les conditions de résolubilité des équations par rad-
icaux [6], submitted to l’Académie des Sciences on January 16, 1831, Galois intro-
duces exactly the same auxiliary quantity, which he denotes by V and he refers to
the page in the Précis where it appears. Galois also refers to Abel about the same in
his article Sur la théorie des nombres, published in Férussac’s Bulletin des Sciences
in June 1830. (Abel uses the same symbol V to denote the (unique) irreducible
monic polynomial that has the quantity in question as a root, i.e., V denotes its min-
imal polynomial.) In the old literature V is called a Galois resolvent, and in modern
terminology it is called a primitive element. It is a crucial tool used by Galois in
introducing the group (later called the Galois group) associated to an equation—
the group reflecting the essential character of the equation. Galois gives a proof of
the existence of a primitive element [6, Lemma III], while Abel in Précis simply
states:

C’est ce qui est facile à démontrer par la théorie des équations al-
gébriques.

[It is easy to prove using the theory of algebraic equations.]

We want to sketch a proof of the existence of a primitive element because it
gives a beautiful demonstration of the application of the fundamental theorem of
symmetric polynomials—a proof technique that Abel also uses in his proof of his
addition theorem. The proof idea is essentially due to Lagrange and it’s a gem. (See
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§100 of Lagrange’s memoir from 1770: Réflexions sur la résolution algébriques des
équations [13, Vol. 3].) Both Abel and Galois were familiar with Lagrange’s work
on the theory of equations. We do not know exactly how Abel would have proved his
claim in Précis—the setting there is actually more general than the one Galois has.
However, a pretty good idea of how he would proceed can be found in §2 of Mémoire
sur une classe particulière d’équations résolubles algébriquement [2, XXV]. The
proof technique that he displays in §2 is very close to Lagrange’s proof alluded to
above, and it can be easily adapted to prove the existence of a primitive element. We
will instead state as a theorem the result Abel essentially states in Précis and we will
give the proof that Weber presents in his Lehrbuch der Algebra [26, Vol. 1, §150].
That proof has vintage Abel flavour, if we may use such an expression. (We will use
modern terminology and notation. All fields we are considering have characteristic
zero.)

Theorem A Let f1(x), f2(x), f3(x), . . . , fm(x) be a finite collection of polyno-
mials over the field F such that each polynomial has distinct roots in F̄ , the
algebraic closure of F . (However, the polynomials themselves can otherwise be
arbitrary—they do not have to be distinct, for example.) Let α,β, γ, . . . be roots
of f1(x), f2(x), f3(x), . . . , respectively, where the degrees of these polynomials
are m1,m2,m3, . . . , respectively. Then the field E = F(α,β, γ, . . .) generated
by α,β, γ, . . . over F is simply generated, i.e. there exists a primitive element
ξ ∈ E such that E = F(ξ). Furthermore ξ can be chosen to be of the form
ξ = aα+ bβ + cγ + · · · , where a, b, c, . . . are integers.

Proof Let ξ = aα + bβ + cγ + · · · , where a, b, c, . . . are integers such that ξ and

ξ ′ = aα′ + bβ ′ + cγ ′ + · · ·
ξ ′′ = aα′′ + bβ ′′ + cγ ′′ + · · ·
...

are distinct elements, where respectively α,α′, α′′, . . . and β,β ′, β ′′, . . . and γ, γ ′,
γ ′′, . . . , etc. are the roots of f1(x) and f2(x) and f3(x), etc. Here α,β, γ, . . .;
α′, β ′, γ ′, . . .; α′′, β ′′, γ ′′, . . . , are different combinations. The number of such com-
binations are obviously equal to m=m1m2m3 · · · . (Abel states in Précis that there
exists integers a, b, c, . . . such that this can be achieved, something one easily sees
by considering the pairwise differences of ξ, ξ ′, ξ ′′, . . .) Hence the polynomial g(x)
of degree m=m1m2m3 · · · defined by

g(x)= (x − ξ)(x − ξ ′)(x − ξ ′′) · · ·

is symmetric with respect to the α’s, the β’s, the γ ’s, . . . , respectively. By the funda-
mental theorem of symmetric polynomials, g(x) ∈ F [x], i.e., g(x) is a polynomial
over F . Now any element θ ∈E can be written as a polynomial in α,β, γ, . . . (This
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was well known to Abel; it is proved by the Euclidean division algorithm for poly-
nomials.) Let θ, θ ′, θ ′′, . . . be the values that θ get by permuting the α’s, the β’s, the
γ ’s, etc. as was done in obtaining ξ, ξ ′, ξ ′′, . . . . Then

ψ(x)= g(x)
(

θ

x − ξ +
θ ′

x − ξ ′ +
θ ′′

x − ξ ′′ + · · ·
)

is a symmetric polynomial (of degree m− 1) in the α’s, the β’s, the γ ’s, etc., and so
again by the fundamental theorem of symmetric polynomials we have ψ(x) ∈ F [x].
Setting x = ξ , we get θ = ψ(ξ)

g′(ξ) which is what we wanted to prove. (g′(x) denotes
the derivative of g(x).) �

5 Irreducibility Principle

Sylow [18] strongly emphasizes a novel feature that Abel brought to the theory of
equations, namely the use that he made of an equation’s (or rather, a polynomial’s)
irreducibility. Today this is completely elementary and “folklore” in algebra, and we
tend to brush it aside as something obvious. However, by reading Abel’s and Ga-
lois’ original manuscripts one is struck by the ingenious way they use irreducibility,
combined with the Euclidean division algorithm and the fundamental theorem of
symmetric polynomials to overcome difficulties that apparently would require con-
siderably more advanced and sophisticated methods. Sylow [18] says that he does
not know of any examples where the concept of irreducibility appeared, at least as
an indispensable tool, before Abel. To be sure, he points out that Gauss in Chap. VII
of Disquisitiones Arithmeticae (1801) [7], where cyclotomic equations are studied,
writes:

Omnique rigore demonstrare possumus, has equationes elevatas nullo
modo nec evitari nec ad inferiores reduci posse.

[We can show with all rigour that these higher-degree equations can not be
avoided in any way nor can they be reduced to lower-degree equations.]

By this Gauss undoubtedly means to say that the various cyclotomic polynomials
that appear in his investigation are irreducible in the modern sense over their re-
spective fields. But Gauss does not use irreducibility as a tool in his reasoning and
arguments. This in contrast to both Abel and Galois who both define the concept and
provide the proof—as if it was unknown—of the now well-known theorem about the
irreducible equation. In modern language this is the theorem (referred to in the se-
quel as Theorem B) that says that if p(x) and f (x) are two polynomials over the
same field with a common root, and p(x) is irreducible, then p(x) divides f (x). In
particular, all the roots of p(x) will be roots of f (x). (Cf. [2, XXV, Théorème I], [6,
Lemme I].)

Abel (and Galois later) gives his theory the highest degree of generality by as-
suming a general domain of rationality (today we would say field), when he writes
[2, XXV, p. 479]:
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Une équation φ(x)= 0, dont les coefficiens sont des fonctions rationnelles
d’un certain nombre de quantités connues a, b, c, . . . , s’appelle irréductible,
lorsqu’il est impossible d’exprimer aucune de ses racines par une équation
moins élevée, dont les coefficiens soient également des fonctions rationnelles
de a, b, c, . . .

[An equation φ(x) = 0, where the coefficients are rational functions of a
certain number of known quantities a, b, c, . . . , is called irreducible if it is
impossible to express any of its roots by an equation of lower degree whose
coefficients are again rational functions of a, b, c, . . .]

6 The Galois Group

We will describe how Galois constructed the group—later named after him—
associated to an algebraic equation and give its characteristic property [6, Propo-
sition I]. This will illustrate in a striking way the irreducibility principle that Abel
introduced. Moreover, it will set the stage, so to say, for a comparison between
Abel’s and Galois’ different approaches towards the theory of equations. (We will
as before use modern terminology and notation.)

Let f (x) ∈ F [x] be a polynomial of degree m over the field F with distinct roots
α1, α2, . . . , αm (in the algebraic closure F̄ of F ). Let E = F(α1, α2, . . . , αm) be the
splitting field of f (x). Let ξ ∈E be a primitive element (i.e., E = F(ξ)) where ξ is
of the form ξ = aα1+bα2+ cα3+· · · , for some integers a, b, c, . . . , as constructed
in Theorem A. (In fact, choose the polynomials f1(x), f2(x), f3(x), . . . , fm(x) in
Theorem A to be all equal to f (x) and let α,β, γ, . . . be α1, α2, α3, . . .) Let V (x) ∈
F [x] be the minimal polynomial of ξ , and let V (x) be of degree n. Now by Theo-
rem B, all the roots of V (x) will also be roots of the polynomial g(x) that appears
in the proof of Theorem A. Hence these roots are all of the same form as ξ and so
they lie in F(α1, α2, . . . , αm)= F(ξ)=E. By the Euclidean division algorithm one
shows that every element inE can be uniquely represented as a polynomial in ξ over
F of degree≤ n−1. In particular, let ξ0(= ξ), ξ1, ξ2, . . . , ξn−1 be the (distinct) roots
of V (x). There exist unique polynomials φ0(x)(= x),φ1(x),φ2(x), . . . , φn−1(x)

over F of degrees ≤ n− 1 such that

ξi = φi(ξ); i = 0,1,2, . . . , n− 1.

So V (φi(ξ))= 0 for all i, and by Theorem B we get that V (x) divides V (φi(x)) ∈
F [x]. Hence V (φi(ξj )) = 0 for 0 ≤ j ≤ n − 1. We conclude that for all j the
set {ξj (= φ0(ξj )),φ1(ξj ),φ2(ξj ), . . . , φn−1(ξj )} is a subset of {ξ0(= ξ), ξ1, ξ2, . . . ,
ξn−1}. We claim that the sets are equal. (This will, in particular, imply that for each
j there exists some k such that ξ = φk(ξj ), and so E = F(ξj ).) It is enough to show
that φs(ξj ) �= φt (ξj ) if s �= t . If φs(ξj ) = φt (ξj ), then ξj is a root of the polyno-
mial φs(x)− φt (x) ∈ F [x]. By Theorem B we get that V (x) divides φs(x)−φt (x),
and so, in particular, φs(ξ)− φt (ξ)= 0. This implies that ξs = φs(ξ)= φt (ξ)= ξt ,
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which is impossible, thus proving the claim. We define n distinct permutations
σ0, σ1, σ2, . . . , σn−1 of the roots Σ = {ξ0(= ξ), ξ1, ξ2, . . . , ξn−1} of V (x) by letting
(for a ∈ {0,1,2, . . . , n− 1})

σa(ξk)= φk(ξa); k = 0,1,2, . . . , n− 1
(
In particular, σa(ξ)= φ0(ξa)= ξa

)

Notice that each of these permutations are uniquely determined by what ξ = ξ0
is sent to. We claim that G = {σ0, σ1, σ2, . . . , σn−1} is a group, where the group
operation is composition of permutations, and σ0 is the identity element. So let
σa,σb ∈G. We claim that σc = σb ◦ σa , where ξc = σb ◦ σa(ξ). This will be a con-
sequence of Theorem B. In fact, let l ∈ {0,1,2, . . . , n− 1}, and let ξk = φl(ξa). This
implies that ξ is a root of the equation φk(x) = φl(φa(x)), and so by Theorem B,
ξ0(= ξ), ξ1, ξ2, . . . , ξn−1 are roots also. In particular, φk(ξb)= φl(φa(ξb)). The left
hand side of this equation is σb ◦ σa(ξl) while the right hand side is σc(ξl), proving
the claim. Now each σj induces a permutation of the roots Γ = {α1, α2, . . . , αm}
of the original equation f (x). In fact, for every 1 ≤ s ≤ m there exists a (unique)
polynomial χs(x) ∈ F [x] of degree ≤ n−1 such that αs = χs(ξ). For 0≤ k ≤ n−1
define σ ∗k (αs) = χs(σk(ξ)) = χs(ξk). Then σ ∗0 , σ ∗1 , σ ∗2 , . . . , σ ∗n−1 will be n distinct
permutations of Γ , and by again applying Theorem B one shows easily that the
map σj → σ ∗j is a group isomorphism between G = {σ0, σ1, σ2, . . . , σn−1} and
G∗ = {σ ∗0 , σ ∗1 , σ ∗2 , . . . , σ ∗n−1}, where the group operation of G∗ is composition of
permutations on Γ . G∗ (or G) is called the Galois group of f (x) over F , and we
will henceforth identify G and G∗.

