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Au reste il me parait que si I’on veut faire des progres dans les mathematiques il

N
faut étudier les maitres et non pas les ecoliers. Niels Henrik Abel ¥
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“Finally, it appears to me that if one wants to make progress in mathematics, one should study
the masters, not their students.” In: “Memoires de Mathématiques par N. H. Abel”, Paris, August

9, 1826, in the margin of p. 79. Original (Ms.fol. 351 A) in The National Library of Norway.
Reprinted with permission.



Preface

This book constitutes the third volume! in a series on the Abel Laureates, covering
the period 2013-2017.

We keep the same structure as that of the previous volumes. There is one
chapter per year. Each chapter starts with the full citation from the Abel Committee,
followed by an autobiographical piece by the laureate. Then comes an article
on the scientific accomplishments of the laureate. In the first chapter, L. Illusie
writes on Pierre Deligne, while in the second chapter, the team, C. Boldrighini,
L. Bunimovich, F. Cellarosi, B. Gurevich, K. Khanin, D. Li, Y. Pesin, N. Siményi,
and D. Szész, led by K. Khanin, presents the work of Yakov G. Sinai. In the third
chapter, C. De Lellis writes on the work of John Nash, Jr. and R. Kohn on the work
of Louis Nirenberg. The work of Andrew Wiles is presented by C. Skinner in the
fourth chapter, and in the last chapter, A. Cohen writes on the work of Yves Meyer.

Tragically, John Nash, Jr. and his wife Alicia died in an automobile accident on
their way home to Princeton after the Abel Prize events in Oslo. Nash had prior
to the Abel ceremony agreed to write his autobiographical piece, but this was not
to be. Sylvia Nasar, the author of the bestselling biography? of John Nash, kindly
volunteered to write a brief biography for this volume. In addition, we reproduce
with the kind permission of the Nobel Foundation, the short autobiography that
Nash wrote on the occasion of receiving, in 1994, The Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel.

Each chapter contains a complete bibliography and a curriculum vitae, as well as
photos—old and new.

The last chapter is meant to give, through a collection of photos, an idea of all
the activities that take place in connection with the Abel Prize, especially those that
involve children and youth. For in the Statutes of the prize it says:

'H. Holden, R. Piene (eds.): The Abel Prize 2003—2007. The First Five Years, Springer, Heidelberg,
2010, and H. Holden, R. Piene (eds.): The Abel Prize 2008-2012, Springer, Heidelberg, 2014.

2S. Nasar: A Beautiful Mind, Simon and Schuster, New York, 1998.
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viii Preface

The main objective of the Abel Prize is to recognize pioneering scientific achievements in
mathematics. The Prize shall also help boost the status of the field of mathematics in society
and stimulate children and youth to become interested in mathematics.

These other activities thus include mathematics competitions—the Niels Henrik
Abel competition for high school students and the UngeAbel (previously KappAbel)
competition for class teams of elementary school pupils—and the Bernt Michael
Holmboe Memorial Prize, an annual prize awarded in connection with the Abel
Prize ceremony, to a teacher or a group of teachers, who have done extraordinary
efforts in mathematics teaching in Norway.

The Abel Board also supports annual international conferences, the Abel Sym-
posia. It also supports mathematics in the developing world, by a yearly donation
to the International Mathematical Union. This included support for the Ramanujan
Prize in the years 2005-2012, and, from 2013 on, the Abel Visiting Scholar program
administered by IMU’s Commission for Developing Countries.

The back matter contains updates regarding publications and curriculum vitae
for all laureates, as well as the full prize citations for the years 2003—-2012. Finally,
we list the members of the Abel Committee and the Abel Board for this period.

The annual interview of the Abel Laureates, aired on Norwegian national TV,
can be streamed from the Springer website. Transcripts of the interviews have been
published, and publication details can be found in the back matter.

We would like to express our gratitude to the laureates for collaborating with us
on this project, especially for providing the autobiographical pieces and the photos.
We would like to thank the mathematicians who agreed to write about the scientific
work of the laureates, and thus are helping us in making the laureates’ work known
to a broader audience.

Thanks go Marius Thaule for his ISIEX expertise and the preparation of the
bibliographies as well as copyediting the manuscripts.

The technical preparation of the manuscript was financed by the Abel Board.