Remark The concept of automorphism of E (the splitting field of f (x)) over F
came later with Dedekind. The influence of Dedekind in presenting Galois theory
can be seen in the work of his de facto student and collaborator Heinrich Weber in
the first volume of Lehrbuch der Algebra [26], which appeared in 1895. Weber’s
treatment has one foot in the 19th century and one in the 20th century. The modern
presentation of Galois theory was heavily influenced by Emil Artin. This can be
seen in van der Waerden’s classical text Moderne Algebra from 1930 based upon
Artin’s lectures on Galois theory. However, according to van der Waerden [25] Artin
was not happy with using a primitive element to prove the fundamental theorem
of Galois theory. He eventually managed to avoid the primitive element. Although
conceptually satisfying one pays a price: the proof is simpler, and certainly one
applies more elementary means, if the primitive element is used.

Galois [6, Proposition I] gave the following characterization of the group G he
associated to the polynomial f (x) ∈ F [x] (with distinct roots α1, α2, . . . , αm):

(i) Every equation H(α1, α2, . . . , αm) = 0, where H(x1, x2, . . . , xm) is a polyno-
mial over F in m variables x1, x2, . . . , xm, is also valid if we permute the roots
with an element σ ∈G.

(ii) Every polynomial H(α1, α2, . . . , αm) over F in the roots α1, α2, . . . , αm which
is invariant under all permutations σ ∈G, is an element in F .
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The proofs of (i) and (ii) are immediate consequences of Theorem A and Theo-
rem B. In fact, let ξ as in Theorem A denote a primitive element of the form ξ =
aα1 + bα2 + cα3 + · · · , and let αs = χs(ξ) for s = 1,2,3, . . . , where χs(x) ∈ F [x].
Then the polynomial K(x)=H(χ1(x),χ2(x), . . . , χm(x)) has x = ξ as a root. By
Theorem B the minimal polynomial V (x) of ξ divides K(x), and consequently

0=K(ξk)=H
(
χ1(ξk),χ2(ξk), . . . , χm(ξk)

)

for 0 ≤ k ≤ n − 1, where ξ0(= ξ), ξ1, ξ2, . . . , ξn−1 are the roots of V (x). Now
σk(αs)= χs(ξk) for s = 1,2, . . . ,m, and this proves (i).

As for the proof of (ii), the assumption implies that L(ξj ) = L(ξ) for j =
0,1,2, . . . , n − 1, where L(x) = H(χ1(x),χ2(x), . . . , χm(x)) ∈ F [x] and χ1(x),

χ2(x), . . . are as above. LetM(x) be the polynomial

M(x)= (x −L(ξ))(x −L(ξ1)
)(
x −L(ξ2)

) · · · (x −L(ξn−1)
)
.

Since L(x) is symmetric in the roots ξ0(= ξ), ξ1, ξ2, . . . of V (x), it follows that
M(x) ∈ F [x]. Now

M(x)= (x −L(ξ))n,
and so H(α1, α2, . . . , αm) = H(χ1(ξ),χ2(ξ), . . . , χm(ξ)) = L(ξ) is an element
in F , and this proves (ii).

Properties (i) and (ii) completely determine the Galois group G. Firstly (i) im-
plies thatG is the largest of all permutation groupsG′ on α1, α2, . . . , αm that satisfy
property (i). One sees this by recalling that V (ξj )= 0 for j = 0,1, . . . , n− 1, and
ξj is a linear combination (over F ) of α1, α2, α3, . . . . Applying σ ∈ G′ one gets
by (i) that V (ξ ′)= 0, where ξj is sent to ξ ′ by σ . Hence ξ ′ = ξk for some k. Now
ξj = φj (ξ), where we use the notation introduced above. The equality holds after
applying σ on both sides, and so if σ(ξ) = ξt , we get that σ = σt , proving that
G′ ⊆G.

Secondly, (ii) implies that G is the smallest of all permutation groups G′′ on
α1, α2, . . . , αm that satisfy property (ii). To see this let ξ(= ξ0) be mapped to
ξ, ξ ′, ξ ′′, . . . under G′′. Then the coefficients of the polynomial

g(x)= (x − ξ)(x − ξ ′)(x − ξ ′′) · · ·

lie in F since G′′ satisfies property (ii) and the coefficients are symmetric polyno-
mials in ξ, ξ ′, ξ ′′, . . . . By Theorem B we get that among ξ, ξ ′, ξ ′′, . . . , we must find
the roots ξ0(= ξ), ξ1, ξ2, . . . , ξn−1 of the (irreducible) polynomial V (x) since g(x)
and V (x) have the root ξ in common. Hence for every t = 0,1,2, . . . , n − 1, G′′
contains a permutation σ such that σ(ξ)= ξt . This implies that σ = σt by a similar
argument as we gave above. So G⊆G′′.
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7 The Fundamental Theorem and Solvability Criterion

We summarize briefly the rest of the content in Galois’ epoch-making memoir
[6]. The setting is that f (x) is a polynomial over F , E is the splitting field and
G =G(E/F) is the Galois group of f (x). Based upon the foundation he has laid
Galois describes what happens when one adjoins to F roots of another (polyno-
mial) equation over F , thus getting an extension field K . He shows that the Galois
groups of f (x), now considered as a polynomial over K , is a subgroup H of the
Galois group G. He also proves the crucially important result that if K is obtained
by adjoining all the roots of an equation, then the group H becomes what we to-
day call a normal subgroup of G. The correspondence between the subgroups H of
the Galois group G and the fields K lying between F and E is a bijection, where
K = {α ∈E|σ(α)= α for all σ ∈H }. This beautiful result is the fundamental theo-
rem of Galois theory. Galois then applies his theory to give a criterion for when an
equation can be solved by radicals—invoking the so-called Lagrange resolvent—
and he applies that to irreducible equations of prime degree. The final theorem of
his memoir is Proposition VIII:

Théorème. Pour qu’une équation irréducible de degré premier soit solu-
ble par radicaux, il faut et il suffit que deux quelconques des racines étant
connues, les autres s’en déduisent rationnellement.

[Theorem. In order that an irreducible equation of prime degree should be
soluble by radicals, it is necessary and sufficient that any two of its roots being
known, the others may be deduced from them rationally.]

Galois’ proof of this, as presented in [6], is very elegant: he shows that the Galois
group G is a subgroup of the (one-dimensional) affine linear group (mod p), where
p is the degree of the polynomial, acting transitively on the p roots. It is easily
shown that the only element ofG that fixes two distinct roots is the identity element,
and so they generate the splitting field.

In a letter to Crelle dated October 18, 1828 (published in Crelle’s journal in 1830
[3, XXII, 5B]) Abel writes:

Si trois racines d’une équation quelconque irréductible dont le degré est un
nombre premier, sont liées entre elles de sorte que l’une de ces racines puisse
être exprimée rationnellement par les deux autres, l’équation en question sera
toujours résoluble à l’aide de radicaux.

[If three roots of an arbitrary equation of which the degree is a prime num-
ber are related to each other in such a way that any one of these roots may be
expressed rationally by means of the other two, the equation in question will
always be soluble with the help of radicals.]

Note that Abel states (in a slightly imprecise way) only the sufficiency of the
condition for solvability. However, he was fully aware of the necessity of the
condition as can be seen from the previously mentioned (and posthumously pub-
lished) manuscript Sur la résolution algébriques des équations [3, XVIII]. (Cf. also
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[18, p. 21 (and pp. 22–23)].) So Abel was in possession of the result stated in Propo-
sition VIII in Galois’ memoir. However, Galois would not have known about this
when he himself made this discovery, since he announced this particular result al-
ready in April 1830 in the paper Analyse d’un mémoire sur la résolution algébrique
des équations (published in Férussac’s Bulletin des Sciences). It is then quite under-
standable that he was irritated and angry that Lacroix and Poisson in their referee
report (dated July 4, 1831)—rejecting his great memoir Sur les conditions de résol-
ubilité des equations par radicaux [6]—use Abel as a truth witness, so to say, for
the validity of Proposition VIII. The two referees admit they did not understand Ga-
lois’ proof of Proposition VIII, but since Abel had stated (the sufficiency condition
of) Proposition VIII in his letter to Crelle, they are inclined to accept that the result
is true. Anyway, this might explain to a certain degree the vehemence with which
Galois claims his independence of Abel in the note he wrote that we mentioned
earlier.

8 Elliptic Functions and Algebraic Equations

Abel’s investigation of algebraic equations and their solvability properties is inex-
tricably linked to his study of elliptic functions. In fact, Abel approached the theory
of elliptic functions mainly from an algebraic point of view, centered on the various
algebraic equations that the transformation theory provided in such abundance. We
can express this in the following way, and this applies to both Abel and Galois: The
lifting of the veil concealing the secret of algebraic solvability of (numerical) equa-
tions did not occur in a vacuum. The rich source of (irreducible) algebraic equations,
in particular, the “teilungsgleichungen” (“division equations”) that the transforma-
tion theory of elliptic functions provided, was instrumental for Abel—as it in all
likelihood was later for Galois—as suggestive examples that led to “lifting of the
veil”. Specifically, in his analysis of the teilungsgleichungen (more about that be-
low), Abel saw how far Gauss’ method for solving cyclotomic equations could be
generalized. In Chap. VII: Equations defining sections of a circle of Disquisitiones
Arithmeticae [7], Gauss had showed that the cyclotomic equations could be solved
by radicals. Furthermore, he showed that if p is a prime of the form p = 2n − 1
(this implies that p must be a Fermat prime, i.e., of the form 22m − 1), then the
associated cyclotomic equation (of degree p − 1) could be solved by a succession
of square roots—thus a regular p-gon could be constructed by ruler and compass.
In Mémoire sur une classe particulière d’équations résolubles algébriquement [2,
XXV], Abel proved the following theorem, stated in modern language:

Let E be the splitting field of a polynomial f (x) over F . If the Galois
group G = G(E/F) of f (x) is commutative, then f (x) = 0 can be solved
algebraically (“by radicals”).

Leopold Kronecker and Camille Jordan would later call equations having the
property stated in the theorem for Abelian equations. This is the reason why Abel’s
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name became attached to commutative algebraic structures. Abel characterized his
method as a generalization of the circle division theory, and he said that the asso-
ciated equations could be solved by Gauss’ method. This is also the way Galois
would refer to this. The memoir Mémoire sur une classe particulière d’équations
résoluble algébriquement [2, XXV] was sent to Crelle March 29, 1828, but was not
published in Crelle’s journal before March 28, 1829, a year later. The reason for this
delay was that the memoir should contain more than the 5 paragraphs it consists
of. It should contain a sixth paragraph that dealt with the division of the periods of
an elliptic function that had complex multiplication. The seventh paragraph should
have contained elliptic transformation formulas. Very likely even more paragraphs
were intended to be included, one of which would treat those equations that deter-
mine the singular modules themselves (and so the associated elliptic functions will
have complex multiplication). We know all this from looking at his mathematical
diary. (Cf. [3, pp. 310–311] for more details.) Most of this would appear instead in
his various publications on elliptic functions, including his Précis memoir. Crelle
must have waited for these extra paragraphs which never arrived, and this explains
the delay in the publication. The overarching explanation for Abel’s change of mind
regarding this was his competition with Jacobi in developing the theory of ellip-
tic functions, and this also has some bearing on the Abel letter. In fact, Jacobi had
published a short note in Crelle’s journal, appearing March 25, 1828, containing an
elegant—from an algebraic point of view—solution of a teilungsgleichung Abel had
previously studied, and which was an alternative to the solution that Abel had given
in his Recherches memoir on elliptic functions [2, XVI]. Abel decided to cast every-
thing else aside and show that he was in possession of a much more comprehensive
theory. This resulted in two remarkable papers. The first, sent from Oslo on May 27,
1828, was titled Solution d’un problème général concernant la transformation des
fonctions elliptiques [2, XIX] (see also the related Addition au mémoire précédent
[2, XX]), which was published in Astronomische Nachrichten—the same journal
where Jacobi had earlier published a paper proving a theorem about transformations
of elliptic functions. Jacobi, upon reading this paper, wrote to Legendre:

Elle est au-dessus de mes éloges comme elle est au-dessus de mes propre
travanx.

[It stands as high above my praise as it surpasses my own works.]

It was this and similar sentiments expressing how Abel’s work was appreciated
that Crelle communicated in his letter to Abel, and which Abel—certainly pleased—
reacted to by writing: “Herr Jacobi says indeed too much”.

The other remarkable paper by Abel that we referred to above has the same ti-
tle as his Recherches memoir, only that “Second Mémoir” is added to the title, and
is dated August 27, 1828, so shortly before he became sick and compelled to stay
in bed (cf. his letter to Crelle). This Second Memoir is the aforementioned “lost”
manuscript that Mittag-Leffler found and printed in the 1902-memorial edition of
Acta Mathematica, and that Sylow talked about at the 3rd Scandinavian Mathemat-
ical Congress in Oslo in 1913 [19]. Sylow speculates why Crelle only published
the first paragraph of the Second Memoir in his journal, and under a different title,
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Théorèmes sur les fonctions elliptiques [2, XXVI]. (It appeared March 28, 1829.)
The main reason, Sylow surmises, for not publishing the next four paragraphs of the
Second Mémoir is that Abel was not satisfied with the redaction of this part. How-
ever that may be, most of the content of the Second Mémoir was pieced together
from fragments of manuscripts left by Abel in his Nachlass and published by Lie
and Sylow in Abel’s Oeuvres Complètes (1881) under the titles Fragments sur les
fonctions elliptiques [3, XIX] and Démonstration de quelques formules elliptique
[3, XV]. What strongly supports Sylow’s supposition is that one of these fragments
has the same title as the Second Mémoir, indicating that Abel was writing a new
version of the manuscript he had sent Crelle. Furthermore, it is written on the same
type of paper as what he had sent to Crelle. Anyway, Abel did not have time left
to complete his revision of the Second Mémoir. Let us summarize briefly its con-
tent. It starts by looking at teilungsgleichungen and shows that Jacobi’s solution
formula follows from the treatment Abel gives of these. In §3 Abel’s addition theo-
rem is stated in the context of elliptic functions, and in §4 connections between the
roots of the various teilungsgleichungen are given. In the last paragraph, §5, the so-
called monodromy groups of the transformation equation is given with a sketch of
the proof. Théorème XVI of the last paragraph, §5, is about complex multiplication.
Mittag-Leffler, who was frustrated that Crelle had not published the Second Mémoir
in its entirety, writes in his preface to the Acta publication of Abel’s manuscript:

Si la publication de ce manuscrit n’apporte pas à la science actuelle
des résultats nouveaux, elle semble pourtant d’une très grande valeur pour
l’étude de l’enchaînement et du développement des idées d’Abel. On ne peut
s’empêcher de penser que, si Crelle avait publié le mémoire en entier, les
Recherches sur les fonctions elliptiques auraient constitué, dès le début, une
doctrine plus complète et plus achevée, de nature à faire ressortir Abel aux
yeux de ses contemporains comme le vrai et principal créateur de la théorie
des fonctions elliptiques.

[Even if the publication of this manuscript does not bring any new results to
science today, it is nevertheless of great value for the study of the interconnec-
tion and development of Abel’s ideas. One cannot help thinking that if Crelle
had published the memoir in its entirety, the Recherches sur les fonctions el-
liptiques would have established from the start a theory so complete and so
comprehensive that Abel would have stood in the eyes of his contemporaries
as the true and principal creator of the theory of elliptic functions.]

9 Transformation Theory and Teilingsgleichungen

For Abel the transformation theory of elliptic functions can be stated like this [2,
XX, p. 429]: Find the conditions under which there exists an algebraic function
y = y(x) (i.e., R(x, y) = 0 for some rational function R in two variables over the
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complex numbers) which is a solution of the separable differential equation

dy√
(1− y2)(1− l2y2)

= a dx√
(1− x2)(1− k2x2)

. (∗)

Here a is a constant (the multiplier), and l and k are two other constants (the mod-
ules). In Précis, where a much more general problem is posed, it is proved by alge-
braic means that one can reduce the situation to y being a rational function of x [2,
XXVIII, Chapitre IV] (cf. also [5, p. 295])—the key tools being the irreducibility
principle combined with the addition theorem applied to the special setting of ellip-
tic integrals. The solution of (∗) is by Abel transferred to finding all solutions of the
equation

(
1− y2)(1− l2y2)= t2(1− x2)(1− k2x2)

where y = U(x)/V (x), t = t (x) are rational functions of x. Now the general case
can be traced back to the special case where the degrees of the polynomials U(x)
and V (x) are p and p− 1, respectively, where p is a prime. (We say that the trans-
formation is of degree p.) In this situation there exists (if p �= 2) between l and k an
algebraic equation of degree p + 1 with integer coefficients, the so-called modular
equation. In turn, the multiplier a is determined by this equation. Specifically, let l
be given and let k be any particular root of the modular equation. Then the coeffi-
cients of U(x) and V (x) as well as a is uniquely determined by this choice of k.
Abel showed that by composing two special transformations, both of degree p, one
is led to teilungsgleichungen (“division equations”) of degree p2. This can be stated
in the following way:

Let φ(u) be an elliptic function with (primitive) periods ω1 and ω2, say. Express
φ(u/p) as an algebraic function of φ(u). In other words, find the algebraic equation
(called a teilungsgleichung, plural: teilungsgleichungen) over some field F contain-
ing φ(u), which has φ(u/p) as a root and determine the solvability property of this
equation. For example, φ(u) could be the inverse function of an elliptic integral of
the first kind, to wit, φ(u) is defined by the formula

u=
∫ φ(u)

0

dx√
(1− x2)(1− k2x2)

the periods being determined by the module k.
The study of the algebraic character of these teilungsgleichungen as pertains to

their solvability properties is what led Abel and, very likely, Galois to their discov-
eries. Let us be a little more specific. As background motivation let us start with
the pure equation xp − a = 0, where a = eu, which has the root x0 = eu/p . (Note
that the function φ(z) = ez has a single period 2πi.) A complete list of roots are

xν = e
u+ν2πi
p , where ν = 0,1, . . . , p− 1. Here one considers u as a (complex) vari-

able and the domain of rationality, or field, F is assumed to be the rational numbers

Q with eu, as well as the primitive pth roots of unity e
s2πi
p , s = 1, . . . , p − 1, ad-

joined. The polynomial xp−a is irreducible over F , and the Galois group is a cyclic
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group of order p, generated by the permutation xs→ xs+1 (mod p). The primitive
pth roots of unity are the roots of an irreducible polynomial over Q of degree p−1,
called a cyclotomic polynomial. We will call the corresponding equation a special
(or period) teilungsgleichung, while the equation xp − eu = 0 (with the pth roots
of unity in the ground field) is called a general teilungsgleichung.

For elliptic functions we have an analogous situation. Let φ(u) be an elliptic
function with (primitive) periods ω1 and ω2, and let p be a prime. Let the general
teilungsgleichung, having φ(u/p) as a root, be g(x) = 0. The polynomial g(x) is
of degree p2 (over the field F ). In the coefficients appear, besides rational functions
of φ(u), certain “invariants” that only depend upon the periods, notably the module.
These should like the periods be considered to be variables and are rationally known,
i.e., lie in the base field F . The p2 roots of g(x) are xj,k = φ(u+jω1+kω2

p
); j, k =

0,1, . . . , p− 1. By setting u= 0 one gets the roots of the special teilungsgleichung
(removing x0,0) which is irreducible (over an appropriate field) of degree p2 − 1.
If one assumes that the roots of the special teilungsgleichung lie in F , then g(x)
is irreducible and the roots of g(x)= 0 can be algebraically solved (“by radicals”).
This Abel showed [2, XVI, pp. 294–305], and from the viewpoint of Galois theory
this can be explained as follows:

The Galois groupG of g(x) is generated by the two permutations—both of order
p—namely xj,k→ xj+1,k and xj,k→ xj,k+1 (mod p), cf. [9]. The groupG is com-
mutative, and so by Abel’s memoir [2, XXV] the equation g(x)= 0 is algebraically
solvable.

The special teilungsgleichung (also called “periodenteilungsgleichung” in Ger-
man)—as pertains to its solvability—is determined by p + 1 equations each of de-
gree p − 1. These contain each in their coefficients a root of one and the same
(irreducible) equation of degree p + 1. If this (resolvent) equation can be solved
by radicals, then so can each of the previous p+ 1 equations, and consequently the
special teilungsgleichung. In fact, the Galois group after adjoining this root becomes
commutative. All this is treated in Abel’s memoir on elliptic functions [2, XVI, pp.
305–314], which was published before his memoir on equations [2, XXV], and so
the results he obtained for teilungsgleichungen can be seen as models and inspira-
tions for the latter. Now Abel also was aware of that the resolvent equation of degree
p+1 can be algebraically solved when the elliptic function in question admits com-
plex multiplication. To explain this concept let us return to the differential equation
(∗), setting l = k:

dy√
(1− y2)(1− k2y2)

= a dx√
(1− x2)(1− k2x2)

. (∗∗)

Abel showed that (∗∗) has an algebraic solution y = y(x) if and only if a is a rational
number or is of the form a =m+ i√n, where m and n(> 0) are rational numbers
[2, XVI, §X]. In the latter case the modules k (called singular modules) have to
be very special: they are roots of specific types of algebraic equations, and these
equations can be solved by radicals [2, XIX, p. 426]. In fact, these equations are
essentially Abelian equations. So for elliptic functions associated to such modules
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the special teilungsgleichung can be solved by radicals. In particular, this applies to
the teilungsgleichung associated to the division of the lemniscate arc. In this case, a
and k in (∗∗) are both equal to i, and so the elliptic integral is

∫
dx√
1−x4

. The inverse

function, φ(x), which is an elliptic function, has the property that φ(iz)= iφ(z). In
Disquisitiones Arithmeticae [7, Chap. VII], Gauss made some cryptic remarks that
the integral

∫
dx√
1−x4

, which computes the arc length of the lemniscate, has similar

properties as the integral
∫

dx√
1−x2

, which computes the arc length of the circle. In

his letter to Holmboe from Paris in December 1826 [3, XX, pp. 261–262], Abel
writes:

I have discovered that one can divide the arc of the lemniscate by ruler and
compass in 2n + 1 equal parts if this is a prime number. The division depend
upon an equation of degree (2n + 1)2 − 1, and I have shown that it can be
solved by means of square roots. On the same occasion I have lifted the mys-
tery which rested over Gauss’ theory of the division of the circle; I see now
clear as daylight how he has been led to it. All I have described about the lem-
niscate is the fruit of my efforts in the theory of equations. You will not believe
how many delightful theorems I have discovered, for example the following:
If an equation P = 0, where the degree is μν, μ and ν being relatively prime,
is solvable by radicals then P is decomposable in μ factors, each of degree
ν, whose coefficients depend upon one single equation of degree μ, or, recip-
rocally, in ν factors, each of degree μ, whose coefficients depend upon one
single equation of degree ν.

The last sentence concerns what was later called imprimitivity, which is a key
property for equations to be solvable if their degree is not a power of a prime. Galois
would later make the same discovery. It is safe to say that the lemniscate problem
brought Abel to consider a large class of equations with special properties which
interested him greatly. With his characteristic ability to crystallize the essential of
every problem, he created the theory of Abelian equations, which we already have
encountered.

Let us get back to the special teilungsgleichungen. Abel conjectured that these
equations could not be solved by radicals for primes p > 3 if the module is non-
singular. The proof of this was given by Galois in his letter to Chevalier (May 29,
1832) the night before his fatal duel. In fact, the resolvent equation of degree p+ 1
has a simple Galois group of order (p − 1)p(p + 1)/2 (after adjoining a specific
square root to the ground field)—the group itself being PSL(2,Zp). It follows by
Galois criterion that it can not be solved by radicals. As for the modular equation
associated to transformations of (prime) degree p of elliptic functions, it leads to
essentially the same problem as for the teilungsgleichung.

To put all this in some perspective we remark that the special teilungsgleichun-
gen are closely related to the torsion points of an elliptic curve, where the elliptic
curve is associated to an elliptic function via the Weierstrass parametrization. This
is again intimately related to the so-called multiplication maps of an elliptic curve to
itself. The importance of these maps for the study of the arithmetic of elliptic curves
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would be difficult to overestimate. For further information about this we refer to [21,
Chap. III] and [22, Chap. VI].