Trondheim, Norway Helge Holden
Oslo, Norway Ragni Piene
June 6, 2018
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Part I
2013 Pierre Deligne

“for seminal contributions to algebraic geometry and for their transformative
impact on number theory, representation theory, and related fields”

B
ABEL



2 I 2013 Pierre Deligne

Citation

The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2013 to Pierre Deligne, Institute for Advanced Study, Princeton, New
Jersey, USA,

for seminal contributions to algebraic geometry and for their transformative impact on
number theory, representation theory, and related fields

Geometric objects such as lines, circles and spheres can be described by simple
algebraic equations. The resulting fundamental connection between geometry and
algebra led to the development of algebraic geometry, in which geometric methods
are used to study solutions of polynomial equations, and, conversely, algebraic tech-
niques are applied to analyze geometric objects. Over time, algebraic geometry has
undergone several transformations and expansions, and has become a central subject
with deep connections to almost every area of mathematics. Pierre Deligne played
a crucial role in many of these developments. Deligne’s best known achievement is
his spectacular solution of the last and deepest of the Weil conjectures, namely the
analogue of the Riemann hypothesis for algebraic varieties over a finite field. Weil
envisioned that the proof of these conjectures would require methods from algebraic
topology. In this spirit, Grothendieck and his school developed the theory of /-adic
cohomology, which would then become a basic tool in Deligne’s proof. Deligne’s
brilliant work is a real tour de force and sheds new light on the cohomology
of algebraic varieties. The Weil conjectures have many important applications in
number theory, including the solution of the Ramanujan—Petersson conjecture and
the estimation of exponential sums.

In a series of papers, Deligne showed that the cohomology of singular, non-
compact varieties possesses a mixed Hodge structure that generalized the classical
Hodge theory. The theory of mixed Hodge structures is now a basic and powerful
tool in algebraic geometry and has yielded a deeper understanding of cohomology.
It was also used by Cattani, Deligne and Kaplan to prove an algebraicity theorem
that provides strong evidence for the Hodge conjecture.

With Beilinson, Bernstein and Gabber, Deligne made definitive contributions to
the theory of perverse sheaves. This theory plays an important role in the recent
proof of the fundamental lemma by Ngo. It was also used by Deligne himself to
greatly clarify the nature of the Riemann—Hilbert correspondence, which extends
Hilbert’s 21st problem to higher dimensions. Deligne and Lusztig used [-adic
cohomology to construct linear representations for general finite groups of Lie type.
With Mumford, Deligne introduced the notion of an algebraic stack to prove that
the moduli space of stable curves is compact. These and many other contributions
have had a profound impact on algebraic geometry and related fields. Deligne’s
powerful concepts, ideas, results and methods continue to influence the development
of algebraic geometry, as well as mathematics as a whole.



Mathematical Autobiography )

Check for
updates

Pierre Deligne

In what follows, I dwell on some major influences on my mathematical education.
The account Luc Illusie gives of my work is much more systematic. I would like to
begin by thanking him for it.

I was born 1 month after the liberation of Brussels. My mother often told me how
a providential school of herring saved Belgium from starvation, and how Holland
had it much worse in the winter of 1944/1945.

My siblings are 7 and 11 years older than me. My parents highly valued
education, and we were the first generation in the family to attend university.
I enjoyed my brother’s explanations of mathematical facts he had just learned.
Looking at the thermometer made negative numbers easy to grasp, but that (—1) x
(—1) is +1 was another matter. Of course, my brother was saying “is”, not “is better
defined to be because...”. Much later, I was very surprised that historians did not
use a year O—presumably because chronologies preceded the taming of negative
numbers. When he was in high school, my brother showed me how to solve second
degree equations. In his college textbook, I read about the degree three case.

I have been extremely lucky, both with the people I met, who helped me, and
that the time of my youth was a time for the creation of tools, my inclination.
At 14, T met Mr. Nijs, who was a high school teacher. He saw my interest in
mathematics, and took the risky, but fortunate decision to give me Bourbaki’s
Eléments de Mathématique, starting with the four chapters on Set Theory. I cared
that in mathematics “true” meant true, not just arguable, and here at last was an

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-319-99028-6_1) contains supplementary material, which is available to authorized users.