Finally, we want to briefly describe an alternative—and more “modern”—way to
look at the transformation theory of elliptic functions, a viewpoint that was also ini-
tiated by Abel. Instead of considering the differential equation (∗), we consider two
elliptic functions φ(u)= φ(u |ω1,ω2) and φ̄(ū)= φ̄(ū | ω̄1, ω̄2)with (primitive) pe-
riods ω1,ω2 and ω̄1, ω̄2, respectively. The transformation theory, broadly speaking,
is to investigate under which conditions there exists an algebraic relation between
φ(u) and φ̄(ū) if ū=mu for some constant m. Assuming that both φ and φ̄ are ho-
mogeneous functions in the three variables, one can assume that m= 1 (and hence
ū = u), simply by writing ω̄i instead of ω̄i

m
, i = 1,2. Without going into details,

one can reduce the investigation into studying the relation between φ(u |ω1,ω2)

and φ(u |ω′1,ω′2), where ω′1 = aω1 + bω2, ω′2 = cω1 + dω2, and a, b, c, d ∈ Z,
ad − bc = n > 0. One says that φ(u |ω′1,ω′2) arises from φ(u |ω1,ω2) by a trans-
formation of degree n. All this is in principle treated in Précis (cf. [2, XXVIII,
Introduction, Sect. 8]).

10 Posthumous Article

It remains to assess the promise Abel gives in his letter to Crelle to eventually write
up his discoveries in the theory of equations; what would the content of such a work
be? As we already have mentioned Abel had characterized a particular class of solv-
able equations, the so-called Abelian equations—being those with commutative Ga-
lois groups [2, XXV]. He had shown that a multitude of equations arising from the
study of elliptic functions belonged to that class. So it is a safe bet that the memoir
he intended to write would attack the general problem of when an algebraic equa-
tion can be solved by radicals. In his nachlass was found an unfinished manuscript,
which was published in both the 1839 and the 1881 edition of his Oeuvres Com-
plètes under the title Sur la resolution algébrique des équations [3, XVIII]. (In the
1881 edition Sylow made detailed annotation.) In the introduction Abel writes un-
equivocally:

Dans ce mémoire je vais traiter le problème de la résolution algébrique
des équations, dans toute sa généralité.

[In this memoir I will treat the problem of the algebraic solution of equa-
tions in its full generality.]

We know fairly precisely when Abel wrote this manuscript by noticing where in his
mathematical diary it is written. The letter of September 25, 1828, to Crelle tells
us that it was written before that date. We know that as late as July 29 he was still
working on the second article he sent to Astronomische Nachrichten [2, XX]. So
the manuscript in question must in all likelihood have been written between those
dates, and hence partly during the sickness period that he mentions in his letter to
Crelle, and then being interrupted by his sickness.
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This is an important piece of information in interpreting and forming an opinion
of Abel’s manuscript. For instance, it tells us that the reason he left the manuscript
incomplete does not mean that he thought he would not be able to finish it and tie up
the loose ends. Of course, this was not the first time Abel had thought about these
things, as can be seen from the letters he had sent to Crelle and Holmboe earlier.
In a lengthy and comprehensive introduction (in fact, there exists two versions!)
which is fully redacted, Abel not only summarizes the content of the manuscript in
question, but he also reflects upon mathematical methods and proofs in general. It
is a “must” read for anyone interested in Abel’s thinking about mathematics. Here
is a small excerpt illustrating the flavour of his thinking:

On doit donner au problème une forme telle qu’il soit toujours possible
de le résoudre, ce qu’en peut toujours faire d’un problème quelconque. . . . En
présentant un problème de cette manière, l’énoncé même contient le germe de
la solution, et montre la route qu’il faut prendre. Ce qui a fait que cette méth-
ode . . . a été peu usitée dans les mathématiques c’est l’extrème complication
à laquelle elle paraît être assujettie dans la plupart des problèmes, surtout
lorsqu’ils ont une certaine généralité; mais dans beaucoup de cas cette com-
plication n’est qu’apparente et s’évanouira dès le premier abord. J’ai traité
plusieurs branches de l’analyse de cette manière, et quoique je me sous sou-
vent proposé des problèmes qui ont surpassé mes forces, je suis néanmoins
parvenu à une grand nombre de résultats généraux qui jettent un grand jour
sur la nature des quantités dont la connaissance est l’objet des mathéma-
tiques.

[One shall give the problem such a form that it is always possible to solve
it, something that one can always do with any problem. . . . In presenting a
problem in this manner, the mere wording of it contains the germ to its so-
lution and shows the route one should take. The reason why this method . . .
has been so little used in mathematics is the extreme complication to which it
appears to be subject to in the plurality of problems, especially if these are of
a certain general nature; but in many of these cases the complication is only
seemingly and vanishes at first sight. I have treated several topics in analysis
and algebra in this manner, and although I have often posed myself problems
that surpasses my powers, I have nevertheless attained a great number of gen-
eral results that have shed a broad light on the nature of these quantities, the
knowledge of which is the object of mathematics.]

Abel states what is the main object of the memoir he is working on:

Trouver l’expression algébrique la plus générale qui puisse satisfaire à
une équation (irréductible) d’un degré donné. On est conduit naturellement à
considérer deux cas, selon que le degré de l’équation est un nombre premier
ou non. Quoique nous n’ayons pas donné la solution complète de ce problème,
néanmois la marche naturelle de la solution a conduit à plusieurs propositions
générale, très remarquables en elles-même, et qui ont conduit à la solution du
problème dont nous occupons.
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[Find the most general algebraic expression that can satisfy an (irreducible)
equation of a given degree. One is naturally led to consider two cases, whether
the degree of the equation is a prime number or not. Although we have not
given the complete solution to this problem, nevertheless the natural path to its
solution has pointed the way to many general propositions—very remarkable
in their own right—which in turn has led to the solution of the problem with
which we are concerned.]

The above statement by Abel is significant in evaluating his approach to the the-
ory of equations compared to that of Galois. In fact, the criterion that Galois gave
for the solvability of an equation—to wit, that the Galois group is solvable—would
for Abel only have been a stepping stone for a more ambitious goal: to find an ex-
plicit form of the solution of a solvable and irreducible equation of a given degree.
As an illustrative example consider the formula (†) that he had sent to Crelle. The
roots of an (irreducible) quintic over Q (actually, over any field of characteristic
zero) have the form given in (†), where c, e,h,m,n,K,K ′,K ′′,K ′′′ are (rational)
parameters. Conversely, any expression of this form is a root of a quintic equa-
tion. In particular, for any given quintic equation one can choose the parameters so
that the formula in (†) gives a root. In Sur la résolution algébriques des équations
[3, XVIII] (which we will refer to as (A) in the sequel), Abel attacks the general
problem of finding the form of the roots of a solvable and irreducible equation.
He reduces the problem to so-called primitive equations, i.e., those that can not be
decomposed by Gauss method, as Galois would have formulated it. In today’s lan-
guage we would say that the equation can not be decomposed in a proper normal
subfield of the splitting field. The primitive (solvable) equations are necessarily of
prime power degree. Abel essentially gives the solution when the degree of the (ir-
reducible) equation is a prime number. Admittedly, there are some loose ends in his
proof, but as Sylow convincingly argues in his annotated comments [3, pp. 329–
338], these can be fixed by giving an expression that occur in the proof a more
careful reduction. While the manuscript is fully redacted in the beginning, it grad-
ually gets more sketchy, giving formulas with little text. This is, as Sylow remarks,
a peculiar feature of Abel’s way of working, of which there are many examples:
when he gets to a point where he sees some shortcomings in his argument, he will
subsequently jot down some keywords and formulas, reminding himself when he
later comes back to fix up the matter. An especially noteworthy example of this in
(A) is on page 241, where one finds the irreducible equation φρ = 0 (in Abel’s no-
tation) with roots ρ,ρ1, ρ2, . . . , ρν−1. Sylow makes a convincing argument (cf. [3,
pp. 336–337] and [18, p. 22 (and p. 23)]) that ρ must be interpreted as a primitive
element for a special field extension. It is an intriguing question what Abel would
have made of this in a final redaction. The similarity with how Galois introduced his
group is striking.

The salient feature in (A) is the role played by the Lagrange resolvent

(ε, x)= x0 + εx1 + ε2x2 + · · · + εn−1xn−1.

(Here ε is a primitive nth root of unity and x0, x1, x2, . . . , xn−1 are the roots of the
polynomial in question.) How the Lagrange resolvent transforms under specific per-
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mutations of the roots is the key to the proof. Specifically, Abel shows that if f (x) is
a solvable irreducible polynomial of prime degree p with roots x0, x1, x2, . . . , xp−1,
then there exists a tower of fields from the ground field F to the splitting field
E = F(x0, x1, . . . , xp−1) such that

F ⊆ · · · ⊆K(= F(s))⊆K(s1/p)=E
where K = F(s) is a normal extension of F such that the Galois group G(K/F) of
K over F is Abelian (in fact, cyclic). (We have assumed that F contains appropriate
roots of unity.) The polynomial f (x) is irreducible over K , and splits in linear fac-
tors over E =K(s1/p). Hence the problem of finding the form of the roots of f (x)
is reduced to the simpler problem: finding the form of the roots of an irreducible
Abelian (in fact, cyclic) equation of degree a divisor of p− 1. This latter problem is
not treated in (A). However, there is a page in his mathematical diary that deals with
this, and as we already mentioned the solution for p = 5 (over Q) was communi-
cated to Crelle, cf. (†). It was Kronecker who finished the edifice of which Abel laid
the foundation ([11] and [12]). In Weber’s book [26, Vol. 1, Chap. 17], Kronecker’s
proof is presented in detail. (In the aforementioned 1903-edition of Acta there is
an article by A. Wiman: Über die metacyclischen Gleichungen von Primzahlgrad,
where another proof is given. For a “modern” proof using Galois theory as it is
presented today, see [4].) What is noteworthy about (A) is that one can say with
some justification that Abel decomposes the Galois group G in normal subgroups
such that the consecutive quotients are Abelian groups, without actually “seeing”
the group G itself. This correlates with him constructing a tower of normal fields
over F , ending with the splitting field E:

F = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Ln =E
such that each field is a primary extension of the previous one; in other words,
Li+1 = Li(α1, α2, . . . , αmi ), where each αk is a root of a pure equation xpi−ak = 0;
ak ∈ Li , pi prime. From his analysis Abel is able to draw the conclusion that an
irreducible equation of prime degree is solvable if and only the splitting field is
generated by two arbitrary roots, which is Proposition VIII in Galois’ memoir [6].
(We refer to [8] for a detailed analysis of (A).)

The following paragraphs at the end of the Introduction in (A) are rather telling:

Des théorèmes généraux auxquels on est ainsi parvenu, on déduit ensuite
une règle générale pour reconnaître si une équation proposée est résoluble
ou non. En effet, on est conduit à ce résultat remarquable, que si une équation
irréductible est résoluble algébriquement, on pourra dans tous les cas trouver
les racines à l’aide de la méthode de Lagrange, proposée pour la résolution
des équations; savoir, en suivant la marche de Lagrange on doit parvenir à
des équations qui aient au moins une racine qui puisse s’exprimer rationnelle-
ment par les coefficiens. Il y a plus, Lagrange a fait voir qu’on peut ramener
la résolution d’une équation du degré . . . à celle de . . . équations respective-
ment des degrés . . . à l’aide d’une équation du degré . . . . Nous démontrerons



540 C. Skau

que c’est cette équation qui doit nécessairement avoir au moins une racine
exprimable rationnellement par ses coefficiens pour que l’équation proposée
soit résoluble algébriquement.

Donc, si cette condition n’est pas remplie, c’est une preuve incontestable
que l’équation n’est pas résoluble; mais il est à remarquer qu’elle peut être
remplie sans que l’équation soit en effet résoluble algébriquement. Pour le
reconnaître, il faut encore soumettre les équations auxiliaires au même exa-
men. Cependant dans le cas où le degré de la proposée est un nombre premier,
la première condition suffira toujours, comme nous le montrerons. De ce qui
précède, il a été facile ensuite de tirer comme corollaire qu’il est impossible
de résoudre les équations générales.

[From the general theorems that have been attained, one deduces next a
general criterion by which one can recognize whether a given equation is solv-
able or not. In fact, one is led to a remarkable result, namely if an irreducible
equation is algebraically solvable one can in all cases find the roots by means
of the method proposed by Lagrange for solving equations; specifically, by
following Lagrange’s approach one is bound to obtain equations that have at
least one root that can be rationally expressed by the coefficients. (Cf. La-
grange: Traité de la résolution des équations numériques de tous les degrés,
Note XIII (1806) [13, Vol. 8]. (Translator’s note).) Furthermore, Lagrange has
shown that one can reduce the solution of an equation of degree . . . to . . .
equations, respectively of degrees . . . by means of one equation of degree . . . .
We will prove that it is this latter equation that must necessarily have at least
one root that can be expressed rationally in terms of the coefficients, in order
that the given equation can be solved algebraically.