P. Deligne (P<)
Institute for Advanced Study, Princeton, NJ, USA
e-mail: deligne@math.ias.edu

© Springer Nature Switzerland AG 2019 3
H. Holden, R. Piene (eds.), The Abel Prize 2013-2017,
https://doi.org/10.1007/978-3-319-99028-6_1
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4 P. Deligne

Me at age 7. Taken in September 1952. I am in a “louveteau” (younger boy scout) uniform. (Photo:
private)

idealization of what a proof was, serving as an anchor. A welcome contrast to the
sloppy beginning of Euclidean geometry learned in school. I also read A. Heyting’s
Intuitionism, an introduction. From intuitionism (and later from E. Bishop’s less
dogmatic Constructive Analysis), 1 learned that non effectivity of proofs is usually
due to the use of excluded middle (a statement or its negation is true) rather than
to the use of the axiom of choice.! In writing up proofs, I continue to try avoiding
proofs by contradiction. I find that when not too costly, a construction gives a better
understanding.

A second piece of luck was that J. Tits was then at Brussels University (ULB).
While still in high school, I could attend his course on Lie groups, as well as the
seminar he was organizing with F. Bingen and L. Waelbroeck. At one of his lectures,
he defined the center of a group, stated it is an invariant subgroup, started proving
it, and then stopped, saying: “in fact this is obvious. As I could define the center,
it is stable by any automorphism, a fortiori by inner automorphisms.” This is how I
realized the power of “transport of structures”, the principle that when we have two

sets S1 and S, with some structures s1 and s, and an isomorphism f: (S7, s1) =

!For a nice description of what is involved here, I refer to the recent article by A. Bauer: Five stages
of accepting constructive mathematics, Bull. AMS 54 3 (2017) 481-498.
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(S2, 52), anything done on (Si, s1) can be transported to (52, s2), and that this is
especially useful when (S, s1) = (S2,s52), but f is not the identity. This is an
analogue in mathematics to Curie’s principle: “Lorsque certaines causes produisent
certains effets, les éléments de symétrie des causes doivent se retrouver dans les
effets produits.”?

The mental hygiene needed to apply transport of structures is natural, especially
so when using a language, unlike Russian, which distinguishes between “a” and
“the”. It is well explained in chapter “Curriculum Vitae for Pierre R. Deligne” of
Bourbaki’s Set Theory (original French edition, not the second edition “revue et
diminuée”). Unfortunately, the categorical analogue, asking that no distinction be
made between equivalent categories, remains rules of thumb, such that “equality
makes sense between morphisms, not between objects.” An equality sign between
objects usually means an isomorphism has been constructed, and compatibilities
between such isomorphisms have to be taken care of.

I cherish a piece of advice Tits gave me: “Do what you like”. When I was
20, he told me it was time to go to Paris, made it possible and introduced me to
Grothendieck. The next 2 years (the second as a “pensionnaire étranger” at Ecole
Normale Supérieure), I mainly attended Grothendieck’s seminar at IHES and Serre’s
lectures at College de France, with the rest of each week needed to understand the
lectures I had listened to and to fill gaps in my education. At the end of each year, |
would return to Brussels to pass exams at the University. This was possible thanks
to the European system, where only mathematical courses, plus some physics, were
required. The American system, with its distributional requirements, would have
been suffocating. [ was also helped by fortunate previous readings, made possible by
browsing the open stacks of the library of the ULB department of mathematics. The
shelving by alphabetical order of authors encouraged serendipity. Two books which
took me a long effort to digest, but proved very useful, were de Rham’s Variétés
Différentiables, and Godement’s Théorie des faisceaux.

The next year (1966/1967) was lost to military service. (Belgium was still
occupying parts of Germany at that time.)

As Grothendieck wrote in Récoltes et Semailles, he was building “houses”
where mathematical ideas would not be cramped. He had around him some of
the best young French mathematicians who, inspired by him, were helping at that
task. He asked me to write exposés XVII and XVIII of SGA4, respectively about
cohomology with compact support and duality in etale cohomology. Doing so, I
learned how to write, as well as the subject matter. My first draft was returned
to me with two injunctions: “Proofs should be complete” and “False statements
are not allowed.” The second seems obvious, but is not when it concerns signs in
homological algebra.

2Translation: When certain causes produce certain effects, the elements of symmetry of these
causes must be found in the produced effects.
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Orsay thesis. February 1972. (Photo: private)

I admire how Grothendieck was able, so many times, to develop a framework in
which difficulties of proofs dissolved. This remained for me an ideal, which I rarely
approached.

His philosophy of motives has been a guiding thread in many of my works,
including some for which this is not immediately apparent. I mean here the
philosophy, not Grothendieck’s precise definition of a category of pure motives over
a field k. This precise definition is reasonable only if one assumes the so-called
“standard conjectures”, for which the evidence is meager.