Hence, if this condition is not satisfied it is an indisputable proof that the
equation is not solvable; but we remark that the condition can be satisfied
without the equation being algebraically solvable. To decide solvability, one
must submit the auxiliary equations to the same test. However, in the case that
the degree of the given equation is a prime number, the first condition is also
necessary, as we will show. From the preceding it is easy to get as a corollary
that it is impossible to solve general equations.]

It is not a far-fetched guess that it was exactly this analysis of solvability of equa-
tions by Lagrange that Abel refers to that led both him and Galois initially to dis-
cover the criterion for when an irreducible equation of prime degree can be solved
by radicals. It is also noteworthy that Abel in the letter to Crelle where he commu-
nicated the formula (†) for the solution of the quintic, also writes the following:

Auf diese Weise lässt sich aber die Gleichung x5 + ax + b = 0 nicht au-
flösen, so lange a and b beliebige Grössen sind.

[However, an equation of the form x5 + ax + b = 0 can not be solved in
this manner (i.e., by radicals) if a and b are arbitrary.]

Let us remark that by a so-called Tschirnhausen transformation

x = d0 + d1y + d2y
2 + d3y

3 + d4y
4
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one can transfer the quintic equation

y5 + c4y
4 + c3y

3 + c2y
2 + c1y + c0 = 0

to the form x5 + ax + b= 0, where a, b and the di ’s can be expressed by adjoining
successively square and cube roots starting from the ground field F (containing
the ci ’s). Hence if x5 + ax + b = 0 can be solved by radicals then the original
quintic can also be solved by radicals. Even though Abel did not pursue this, he
knew full well that x5 + ax + b = 0 can be solved by radicals if and only if the
resolvent sextic equation that Lagrange had arrived at in his study of the general
quintic equation (adapted in an obvious way to a numerical equation) has a root
in the ground field. (Cf. Abel’s remark just above. Cf. also [26, Vol. 1, §188, VI,
p. 667].) For the equation x5 + ax + b= 0 the resolvent sextic becomes

(z− a)4(z2 − 6az+ 25a2)= 55b4z

This equation has a rational root (i.e., lying in F ) if and only if a and b are of the
form

a = 5μ4(4λ+ 3)

λ2 + 1
, b= 4μ5(2λ+ 1)(4λ+ 3)

λ2 + 1

for some μ,λ ∈ F , and so the equation x5+ax+b= 0 is solvable if and only if the
coefficients are like this (cf. [17]); for the “only if” part we need that the equation is
irreducible.) For the special case that F =Q, we get by setting μ=−5, λ=−24/7,
the irreducible equation

x5 − 2625x − 61500= 0

whose solution was known to Euler:

x = 5
√

75(5+ 4
√

10)+ 5
√

225(35+ 11
√

10)

+ 5
√

75(5− 4
√

10)+ 5
√

225(35− 11
√

10).

11 Kronecker’s Reaction

Kronecker was one of the first, if not the first, mathematician that was intimately
familiar with both Galois’ and Abel’s work on the theory of equations. It is of some
interest to hear his thoughts on this new theory. (We refer to the interesting arti-
cle: From Abel to Kronecker: Episodes from 19th Century Algebra by B. Petri and
N. Schappacher in [14] for another—partially overlapping our—perspective on the
Abel/Kronecker connection.) One should keep in mind that Abel’s manuscript (A)
first became known to the mathematical community in 1839, when the first edition
of Abel’s Oeuvres Complètes was published [1]. As for Galois’ manuscripts, they
were rescued from oblivion by Liouville, who published them in 1846 in the journal
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he had founded, Journal de Mathématiques Pures et Appliquées. In his article Über
die algebraisch auflösbaren Gleichungen [11] from 1853, Kronecker writes:

Die bisherigen Untersuchungen über die Auflösbarkeit von Gleichungen,
deren Grad eine Primzahl ist – namentlich die Abelschen und Galoisschen,
welche die Grundlage aller weiteren Forschungen in diesem Gebiete bilden –
haben im Wesentlichen als Resultat zwei Kriterien ergeben, vermittelst deren
man beurtheilen könnte, ob eine gegebene Gleichung auflösbar sei oder nicht.
Indessen gaben diese Kriterien über die Natur der auflösbaren Gleichungen
selbst eigentlich nicht das geringste Licht. Ja, man konnte eigentlich gar nicht
wissen, ob (außer den von Abel im IV. Bande des Crelleschen Journals be-
handelten und den einfachsten mit den binomischen Gleichungen zusammen-
hängenden) überhaupt noch irgend welche Gleichungen existiren, welche die
gegebenen Auflösbarkeits-Bedingungen erfüllen. Noch weniger konnte man
solche Gleichungen bilden, und man ist auch durch sonstige mathematis-
che Untersuchungen nirgends auf solche Gleichungen geführt worden. Dazu
kommt noch, daß jene beiden erwähnten und wohl allgemein bekannten, von
Abel und Galois gegebenen Eigenschaften der auflösbaren Gleichungen zufäl-
liger Weise solche waren, die die wahre Natur dieser Gleichungen eher zu
verdecken als aufzuklären geeignet sein dürften, wie ich das namentlich von
dem einen jener beiden Kriterien späterhin zeigen werde. Und so blieben die
auflösbaren Gleichungen selbst bisher in einem gewissen Dunkel, welches nur
durch die übrigens, wie es scheint, wenig beachtete und ganz spezielle Notiz
Abels über die Wurzeln ganzzahliger Gleichungen fünften Grades ein wenig
erhellt wurde. . . .

Abel hat in seiner fragmentarischen Abhandlung über die algebraische
Auflösung der Gleichungen (No. XV. des zweiten Bandes der gesammelten
Werke) unter andern Problemen wörtlich folgendes aufgestellt: “Den all-
gemeinsten algebraischen Ausdruck zu finden, welcher einer Gleichung von
einem gegebenen Grade genügen könne.” Fügt man diesem Probleme das-
jenige hinzu, was erforderlich ist, um es zu einem bestimmten zu machen, so
enthält es in der That alle Probleme in sich, die man in Bezug auf die Auflös-
barkeit der Gleichungen stellen kann, und ist namentlich die wichtigste Ver-
allgemeinerung des (als in gewissem Sinne zu speziell) unlösbaren Problems
“die Wurzel einer Gleichung irgend eines Grades als algebraische Function
ihrer Coëfficienten auszudrücken.” Es ist nun aber, wie gesagt, bei obigem
Probleme noch erforderlich, den Zusammenhang zwischen dem gesuchten al-
gebraischen Ausdruck und den Coëfficienten der Gleichung zu bestimmen;
deshalb ist die Aufgabe vielmehr dahin stellen:

“Die allgemeinste algebraische Function irgend welcher Größen A, B , C,
. . . zu finden, welche einer Gleichung von einem gegebenen Grade genügt,
deren Coëfficienten rationale Functionen jener Größen sind.”

[The study so far about solvability of equations of prime degree—above
all due to Abel and Galois, which is the foundation of all further research in
this area—has essentially resulted in two criteria by which one can decide
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whether a given equation is solvable or not. Nevertheless, these criteria throw
absolutely no light on the equations themselves. Indeed, one knows in reality
nothing at all which equations exist that satisfy the given solvability criteria
(except for the special class of equations that Abel treated in the 4th volume of
Crelle’s journal (Cf. [2, XXV]), and which are closely related to the binomial
equations). Even less can one construct such equations, and one is also by
other mathematical considerations never led to such equations. In addition,
both the aforementioned properties of solvable equations that Abel and Galois
gave—which are probably commonly known—happen to be such that they
rather conceal the true nature of these equations than throw light upon them,
something which I will show later for one of these criteria in particular. Hence
the solvable equations themselves remain so far in darkness, so to say, except
for the otherwise scarcely noticed and quite special note by Abel about the
roots of quintic equations with integer coefficients (Cf. formula (†) above),
which sheds a little light. . . .

In his fragmentary memoir on algebraically solvable equations (No. XV. in
the second volume of his Oeuvres Complètes (Cf. [3, XVIII])) Abel states the
following problem: “Find the most general algebraic expression which can be
root of an equation of a given degree”. If one adds to this problem a necessary
precision, then it comprises in fact all problems that one can state with respect
to solvability of equations, and it is above all the most important generaliza-
tion of the (in a certain sense too special) unsolvable problem: “express the
root of an equation of any degree as an algebraic function of its coefficients.”
As we said, it is necessary with regard to the above problem to determine the
connection between the sought after algebraic expression and the coefficients
of the equation; therefore the problem should rather be stated as:

“Find the most general algebraic function of any quantities A, B , C, . . .
which is a root of an equation of a given degree, where the coefficients are
rational functions of these quantities.”]

In a letter to Dirichlet (dated January 31, 1853), commenting on (A), Kronecker
is even more direct when he writes:

Überhaupt sieht man daraus die wahre Beschaffenheit der auflösbaren
Gleichungen, die man aus den Galoisschen Untersuchungen durchaus nicht
erkennen kann: denn Galois nimmt sich nur die eine Aufgabe vor “die Be-
dingung der Auflösbarkeit” zu finden, während Abel auch die andere berück-
sichtigt “alle auflösbaren Gleichungen zu finden.”

[From this one sees the true nature of the solvable equations, which it is
impossible to glean from Galois’s investigations. For Galois only takes up
the task to find “the condition of solvability”, whereas Abel also takes into
account the other one, “to find all solvable equations.”]

There are several comments to be made to what Kronecker writes in [11] which
are highly relevant for our topic. Firstly, Kronecker addresses straightforwardly the
natural question one would ask if one is confronted with the problem of solvabil-
ity of algebraic equations. In fact, this is exactly what Lacroix and Poisson wrote
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in their referee report on Galois’ memoir: The condition for solvability, if it exists,
should be an external character which one might verify by inspection of the coef-
ficients of a given equation, or at the worst, by solving other equations of degree
lower than the one given. This Abel realized was the wrong question to ask (cf. his
comments in the Introduction to (A)), and Kronecker concurs. The reason is that it is
“unsolvable” (note the double entendre). The right question to ask, which turns out
to be “solvable”, is the one Abel raises and which Kronecker makes precise: “Find
the most general algebraic function of any quantities A,B,C, . . . which is a root of
an equation of a given degree, where the coefficients are rational functions of these
quantities.” The problem is reduced to so-called primitive equations and these are
necessarily of prime power degrees n= pm, p prime. Kronecker writes in [11]:

In diesen Fällen aber bietet das Problem, mit Ausnahme einiger bloßen
Complicationen, auch keine größere Schwierigkeit dar, als wenn n = p eine
primzahl ist.

[In these cases, however—apart from a few complications—the problem
does not present greater difficulty as when n= p is a prime number.]

This is an understatement, though, as can be seen from Galois’ fragment of a second
memoir: Des équations primitives qui sont solubles par radicaux (see the reference
to his collected works in [6]), and also by looking at Jordan’s treatment of this in
[10]. The complications are indeed considerable.

As an example, illustrating the general case, we mention that Abel’s formula (†)
is not “a solution of solvable quintics” in the sense that the quadratic formula is a
solution of quadratics, because it does not give an algorithm for going from a given
solvable quintic to an expression of its roots in terms of radicals. Instead, as we
said earlier, given any solvable quintic, then it is possible to choose values for the
parameters that appear in the expression so that it is a root of the given quintic. (For
more specifics on this, cf. [4, Appendix 3].)

As we already remarked, Abel reduces the problem of finding the algebraic ex-
pression for the roots of a solvable and irreducible equation of prime degree to
finding the form of the roots of an Abelian (actually, cyclic) equation. This is the
problem Kronecker attacks in [11] and [12]. At the end of the article [11] he an-
nounces the following remarkable result:

Die Wurzel jeder Abelschen Gleichung mit ganzzahligen Coëfficienten
kann als rationale Function von Wurzeln der Einheit dargestellt werden.

[The root of every Abelian equation with integer coefficients can be ex-
pressed as a rational function of roots of unity.]