Let us consider algebraic varieties over a field k. We have for them many
cohomology theories (with coefficient fields of characteristic zero) which seem to
repeat the same story in different languages: Betti (for k — C), de Rham (for
smooth varieties over k of characteristic zero), crystalline, ¢-adic (for £ a prime
invertible in k). The philosophy of motives tells the following.

(A) Each of these theories factors through a motivic theory H},, with values
in the category of motives over k. This category is a QQ-linear abelian category, in
which the Hom groups are finite dimensional. The theory #* is deduced from H},
by applying a realization functor real{h*}: an exact functor from motives to the
abelian category in which #* takes values. Of course, natural isomorphisms, exact
sequences, spectral sequences,... making sense across theories are images of the
same in the category of motives, and relations between theories, such as comparison
isomorphisms, are induced by relations among the realization functors.

Models: for smooth projective varieties, Pic’(X) (viewed as an object of the
category of abelian varieties taken up to isogeny) plays the role of a motivic H':
all ! are deduced from it by applying suitable functors. For H, we have the more
elementary model of rational representations of Gal(lz / k) (Artin motives).

(B) The category of motives has a tensor product, compatible with the various
realization functors, and giving rise to a motivic Kiinneth formula. This tensor
product turns the category of motives into a tannakian category over Q. Tannakian
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categories were invented by Grothendieck for this purpose, and are akin to
categories of representations of algebraic groups. The case of Artin motives, where
the group is Gal(k/ k), led to the terminology “motivic Galois group.”

Here are applications I made of the motivic philosophy.

Definition of Mixed Hodge Structures

I try to remain aware of what I don’t understand, and of “discrepancies”. One
discrepancy which occupied me a great deal at the time is that while the eigenvalues
of the Frobenius acting on f-adic cohomology are {¢-adic numbers, the Weil
conjecture is about their complex absolute values. The discrepancy relevant for
mixed Hodge theory is between the scope of applicability of the Hodge versus the ¢-
adic theories. Let X be a smooth projective variety over, say, a number field k C C.
Hodge theory gives a Hodge structure of weight n on Hg(X) := H"(X(C),Q),
that is a decomposition Hg(X) ® C = @p+q:n HP-4, with HP4 = H9P. For each
¢, etale cohomology gives an action of Gal(k/k) on H}(X) = H"(X(C),Q) ® Q,
turning H}' into an £-adic representation of weight n (weight n refers to the
complex absolute values of eigenvalues of Frobenius elements, and was at that time
conjectural).

Etale cohomology continues to provide an action of Galois on H;(X) when X is
not supposed to be projective and smooth. Further, spectral sequences of geometric
origin abut an increasing weight filtration W such that each Gr[",V (H} (X)) is a

subquotient of some H, Zp (Y), with Y projective and smooth. The motivic philosophy
suggests that the weight filtration is motivic, that is comes from a filtration W of
H] (X), and that Gr;V H (X) is pure of weight p. Applying the Betti realization
functor, we would get on Hg(X) = H"(X(C), Q) a weight filtration W and for
each p a Hodge structure of weight p on Grlv,V Hp(X).

In the {-adic case, one does not just have a weight filtration and a pure
structure on the successive quotients, but an ambient abelian category of £-adic
representations of Galois. The motivic philosophy forces the question: “What is the
Hodge analogue?” The solution appears when one admits the primacy of the Hodge
filtration over the Hodge decomposition: Hy(X) carries a mixed Hodge structure,
given by a filtration F of Hp(X) ® C inducing the Hodge filtrations of the pure
subquotients Gr[V,V Hp(X).

For projective varieties, an extension of an abelian variety by a torus (taken up to
isogeny) plays the role of a motivic H': to X, one attaches the quotient of Pic?(X)
by its unipotent radical. For X over C, this motivic H! is determined by H é(X ),
with its mixed Hodge structure. For general varieties, one should similarly consider
1-motives (up to isogeny).
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Definition of Shimura Varieties

Period mapping domains are moduli spaces of Hodge structures on a fixed vector
space V, compatible with structures on V expressible in the language of multilinear
algebra. Hermitian symmetric spaces correspond to the special case where Griffiths
transversality (at first order, F” moves within F ”_1) is satisfied. This makes it
natural to think of their arithmetic quotients as moduli spaces of motives M,
endowed with structures s expressible using the tensor product. A way to express
such an (M, s) is: a functor, compatible with ®, from the category of representations
of a reductive group G over Q, to the category of motives. Level structures should
be given as well. Conditions have to be imposed, and fields of definition should be
subfields of C above which they make sense. Shimura emphasized an algebra with
involution giving rise to the (classical) group G, and case-by-case characterized his
canonical model by properties of CM points. Emphasizing G, as motives suggested,
allowed for uniform definitions, where the properties of CM points appeared as
functoriality for a morphism G| — G», with G| a torus, G, = G.

Morphisms Between Motives

Grothendieck’s definition of the category of pure motives is reasonable only
provided that there are “enough” algebraic cycles. On this question, almost no
progress has been made since the 1960s. I have made attempts to find substitutes
for algebraic cycles, with some success only in situations closely related to abelian
varieties and where monodromy groups are “large”. [D20] and [D21] concern
cohomology groups H for which one can construct injections to H'(A) (resp
H?(A)), for A an abelian variety, with the same good properties as if they were
induced by a motivic map in the sense of Grothendieck. In [D48], I show that Hodge
cycles on abelian varieties enjoy many of the properties of algebraic cycles.

Conjectures on Critical Zeta Values

Motives give rise to zeta functions ¢ (M, s). The value at an integer n depends only
on the Tate twist M (n) of M. For n “critical”, ¢ (M, s) was in many cases expressible
as a rational multiple of “periods”. If to make a conjecture one insists on using only
the de Rham and Betti realizations of M (n), with the natural structures they carry,
one is quickly led to the conjecture I made.

Later, Beilinson understood I was simply taking the volume of an Ext!-group in
the category of mixed Hodge structures, and that for general integral values of s,
this Ext!-group should be taken modulo a motivic Ext!.
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Me making pancakes on an open fire in Ormaille. Around 1979. (Photo: C. Tate)

Relations Between Multizeta Values

Here we leave the categories of pure motives on which Grothendieck was concen-
trating, to consider iterated extensions of Tate motives. Over number fields, such
categories of mixed Tate motives can actually be defined, and the size of a motivic
Galois group imposes linear relations between multizeta values.

When I was in high school, I had no idea one could get paid for doing
mathematics. My father would have liked me to become an engineer. I was planning
to become a high school teacher, and do mathematics as a hobby. That I could earn
a living by doing what I liked best came as a pleasant surprise. I should add that
the situation then was much better than it is at present for young people. Many jobs
were available thanks to the expansion of higher education.

The THES (Institut des Hautes Etudes Scientifiques) had been created by
Motchane in 1958. He was inspired by the example of the IAS (Institute for
Advanced Study), and asked advice from Oppenheimer, its director. France, how-
ever, had no tradition of philanthropy for the sciences, and Motchane succeeded
against great odds. He took good advice, convinced Dieudonné and (at Dieudonné’s
instigation) Grothendieck to accept his risky offer, and managed to convince first
industrialists, and later governments to give money for his creation to survive,
sometimes tenuously. IHES became my paradise.
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Daughter Natalia in basket, son Alyosha on my back. (Photo: private)

In 1985, I moved to another paradise, the IAS. My self-imposed obligation to
give each year a seminar was becoming heavy, and I did not feel it to be wise to
spend all my life in one place. I was also attracted by the beauty of open spaces in
the US, and by the presence in Princeton of Langlands and Harish-Chandra (who
alas passed away shortly before my arrival).

In 1996/1997, there was at the IAS a yearlong effort to understand what string
theorists were doing. One of the motivations was that they were able to make wholly
unexpected predictions—which so far have always turned out to be correct—even
in very classical parts of algebraic geometry. My aim that year was to learn the
rules for making such predictions. I failed. The stumbling blocks were not the ones
I expected: an absence of proof is a challenge, an absence of definition is for me
deadly. I felt expelled from Cantor’s paradise to the world of Euler, where formulae
are assumed to have meaning, with no distinction between defining and computing.
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At the banquet for my 61st anniversary (Fall 2005). Left: Mozzochi, behind him Langlands.
Clockwise around my head: Esnault, Messing, Beilinson. Right: half face of Luc Illusie, and behind
him Nicholas Katz. (Photo: private)

As Euler would say “Let us compute Z(—l)”n!”,?’ physicists would say “Let us
compute the path integral related to such or such lagrangian”.

I still would very much like to understand why this formalism led to so many
correct predictions.