This is the famous Kronecker–Weber theorem that was proved by Weber in 1886.
(There is a small gap in his proof that was finally settled by Hilbert in 1896.) An-
other way to state the theorem is to say that the maximal Abelian extension Qab

of Q is generated by roots of unity. (Remember that the roots of unity are of the
form e2πir , where r is a rational number.) But Kronecker does not stop here. Being
aware that Abel had studied Abelian extensions of the field Q(i) in connection with
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dividing the arc of the lemniscate, Kronecker in [11] raises the conjecture: Every
Abelian extension of Q(i) is contained in a field obtained from Q(i) by adjoining
a certain value of the lemniscate elliptic function φ = sl. Specifically, he expected
that every finite Abelian extension of Q(i) lies in some field Q(i, sl( ω

m
)), wherem is

an integer and ω≈ 2.622 is the lemniscate analogue of 2π . This is of course similar
to the Kronecker–Weber theorem, with sl(ω/m) analogous to e2πi/m, and it was
rigorously proved by Takagi, who was a student of Hilbert, in his thesis from 1903.
Extending Abel’s work, Kronecker was able to generate Abelian extensions of any
imaginary quadratic field using special values of elliptic and modular functions. In
a letter to Dedekind dated March 15, 1880, he writes:

Es handelt sich um meinen liebsten Jugendtraum, nämlich um den Nach-
weis, dass die Abel’schen Gleichungen mit Quadratwarzeln rationaler Zahlen
durch die Transformations – Gleichungen elliptischer Funktionen mit sin-
gulären Moduln grade so erschöpt werden, wie die ganzzahligen Abel’schen
Gleichungen durch die Kreistheilungsgleichungen.

[It concerns the dearest dream of my youth, to wit, the proof that the
Abelian equations with [coefficients] square roots of [negative] rational num-
bers are exhausted by the transformation equations of elliptic functions with
singular moduli, exactly in the same way as the Abelian equations with integer
[coefficients] are by the cyclotomic equations.]

To make a long story short, Kronecker’s Jugendtraum would inspire Hilbert to
formulate his 12th problem, one of the famous 23 problems he presented at the Inter-
national Congress of Mathematicians (ICM) in Paris in 1900. Kronecker’s Jugend-
traum is intimately related to complex multiplication, and a fortiori to the elliptic
functions that admit this. Hilbert held his 12th problem in high esteem as is docu-
mented by his comment about it at the 1932 ICM congress in Zürich: The theory of
complex multiplication (of elliptic modular functions) which forms a powerful link
between number theory and analysis, is not only the most beautiful part of mathe-
matics but also of science.

This mathematical field, part of algebraic number theory, became known as Class
Field Theory, and has been a very important research area in the 20th century.
Broadly speaking, class field theory is the study of Abelian extensions of number
fields K (i.e., K is a finite extension of the rationals Q). The first two class field
theories, the “classical” ones, were the very explicit cyclotomic and complex mul-
tiplication class field theories that we already have encountered. As we pointed out
they use additional structures: in the case of the field of rational numbers they use
roots of unity; in the case of imaginary quadratic extensions of the rational numbers
they use elliptic curves (respectively, elliptic functions) with complex multiplication
and their points of finite order (respectively, division of the periods). By 1930 the
classical Kronecker Jugendtraum conjectures were proved. (We refer to a fascinat-
ing historical survey of this, with the tantalizing title: On the History of Hilbert’s
Twelfth Problem. A Comedy of Errors [20].)

Summing up the development we have just sketched it is safe to say that Class
Field Theory has, at least partly, its genesis in Abel’s work on the theory of equa-
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tions. He put Abelian extensions at the forefront both in connection with the (gen-
eral) teilungsgleichungen, and also with the special teilungsgleichungen in the com-
plex multiplication case, thereby connecting it with torsion points on the associated
elliptic curve (via the Weierstrass parametrization). Furthermore, he reduced the so-
lution of solvable prime degree equations to Abelian (in fact, cyclic) equations. It
certainly inspired Kronecker to his Jugendtraum conjecture. This is an example—of
which there are many in mathematical history—of a problem, in this case solvabil-
ity of equations, leading to theories that are much more important than the original
problem; Fermat’s theorem, concerning a special diophantine equation, is another
example of this phenomenon. (However, truth be said, the problem of solvability
of equations by radicals has enjoyed by itself—and still does—an incomparably
higher fascination with mathematicians than the diophantine equations of Fermat,
which are more of a curiosity!)

12 Galois’ Legacy

Arguably the most important theory that came out of the quest for a solvability
criterion for equations was Galois Theory—including the emergence of the group
concept. It has all the hallmarks of a great mathematical theory:

• Solved a very old problem—the most important—about equations.
• Extremely comprehensive theory—goes far beyond the original question.
• Based on only a few principles of great elegance and simplicity which are formu-

lated within a new framework with new concepts which demonstrate the greatest
originality.

• The new viewpoints and concepts, especially the concept of a group, opened new
paths and had a lasting influence on the whole of mathematics.

Galois deserves the highest accolades for his insistence on the conceptual char-
acter of mathematics, and his instinct for seeing problems according to the deep
connections of their structure rather than their superficial appearance. In this respect
he has much in common with Abel. While Galois’ presentation of his theory seems
so concise and clear to modern readers, this was not at all the case with many of his
contemporaries. They found his theory almost incomprehensible, and it was only
gradually that it gained the status it fully deserved. Galois was simply ahead of his
times.

It was first with Camille Jordan’s great treatise Traité des substitutions et des
équations algébriques [10], which appeared in 1870, that Galois Theory became
part of the mathematical canon, so to say. Jordan toned down the solvability aspect
and stressed more the group theoretic aspect. His Traité can rightfully be considered
to be the first text on group theory. (Incidentally, it is a little ironic that right after
Traité was published, Sylow discovered and proved the three theorems about finite
groups named after him; these fundamental theorems are therefore not in Traité.)
Gradually Galois Theory was being severed, though not completely, from its con-
nections with its past. No longer was it viewed as having any necessary connection
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with solvability of equations. Galois Theory became a theory about the structure of
fields and their automorphisms.

13 Twists of Fate—Poetic Justice

If Abel had stayed healthy long enough to be able to complete and publish the
manuscript (A), this would inevitably have had repercussions vis-à-vis the status
of Galois in mathematics, since the latter should die so young. Abel would then
almost certainly be given the credit for having solved the outstanding problem in
the theory of equations: find a criterion for when a (numerical) algebraic equation
can be solved by radicals. This notwithstanding that he may not have identified
the group of the equation, as Galois did. But we think this should be seen in a
different light: there is a poetic justice, if we may use the expression, that Abel did
not publish (A), thereby reserving the glory for Galois. After all, Abel unwittingly
had a similar encounter with fate that benefited him. In fact, in a letter sent from Paris
to Holmboe at the beginning of December 1826 he writes that he plans to make
a detour on his trip from Paris to Berlin to visit Göttingen and Gauss. However,
he had changed his plans a few weeks later when he left Paris (the city he had
wistfully call “the focus of all my mathematical desires”, but which had been such
a disappointment for him). Ostensibly he was almost broke and could not afford
to visit Göttingen, but had to go straight to Berlin where he hoped money from
Norway had arrived. (For more details, cf. [23].) So by a twist of fate Abel never
met Gauss. Under ordinary circumstances it would have been marvellous if the two
of them had met, but since Abel’s life was so short a meeting with Gauss would
probably have had repercussions, similarly as with Galois, with regard to his status
in mathematics. In an imagined meeting between the two Abel would surely have
told Gauss about his discoveries concerning elliptic functions, which he thought he
alone was in possession of, only to be told by Gauss that he had made more or less
the same discoveries much earlier. When Abel returned to Oslo in May 1827 after
his trip abroad—a trip that had lasted altogether one year and eight months—he
wrote up his discoveries in a long memoir that was published in two instalments in
Crelle’s journal.

After the first part of the memoir, Recherches sur les fonctions elliptiques [2,
XVI], appeared in Crelle’s journal on September 20, 1827 (the second part appeared
May 26, 1828), Bessel, who was a close friend and confidant of Gauss, wrote a letter
(dated November 30, 1827) to Gauss encouraging him to publish his discoveries on
elliptic functions. In a letter dated March 30, 1828 (cf. Gauss, Werke, Band X, pp.
248–249) Gauss writes back:

Zur Ausarbeitung der seit vielen Jahren (1798) angestellten Untersuchun-
gen über die transcendenten Functionen werde ich vorerst wol noch nicht
kommen können, da erst noch mit manchen andern Dingen aufgeräumt wer-
den muss. Hr. Abel ist mir, wie ich sehe, jetzt zuvorgekommen und überhebt
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mich in Beziehung auf etwa 1/3 dieser Sachen der Mühe, zumahl da er alle En-
twickelungen mit Eleganz und Concision gemacht hat. Er hat gerade densel-
ben Weg genommen, welchen ich 1798 einschlug, daher die grosse Übere-
instimmung der Resultate nicht zu verwundern ist. Zu meiner Bewunderung
erstreckt sich dies sogar auf die Form und zum Theil auf die Wahl der Ze-
ichen, so dass manche seiner Formeln wie eine reine Abschrift der meinigen
erscheinen. Jeder Misdeutung zuvorzukommen bemerke ich jedoch, dass ich
mich nicht erinnere, von diesen Sachen irgend jemanden etwas mitgetheilt zu
haben.

[I shall most likely not soon prepare my investigations on the transcenden-
tal functions which I have had for many years—since 1798—because I have
many other matters which must be cleared up. Herr Abel has now, as I see,
anticipated me and relieved me of the burden in regard to about one third of
these matters, particularly since he has executed all developments with great
stringency and elegance. He has followed exactly the same road which I trav-
eled in 1798; it is no wonder that our results are so similar. To my surprise
this extended also to the form and even, in part, to the choice of notations,
so several of his formulas appeared as if they were copied from mine. But to
avoid every misunderstanding, I must observe that I cannot recall ever having
communicated any of these investigations to others.]

14 The Abel–Galois Linkage

As we have already mentioned both Abel and Galois had read and were familiar with
the works of Lagrange and Gauss on the theory of equations. In Gauss’ case this
meant his investigation of cyclotomic equations [7, Chap. VII] and in Lagrange’s
case it meant his analysis of the solvability of the general equation, including his
use of the resolvent named after him. The interesting question is what Galois learned
from Abel? One word about access first: Abel wrote all his manuscripts in French
except the very first ones which were written in Norwegian, but these were of mi-
nor importance. French was by far his best foreign language. It was only in more
private letters to Crelle he would sometimes write in German, like the letter which
is the background for this article, and also the note above containing the formula
(†). However, in the first issue (in 1826) of Crelle’s journal all the six papers by
Abel were translated by Crelle into German. (One should keep in mind that Crelle’s
plan was to create a German language journal in mathematics.) In the ensuing years
Crelle did not translate Abel’s memoirs on elliptic functions or equations, presum-
ably because of all the work it required, so these appeared in French. Furthermore,
concerning the paper in the 1826 issue of Crelle’s journal on the unsolvability of
the general equation (of degree higher than four), Abel wrote a rather detailed sur-
vey article about this particular paper in French during his sojourn in Paris, and it
was published in Férussac’s Bulletin des Sciences in the autumn of 1826. We know
that Galois, besides publishing papers himself in Férrusac’s Bulletin (see above),
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did consult the current publications received in the office of that journal (including
those from Crelle’s journal). He enjoyed the support of the editor (and his friend)
Charles Sturm. We know that Galois kept abreast with Abel’s (and to a certain extent
with Jacobi’s) papers on the theory of equations and elliptic functions. For an excel-
lent survey on this see René Taton’s paper: Évariste Galois and his contemporaries
[24]. Taton states unequivocally that it was the publications and the posthumous
works (excepting (A), of course, which appeared in 1839) of Abel that influenced
Galois the most and aroused in him the most lively and passionate reactions. Galois
asserted, for example, that Abel’s proof of the impossibility of solving the general
equation of degree n≥ 5 depended on “des raisonnement relatifs au degré des équa-
tions auxiliaires” [“arguments concerning the degree of auxiliary equations”], and
had no connection with his own theory. Referring to the memoir by Abel: Sur une
classe particulière d’équations résolvables algébriquement [2, XXV], he observed
that Abel had “rien laisse” [“not left anything”] relevant for the general solvability
problem that he, Galois, treated. We have already encountered (see above) another
outburst of Galois about his relation to Abel. What should one make of all this, with
its passionate style? To make any judgement on this one should keep in mind that
Galois had presented two articles on the theory of equations to the Académie des
Sciences on May 25th and June 1st, 1829, by a very qualified judge, Cauchy. These
articles are lost. Apparently on the advice of Cauchy he prepared a new memoir,
Sur les conditions pour qu’une équation soit soluble par radicaux, which he sub-
mitted in February 1830 to be considered for the Grand Prix de Mathématiques
of the Académie. At the end of June 1830 Galois learned that the prize had been
awarded to Abel (posthumously) and Jacobi for their work on elliptic functions. He
was disappointed and angry that the Académie preferred their work to his, and to
top it off his manuscript was lost. Also, the shadow of Abel kept haunting him: after
he submitted to the Académie his great memoir [6] on January 16, 1831, he did not
anticipate being once more in competition with Abel, dead almost two years earlier.
All this, together with his deep personal problems and disappointments—not to talk
about his political ones, resulting in imprisonment—left an embittered young man
who was fully aware of his own genius, but not getting the recognition he craved.
With this as background it is not difficult to understand Galois’ passionate outbursts.
We think the careful and measured words of Sylow in [18, p. 24 (and p. 26)], trying
to sum up in a few words the impact of Abel’s work on Galois, are worth quoting
(in its French translation of the original Norwegian):

Abel a donc certainement préparé d’une manière trés effective les décou-
vertes de Galois, mais il n’y a rien dans ses mémoires ni dans ses papiers qui
donne aucune indication certaine qu’il ait vu la théorie des équations d’un
point de vue aussi général que Galois.