3De seriebus divergentibus, Opera Omnia I 14 585-617.
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Luc Illusie

Dix choses soupconnées seulement, dont aucune (la conjecture
de Hodge disons) n’entraine conviction, mais qui mutuellement
s’éclairent et se complétent et semblent concourir a une méme
harmonie encore mystérieuse, acquierent dans cette harmonie
force de vision. Alors méme que toutes les dix finiraient par se
révéler fausses, le travail qui a abouti a cette vision provisoire
n’a pas été fait en vain, et I’harmonie qu’il nous a fait entrevoir
et qu’il nous a permis de pénétrer tant soit peu n’est pas une
illusion, mais une réalité, nous appelant a la connaitre.

— A. Grothendieck, Récoltes et Semailles, Deuxieme partie,
I1B41.

Grothendieck’s philosophy of motives permeates Deligne’s work. No one has made
the multiple voices of arithmetic geometry sing in harmony better than Deligne.
Almost every one of his articles echoes or corresponds to another one, sometimes
far away. I have tried to make this counterpoint perceptible.

The plan roughly follows a tentative chronological order—awkward and artificial
as it is to establish such an order, since Deligne was often working on several distinct
themes at the same time. Despite the interaction between the various parts, I think
that each main section can be read independently. An important part of Deligne’s
work consists in his conjectures. I recap them in Sect. 10 and discuss those that had
not appeared in the previous sections. In Sect. 11, I list Deligne’s expository articles.

This report is by no means comprehensive. The contributions that I have only
briefly mentioned or not discussed at all are numerous, and each of them would
have deserved a careful analysis.

References to articles in the list of publications of Deligne are given in the form
[Dks otk
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1 Foundational Work: Topology, Homological Algebra, Etale
Cohomology

Deligne’s first contributions were inspired by questions related to the new territories
that Grothendieck was exploring: sites and topoi, derived categories, étale cohomol-
ogy. He did not just solve riddles, but, with a view towards geometric applications,
built solid foundations for new techniques which were to become of standard use.

Deligne’s foundational work is not limited to the topics discussed in this section.
See Sects. 2.1, 2.3, 4.2 “Homological Algebra Infrastructure”, Sect.4.3 “Axiom-
atization of Shimura Varieties”, Sect.5.8 “t-Structures”, 7.4, and 9.1 for other
important basic contributions.

1.1 General Topology

A site is a category equipped with a Grothendieck topology. A topos is a category
equivalent to the category of sheaves on a site. A point ¢ of a topos T is a functor
F — F; from T to the category of sets commuting with arbitrary inductive limits
and with finite projective limits. The empty topos, i.e., the one object, one map
category of sheaves on the empty space has no point. Deligne gave the first example
of a non-empty topos having no point ([2], IV, 7.4): the topos of sheaves on the site
defined by the category of Lebesgue measurable subsets of the segment [0, 1], up to
measure zero sets, with maps deduced from inclusions, and the topology defined by
covering families consisting of countable unions (up to measure zero sets).

In the positive direction, Deligne gave a convenient sufficient condition for a
topos T to have enough points, i.e., a conservative family of points: if T is locally
coherent, i.e., is locally defined by a site having finite projective limits and in which
any covering family (U; — U);es has a finite sub-covering, then T has enough
points ([3], VI 9). Topoi arising from certain topologies on schemes, such as the fpqc
topology or Voevodsky’s h-topology, are easily seen to be locally coherent, though
the existence of enough points is not clear. It was later observed that Deligne’s
theorem is equivalent to Godel’s completeness theorem on first order logic ([137],
p. 243).

Though topoi without points can be considered as pathological, for a number of
basic results in the theory, the hypothesis of the existence of enough points looked
artificial, and it was a challenge to do without it, for example, to prove stability of
flatness under inverse images. Deligne solved this question by an elegant extension
of D. Lazard’s theorem on flat modules, involving a new technique of local inductive
limits ([3], V, 8.2.12).

In the early 1980s Deligne constructed oriented products of topoi, with an
application to a theory of nearby cycles over bases of any dimension, see Sect.7.4.
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1.2 Spectral Sequences
Degeneration and Decomposition in the Derived Category

Let o7 be an abelian category. An object K of the bounded derived category D’ (.o7)
is called decomposable if there is an isomorphism K ~ @H'(K)[—i] in Dl (7).
If K is decomposable, then, for any cohomological functor 7' from D’ (.¢7) to an
abelian category %, the spectral sequence ([254], 111 4.4.6)

E}? = T(HY(K)[p) = T(K[p +q])

trivially degenerates at E>. In [D3, 1968] Deligne proves that the converse holds,
and derives from this useful criteria of decomposability (loc. cit., 1.5, 1.11):

Theorem 1 Let K € DY (7).