[Abel has therefore certainly effectively prepared the ground for Galois’
discoveries, but there is nothing in his memoirs or his Nachlass that give any
secure information that he has seen the theory of equations from such a gen-
eral viewpoint as Galois.]
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Just a few years separated Abel and Galois. The theory of equations made
tremendous strides forward between 1824 (the year Abel proved the insolvability
of the general equation of degree n≥ 5) and 1832, and came to an abrupt end with
the death of the two protagonists, Abel and Galois. If they had a normal lifespan
their contemporaries would have witnessed a competition that would have pushed
the frontier of the theory of equations (read Galois Theory), and algebra in general,
vastly forward.

The similarities between their two lives are striking in so many ways, even though
they as personalities were entirely different. Here is a list:

• Both Abel and Galois were first and foremost algebraists.
• Their favorite topic was the theory of equations. (As a curious aside we mention

that both initially thought they had solved the general quintic by radicals!)
• Their hopes for recognition and fame were dashed by l’Académie des Sciences;

Abel because of neglect; Galois because of incomprehension.
• Both lost their fathers in tragic circumstances when they were at the tender age

of 18. While Galois’ father committed suicide, Abel’s father made a scandal and
was viciously ridiculed while he was an elected representative of the Storting
(Parliament). Deeply depressed this hastened his death two years later, affecting
the young Abel profoundly.

• They both had inspiring teachers in high-school that kindled their passion for
mathematics when they were aged around 16 years; in Abel’s case this was B.M.
Holmboe; in Galois’ case this was M. Vernier and, especially, L.P.E. Richard.

• Both learned mathematics at a deeper level by reading and studying the masters,
especially Euler, Lagrange, Gauss, and to a lesser degree Legendre.

What can then be more fitting than end this article with a citation of something
Abel wrote (in French) in the margin of the mathematical diary that he kept during
his sojourn in Paris:

Au reste il me paraît que si l’on veut faire des progrès dans les mathéma-
tiques il faut étudier les maîtres et non pas les écoliers.

[It appears to me that if one wants to make progress in mathematics, one
should study the masters, not the pupils.]

References

1. Abel, N.H.: Oeuvres Complètes (1839). Publiée par B.M Holmboe, Christiania
2. Abel, N.H.: Oeuvres Complètes. Nouvelle Édition, Tome 1 (1881). Publiée par L. Sylow et

S. Lie, Christiania
3. Abel, N.H.: Oeuvres Complètes. Nouvelle Édition, Tome 2 (1881). Publiée par L. Sylow et

S. Lie, Christiania
4. Edwards, H.M.: Roots of solvable polynomials of prime degree, preprint (2012), 12 p. (To

appear in Exp. Math.) doi:10.1016/j.exmath.2013.09.005
5. Fricke, R.: Elliptische Funktionen. In: Enzyklopädie der Mathematischen Wissenschaften,

IIB3. Analysis, pp. 177–348. Teubner, Leipzig (1901–1921)

http://dx.doi.org/10.1016/j.exmath.2013.09.005


Abel and the Theory of Algebraic Equations 551

6. Galois, É.: Sur les conditions de résolubilité des équations par radicaux, Oeuvres Mathéma-
tiques d’Évariste Galois (Préface par J. Liouville). J. Math. Pures Appl. 11, 381–444 (1846)
(Éditions Jacques Gabay (1989))

7. Gauss, C.F.: Disquisitiones Arithmeticae. Yale Univ. Press, Leipzig (1801), (English transla-
tion: Disquisitiones Arithmeticae (A.A. Clarke, translator) (1966))

8. Gårding, L., Skau, C.: Niels Henrik Abel and solvable equations. Arch. Hist. Exact Sci. 48,
81–103 (1994)

9. Hölder, O.: Galois’che Theorie mit Anwendungen. In: Enzyklopädie der Mathematischen
Wissenschaften, IB 3c,d. Arithmetik und Algebra, pp. 480–520. Teubner, Leipzig (1898–
1904)

10. Jordan, C.: Traité des substitutions et des équations algébriques. Gauthier-Villars, Paris (1870)
11. Kronecker, L.: Über die algebraisch auflösbaren Gleichungen, I. Abhandlung, Monatsberichte

Kgl. Preuss. Akad. Wiss. Berlin IV, 365–374 (1853), refers to Vol. 4 of Kronecker’s Collected
Works, 3–11

12. Kronecker, L.: Über die algebraisch auflösbaren Gleichungen, II. Abhandlung, Monats-
berichte Kgl. Preuss. Akad. Wiss. Berlin IV, 203–215 (1856), refers to Vol. 4 of Kronecker’s
Collected Works, 27–37

13. Oeuvres de Lagrange, publiées par J.-A. Serret, Gauthier-Villars, Paris (1869)
14. Laudal, O.A., Piene, R. (eds.): The Legacy of Niels Henrik Abel, the Abel Bicentennial, Oslo,

2002. Springer, Berlin (2004)
15. Neumann, P.M.: The mathematical writings of Évariste Galois. Heritage of European Mathe-

matics. European Math. Soc., Zürich (2011)
16. Ore, Ø.: Niels Henrik Abel. Mathematician Extraordinary. Chelsea, New York (1957)
17. Runge, C.: Über die auflösbaren Gleichungen von der Form x5 + ux + v = 0. Acta Math. 7,

173–186 (1885)
18. Sylow, L.: Abels studier og hans oppdagelser. Festskrift ved hundreaarsjubileet for Niels Hen-

rik Abels fødsel (1902), 56 p. Kristiania (French translation: Les études d’Abel et ses décou-
vertes)

19. Sylow, L.: Om Abels arbeider og planer i hans sidste tid belyst ved dokumenter, som er
fremkomne efter den anden udgave av hans verker, 3rd edn. Scandinavian Mathematical
Congress. Kristiania (1913). English translation in “I sporet etter Abel” (“Tracing Abel”),
Scatec, 118–127 (2009)

20. Schappacher, N.: On the history of Hilbert’s twelfth problem. A comedy of errors. In: Matéri-
aux pour l’histoire des mathématiques au XXe siècle, Actes du colloque á la mémoire de Jean
Dieudonné, Nice, 1996. Séminaires et Congrès, Société Mathématique de France, vol. 3, pp.
243–273 (1998)

21. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106.
Springer, New York (1986)

22. Silverman, J.H., Tate, J.: Rational Points on Elliptic Curves. Undergraduate Texts in Mathe-
matics. Springer, New York (1992)

23. Stubhaug, A.: Et foranskutt lyn. Niels Henrik Abel og hans tid. Aschehoug, Oslo (1996) (En-
glish translation: Called Too Soon by Flames Afar. Niels Henrik Abel and his Times, Springer,
Berlin (2000))

24. Taton, R.: Évariste Galois and his contemporaries. Bull. Lond. Math. Soc. 15, 107–118 (1983)
25. van der Waerden, B.L.: Die Galois-Theorie von Heinrich Weber bis Emil Artin. Arch. Hist.

Exact Sci. 9, 240–248 (1972)
26. Weber, H.: Lehrbuch der Algebra. Vieweg und Sohn, Braunschweig (1895) (Reprint of 2nd

edition, AMS Chelsea Publishing, New York)



The Abel Committee

2008
Kristian Seip (Norwegian University of Science and Technology, Norway), chair
Hans Föllmer (Humboldt University, Germany)
Sir John Kingman (University of Bristol, UK)
Dusa McDuff (Columbia University, USA)
Efim Zelmanov (University of California at San Diego, USA)

2009
Kristian Seip (Norwegian University of Science and Technology, Norway), chair
Sir John Kingman (University of Bristol, UK)
Sergey Novikov (University of Maryland, USA)
Neil Trudinger (Australian National University, Australia)
Efim Zelmanov (University of California at San Diego, USA)

2010
Kristian Seip (Norwegian University of Science and Technology, Norway), chair
Björn Engquist (University of Texas at Austin, USA, and Royal Institute of Tech-
nology, Sweden)
Hendrik W. Lenstra (University of Leiden, The Netherlands)
Sergey Novikov (University of Maryland, USA)
Neil Trudinger (Australian National University, Australia)

2011
Ragni Piene (University of Oslo, Norway), chair
David Donoho (Stanford University, USA)
Björn Engquist (University of Texas at Austin, USA, and Royal Institute of Tech-
nology, Sweden)
Hendrik W. Lenstra (University of Leiden, The Netherlands)
M.S. Raghunathan (Tata Institute of Fundamental Research, India)

H. Holden, R. Piene (eds.), The Abel Prize 2008-2012,
DOI 10.1007/978-3-642-39449-2, © Springer-Verlag Berlin Heidelberg 2014

553

http://dx.doi.org/10.1007/978-3-642-39449-2


554 The Abel Committee

2012
Ragni Piene (University of Oslo, Norway), chair
Noga Alon (Tel Aviv University, Israel)
David Donoho (Stanford University, USA)
M.S. Raghunathan (Tata Institute of Fundamental Research, India)
Terence Tao (University of California at Los Angeles, USA)



The Niels Henrik Abel Board

2008
Ragnar Winther (chair)
Kari Gjetrang
Arne Bang Huseby
Idun Reiten
Leiv Storesletten
Reidun Sirevåg (observer)

2009
Ragnar Winther (chair)
Kari Gjetrang
Arne Bang Huseby
Idun Reiten
Leiv Storesletten
Reidun Sirevåg (observer)

2010
Ragnar Winther (chair)
Kari Gjetrang
Arne Bang Huseby
Idun Reiten
Leiv Storesletten
Øivind Andersen (observer)

H. Holden, R. Piene (eds.), The Abel Prize 2008-2012,
DOI 10.1007/978-3-642-39449-2, © Springer-Verlag Berlin Heidelberg 2014

555

http://dx.doi.org/10.1007/978-3-642-39449-2


556 The Niels Henrik Abel Board

2011
Helge Holden (chair)
Anne Borg
Kari Gjetrang
Arne Bang Huseby
Hans Munthe-Kaas
Øivind Andersen (observer)

2012
Helge Holden (chair)
Anne Borg
Kari Gjetrang
Arne Bang Huseby
Hans Munthe-Kaas
Øivind Andersen (observer)



The Abel Lectures 2003–20121

2003
J.-P. Serre (Collège de France): Finite subgroups of Lie groups
T.A. Springer (University of Utrecht): The compactification of a semi-simple
group
P. Sarnak (Princeton University): L-functions and equidistributions
B. Mazur (Harvard University): Spectra and L-functions

2004
Sir M.F. Atiyah (Edinburgh University): Index theory in mathematics: a historical
survey
I.M. Singer (Massachusetts Institute of Technology): Index theory in quantum
physics
J.-M. Bismut (Université Paris-Sud): The Atiyah–Singer index theorem and the
heat equation
E. Witten (Institute for Advanced Study): Some mathematical physics related to
the work of Atiyah and Singer

2005
P.D. Lax (New York University): Abstract Phragmen–Lindelöf theorem & Saint
Venant’s principle
S. Noelle (Rheinisch-Westfälische Technische Hochschule Aachen University):
Systems of conservation laws
P. Sarnak (Princeton University): Hyperbolic equations and spectral geometry
S. Vanakides (Duke University): Rigorous semiclassical asymptotics for inte-
grable systems: The KdV and focusing NLS cases

1Some of the lectures have been recorded, and they can be streamed from the Abel Prize web
site www.abelprize.no or the Springer web site http://www.springerimages.com/videos/978-3-642-
39449-2.