(a) If there exist an integer n and a morphismu : K — K|[2] in Db () such that,
foralli > 0, u' induces an isomorphism H" ™ (K) = H" M (K), then K is
decomposable.

(b) If there exist endomorphisms m; of K in D (<) such that H (;) = dij, then
K is decomposable.

He applies this to get degeneration results for Leray spectral sequences. Let f :
X — Y be a proper and smooth morphism of schemes, purely of relative dimension
n, with ¥ connected and X having a relatively ample invertible sheaf &(1).

(i) Assume Y separated and of finite type over C, and let f®" : X" — Y2" denote
the induced morphism on the associated complex analytic spaces. Then Rf2"Q
is decomposable in D? (Y, Q), and, in particular, the Leray spectral sequence

EY = HP (Y™, R f"Q) = HPH(X™, Q) 1)

degenerates at E».!
This follows from Theorem 1 (a) applied to the endomorphism of degree
2 of Rf"Q defined by the Chern class u € H?(X™, Q) of €(1), in view of
the hard Lefschetz theorem on one fiber of f. If Y is smooth over C and f is
assumed only proper and smooth (no existence of a relatively ample line bundle
is demanded), then the conclusions of (i) still hold ([D16, 1971], 4.1.1). This
time, this follows from Theorem 1 (b) applied to the endomorphisms of Rf"Q
defined by liftings to X xy X of Kiinneth components of the cohomology class
of the diagonal of a fiber of X xy X.
(i1)) Assume Y separated and of finite type over an algebraically closed field k,
and let £ be a prime number invertible in k. Assume that the hard Lefschetz

IAs Serre observed (loc. cit., 2.10), when Poincaré duality is available on the base, this
degeneration can also be proved by an extension of Blanchard’s method in [33].
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theorem holds for H*(Xy, Q¢) for one geometric fiber X, of f,ie., if v €
Hz(Xy Q¢(1)) is the image of the Chern class of &'(1), then, for all i >0,
vi o H' ’(Xy,Qg) — H"H (Xy, Q) (i) is an isomorphism. Then, similarly,
using a variant of (a) allowing for Tate twists ([D3, 1968], 1.10), Rf, Qg is
decomposable, and in particular, the Leray spectral sequence

E}? = H(Y, R? f,Q0) = HP (X, Qo) @)

degenerates at E».

At the time, the hard Lefschetz theorem was known only in special cases (e.g.,
varieties liftable to characteristic zero). It was later proved in general by Deligne
[D46, 1980] (see Sect. 5.6 “First Applications”, Hard Lefschetz theorem). Actually,
according to Deligne ([D3, 1968], 2.9), Grothendieck, using a weight argument, had
conjectured the degeneration of (2) for ¥ proper and smooth over k. His argument
was the following. After standard reductions, we may assume that & is the algebraic
closure of a finite field F, and that f : X — Y comes by extension of scalars from a
proper and smooth fy : Xo — Yp. By the Weil conjectures (in the generalized form
proved by Deligne in [D46, 1980], see Theorem 22), for any (i, j), the lisse sheaf
RJ J0+Qp is pure of weight j and Hi (Yo, RI J0+Qp) is pure of weight i + j, hence all
differentials of (2) must vanish, as their sources and targets have different weights.
This doesn’t prove the decomposability of Rf,Q,, but, assuming Y to be only
smooth over k, Deligne later found another argument (also based on Theorem 22),
namely that H i(Yo, R/ Jf0+Qpe) is mixed of weights > i + j, showing the desired
decomposability. But all these weight arguments assume Y smooth over k.

In ([D3, 1968], 5.5) Deligne also gave a complement to this decomposition
theorem for relative Hodge cohomology in characteristic zero.

Deligne will return to this topic several times:

e in [D53, 1982], with the so-called decomposition theorem (see Sect.5.8 “The
Purity and Decomposition Theorems™)

* in [D65, 1987], with decompositions of the de Rham complex in characteristic
p > 0 under certain lifting and dimension assumptions (see Sect. 4.6)

* in [D75,1994], where he revisits the above decomposition criteria in the frame-
work of triangulated categories endowed with a f-structure, and constructs
distinguished decompositions (see [49] for variants).