H. Holden, R. Piene (eds.), The Abel Prize 2008-2012,
DOI 10.1007/978-3-642-39449-2, © Springer-Verlag Berlin Heidelberg 2014

557

http://www.abelprize.no
http://www.springerimages.com/videos/978-3-642-39449-2
http://www.springerimages.com/videos/978-3-642-39449-2
http://dx.doi.org/10.1007/978-3-642-39449-2


558 The Abel Lectures 2003–2012

2006
L. Carleson (Royal Institute of Technology): A Scandinavian chapter in analysis
L.-S. Young (New York University): A mathematical theory of strange attractors
O. Schramm (Microsoft Research): Conformally invariant random processes
S.-Y.A. Chang (Princeton University): Conformal invariants and differential
equations

2007
S.R.S. Varadhan (New York University): A short history of large deviations
G. Papanicolaou (Stanford University): Stochastic analysis in finance
O. Zeitouni (University of Minnesota): Large deviations at work
T. Lyons (University of Oxford): Modelling diffusive systems

2008
J.G. Thompson (University of Florida): Dirichlet series and SL(2,Z)
J. Tits (Collège de France): Algebraic simple groups and buildings
M. Broue (Université Paris Diderot): Building cathedrals and breaking down re-
inforced concrete walls
A. Lubotsky (Hebrew University): Simple groups, buildings and applications

2009

M.L. Gromov (Institut des Hautes Études Scientifiques and New York Univer-
sity): Abel Lecture
J. Cheeger (New York University): How does he do it?
M.R. Bridson (University of Oxford): Geometry everywhere: Fiat lux!
G. Sapiro (University of Minnesota): One small step for Gromov, one giant leap
for shape analysis: A window into the 2009 Abel Laureate’s contribution in com-
puter vision and computer graphics [Science Lecture]

2010
J.T. Tate (University of Texas at Austin): The arithmetic of elliptic curves
R. Taylor (Harvard University): The Tate conjecture
A. Enge (INRIA Bordeaux-Sud-Oust): The queen of mathematics in communica-
tion security [Science Lecture]

2011
J. Milnor (Stony Brook University): Spheres
C.T. McMullen (Harvard University): Manifolds, topology and dynamics
M. Hopkins (Johns Hopkins University): Bernoulli numbers, homotopy groups,
and Milnor
É. Ghys (École Normale Supérieure de Lyon): A guided tour of the seventh di-
mension [Science Lecture]
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2012
E. Szemerédi (Hungarian Academy of Sciences and Rutgers University): In every
chaos there is order
L. Lovász (Eötvös Loránd University): The many facets of the Regularity Lemma
T. Gowers (University of Cambridge): The afterlife of Szemerédi’s theorem
A. Wigderson (Institute for Advanced Study): Randomness and pseudorandom-
ness [Science Lecture]



The Abel Laureate Presenters 2003–2012

In March each year when the President of the Norwegian Academy of Science and
Letters announces the Abel Laureate and the Chair of the Abel Committee states the
reasons for the selection, a mathematician presents the work of the Laureate. Below
we list the presenters for the period 2003–2012:

2003 (J.-P. Serre) Arne B. Sletsjøe, University of Oslo
2004 (M.F. Atiyah and I.M. Singer) John Rognes, University of Oslo
2005 (P.D. Lax) Helge Holden, Norwegian University of Science and Technology
2006 (L. Carleson) Marcus du Sautoy, University of Oxford
2007 (S.R.S. Varadhan) Tom Lindstrøm, University of Oslo
2008 (J.G. Thompson and J. Tits) Marcus du Sautoy, University of Oxford
2009 (M.L. Gromov) Vagn Lundsgaard Hansen, Technical University of Denmark
2010 (J.T. Tate) Marcus du Sautoy, University of Oxford
2011 (J.W. Milnor) Timothy Gowers, University of Cambridge
2012 (E. Szemerédi) Timothy Gowers, University of Cambridge
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The Interviews with the Abel Laureates

Transcripts of parts of the interviews that Martin Raussen (Aalborg University) and
Christian Skau (Norwegian University of Science and Technology) made with each
laureate in connection with the Prize ceremonies, can be found in the following
publications:

2008 John G. Thompson and Jacques Tits

EMS Newsletter, issue 69 (Sep. 2008) 31–38,
AMS Notices, 56 (2009) 471–478.

2009 Mikhail Leonidovich Gromov
EMS Newsletter, issue 73 (Sep. 2009) 19–30,
AMS Notices, 57 (2010) 391–403.

2010 John Torrence Tate
EMS Newsletter, issue 77 (Sep. 2010) 41–48,
AMS Notices, 58 (2011) 444–452.

2011 John W. Milnor
EMS Newsletter, issue 81 (Sep. 2011) 31–40,
AMS Notices, 59 (2012) 400–408.

2012 Endre Szemerédi
EMS Newsletter, issue 85 (Sep. 2012) 39–48,
AMS Notices, 60 (2013) 221–231.

The interviews can be viewed from the Abel Prize web site www.abelprize.no or the
Springer web site http://www.springerimages.com/videos/978-3-642-39449-2.
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2003 Jean-Pierre Serre

Citation:

“for playing a key role in shaping the modern form of many parts of mathe-
matics, including topology, algebraic geometry and number theory”

(i) Publications
2005

[276] arXiv:math/0503154v6, June 9, 2008.

2009

[286] La vie et l’œuvre scientifique de Henri Cartan. Gaz. Math. No. 121, 65–70.
[287] Un complément à la note de Lassina Dembélé: “A non-solvable Galois ex-

tension of Q ramified at 2 only” [C. R. Acad. Sci. Paris, Ser. I 347 (2009)].
C. R. Acad. Sci. Paris 347:117–118.

[288] Le groupe quaquaversal, vu comme groupe S-arithmétique, Oberwolfach Re-
ports 6:1421–1422.

2010

[289] A tribute to Henri Cartan. Notices Amer. Math. Soc. 57(8): 946–949.
[290] Le groupe de Cremona et ses sous-groupes finis. Séminaire Bourbaki. Volume

2008/2009. Exposés 997–1011. Astérisque 332:Exp. No. 1000, vii, 75–100.
[291] Henri Cartan. École normale supérieure, L’Archicube 7:66–69.

2012

[292] Lectures on NX(p). Research Notes in Mathematics 11. CRC Press, Boca
Raton, FL.

1H. Holden, R. Piene (eds.) The Abel Prize 2003–2007. The First Five Years, Springer, Heidelberg,
2010.
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[293] (with J.-L. Nicolas). Formes modulaires modulo 2: l’ordre de nilpotence des
opérateurs de Hecke. C. R. Acad. Sci. Paris 350: 343–348.

[294] (with J.-L. Nicolas). Formes modulaires modulo 2: structure de l’algèbre de
Hecke. C. R. Acad. Sci. Paris 350: 449–454.

2013

[295] (with E. Bayer-Fluckiger and R. Parimala). Hasse principle for G-trace
forms. Izvestjia RAS/Ser. Math. 77(3), 5–28.

[296] Un critère d’indépendance pour une famille de représentations �-adiques.
Comm. Math. Helv. 88(3):541–554

(ii) Addendum CV

Leroy P. Steele Prize 1995 Mathematical Exposition
Torino Academy of Sciences 2010
Academia Sinica, Taiwan 2010
Fellow, American Mathematical Society 2013
ICCM International Cooperation Award, Taipei, 2013

(iii) Articles in Connection with the Abel Prize

A. Chambert-Loir: Le prix Abel décerné à Jean-Pierre Serre. [French]. Gaz. Math.
No. 99 (2004), 26–32.
G. Frei: Erstmalige Verleihung des Abel-Preises—Auszeichnung von Jean-Pierre
Serre für sein Gesamtwerk. [German] Mitt. Dtsch. Math.-Ver. 2003, no. 2, 22–25.
N. Vila: Jean-Pierre Serre, primer Premi Abel. [Catalan] SCM Not. No. 19 (2003),
22–25.
R. Betti: A “Nobel” for Jean-Pierre Serre: the Abel Prize. [Italian] Lett. Mat.
Pristem No. 47 (2003), 4.

2004 Sir Michael Atiyah and Isadore M. Singer

Citation:

“for their discovery and proof of the index theorem, bringing together topol-
ogy, geometry and analysis, and their outstanding role in building new bridges
between mathematics and theoretical physics”

(i) Publications by M. Atiyah
1996

[194a] Address of the President, Sir Michael Atiyah, O.M., given at the anniversary
meeting on 30 November 1995. Notes and Records Roy. Soc. London 50(1)
101–113.
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2007

[246] Published in Biogr. Mem. Fellows R. Soc. 53:63–76. Also published in Bull.
Lond. Math. Soc. 42(1): 170–180 (2010).

2009

[253] From Probability to Geometry (I). Volume in Honor of the 60th Birthday of
Jean-Michel Bismut. Astérisque No. 327 (2009), xvii (2010). Preface by Sir
Michael Atiyah.

2010

[254] A tribute to Henri Cartan. Notices Amer. Math. Soc. 57(8): 946–949.
[255] (with R. Dijkgraaf and N. Hitchin). Geometry and physics. Philos. Trans. R.

Soc. Lond. Ser. A 368:1914, 913–926.
[256] The art of mathematics. Notices Amer. Math. Soc. 57(1):8.
[257] Edinburgh Lectures on Geometry, Analysis and Physics. arXiv:1009.4827.
[258] Mathematical work of Nigel Hitchin. In The Many Facets of Geometry.

A Tribute to Nigel Hitchin, Oxford Univ. Press, pages 11–16, Oxford.
[259] Working with Raoul Bott: from geometry to physics. In A celebration of the

mathematical legacy of Raoul Bott, volume 50 of CRM Proc. Lecture Notes,
Amer. Math. Soc., pages 51–61, Providence, RI.

2011

[260] (with G.W. Moore). A shifted view of fundamental physics. In: Perspec-
tives in Mathematics and Physics: Essays Dedicated to Isadore Singer’s 85th
Birthday (T. Mrowka, ed.). International Press, Somerville, MA, pages 1–15.

[261] (with S.-T. Yau et al.). Shiing-Shen Chern (1911–2004). Notices Amer. Math.
Soc. 58(9):1226–1249.

[262] (with V. Guillimin et al.). Remembering Johannes J. Duistermaat (1942–
2010). Notices Amer. Math. Soc. 58(6):794–802.

2012

[263] (with N.S. Manton and B.J. Schroers). Geometric models of matter. Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468, no. 2141, 1252–1279.

[264] (with M. Sanz-Solé, C. Bär, G.-M. Greuel, Y.I. Manin and J.-P. Bourguignon).
Friedrich Hirzebruch memorial session at the 6th European Congress of
Mathematics. Kraków, July 5th, 2012. Eur. Math. Soc. Newsl. No. 85, 12–
20.

[265] (with C. LeBrun). Curvature, cones, and characteristic numbers. arXiv:1203.
6389

(ii) Addendum CV

Grande Médaille of the French Academie des Sciences 2010
Grand Officier of the French Légion d’honneur 2011
Honorary degree, Hong Kong University of Science and Technology 2012
Fellow, American Mathematical Society 2013
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Publications by I.M. Singer
2009

[107] (with V. Mathai, R.B. Melrose). The index of projective families of elliptic
operators: the decomposable case. Astérisque No. 328: 255–296.

2011

[108] (with O. Alvarez). Beyond the string genus. Nuclear Phys. B 850(2): 349–
386.

[109] (with S.-T. Yau et al.). Shiing-Shen Chern (1911–2004). Notices Amer. Math.
Soc. 58(9):1226–1249.

(ii) Addendum CV

Fellow, American Mathematical Society 2013

(iii) Articles in Connection with the Abel Prize

K. Landsman: Abel Prize 2004: The Atiyah–Singer index theorem. [Dutch]
Nieuw Arch. Wiskd. (5) 5, No. 3, 207–211 (2004).
S.-T. Yau (ed.): The Founders of Index Theory: Reminiscences of and about Sir
Michael Atiyah, Raoul Bott, Friedrich Hirzebruch, and I.M. Singer. International
Press, Somerville, MA, 2nd ed., 2009. lii+393 pp.
Pure and Applied Mathematics Quarterly, Volume 6, Number 2 (2010). Special
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