Décalage of Filtrations

In the early 1960s it had been observed that a spectral sequence could sometimes
appear under different disguises: starting at Eq, or starting at E», with E equal to
the previous Ej up to a certain renumbering. A typical example is provided by the
spectral sequences arising from a bicomplex. Let (M**, d’, d”) be a bicomplex of
an abelian category A, concentrated in a quadranti > a, j > b,and let K := sM**
be the associated simple complex, with K" = @p44q—nMP 4, d = d' + d". The
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filtration on K induced by the naive truncation of M**® relative to the first degree
gives rise to a spectral sequence

'EV? = H"(MP*) = HPM(K)

with E> term ’Eé”q = H'PH"1(M**), where H' (resp. H"") denotes cohomology
relative to d’ (resp. d”). On the other hand, the filtration W on K induced by the
filtration of M** defined by the canonical truncations with respect to d” gives rise
to a spectral sequence

wEPY = H*PT H"P(M**) = H'M(K).
One has the coincidence
, 2 =
wED ="E;PT 3)

with d; for 'E corresponding to d; for w E. Deligne realized that this was a special
case of a phenomenon produced by what he called décalage (shift) of filtrations. If
F = (FP)pez is a decreasing filtration on a complex (L, d) of A, Deligne defines
the filtration décalée Dec(F) on L by

Dec(F)PL" = FP L ng~ (FPTHipntly,

The spectral sequences of L filtered by F' and Dec(F') are related in the following
way. The obvious homomorphism of complexes

(E§ (L, Dec(F)), d) = (grh sy L7, d)
2 ,— 2
— (BTN, P, d) = (HP (gL, ), dy)
is a quasi-isomorphism, and for r > 1, induces isomorphisms of complexes

(ELU(L, Dec(F)), dy) = (E;7 {97V (L, F),dri1) )
([D16, 1971], 1.3.3, 1.3.4). When one takes for F the filtration on K induced by the
naive truncation of M**® relative to the first degree, one has Dec(F) = W, which
explains (3).

Deligne devised this mechanism of décalage in 1965. It turned out to be a crucial
technical tool in his construction of mixed Hodge structures on smooth schemes over
C, see Sect.4.2 “Homological Algebra Infrastructure”. Since then, décalage was
used occasionally in de Rham or crystalline cohomology in positive characteristic,
see, e.g., ([206], 7.2.1, [207], 2.26).
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1.3 Cohomeological Descent

Let (X, 0) be a ringed space, and let % = (U;)ies be an open covering. Giving
a sheaf .# of ¢-modules on X is equivalent to giving a family of sheaves of -
modules .%; on U; and gluing data g;; : %;|U;; S F ;1Uij on the intersections
Ui; = U; N Uj, satisfying the usual cocycle condition. This no longer holds in
general for objects of the derived category D(X, ). Indeed, a cohomology class
u € H (X, %) isamorphismu : ¢ — %[n]in D(X, 0), and for n > 0, u locally
vanishes. In 1965 Deligne conceived a theory by-passing this difficulty, later called
cohomological descent, that worked in a much greater level of generality: for ringed
sites or topoi, and hypercoverings, a generalization due to Cartier and Verdier of
the notion of covering family. A full account was written up by Saint-Donat in ([3],
Vbis). See ([D29, 1974], 5) for an introduction, and [128] for an overview.

The following example, discussed by Deligne in ([D29, 1974], 5.3), is of crucial
importance for mixed Hodge theory (see Sect.4.2 “Mixed Hodge Theory”, The
general case).

Let X, be a simplicial topological space. A sheaf #* on X, is the data of a
family of sheaves #" on X, and of X y-maps Z°*(f) : #" — F" for each
non-decreasing map f : [n] — [m], where [n] denotes the ordered set {0, - - - , n},
Xy : X, — X, and by an X y-map one means an element of Hom (X% 7" 5"") ~
Hom(Z", Xy #™), the maps .%*(f) having to satisfy the condition 9’ (gf) =
ZF*(g)F°*(f). With morphisms defined in the obvious way, sheaves on X, form a
topos X., which was first defined by Deligne. It was later called the fotal topos of
X, and studied in great generality in ([3], VI 7.4).

An augmentation a : X, — § defines a morphism from X. to the topos
of sheaves on S, hence a pair of adjoint functors (a*, a,), which extend to a
pair of adjoint functors (a*, Ray) between the corresponding derived categories
DT (X., Z) and DT (S, Z). If S is a point, one writes RF(X., —) (or RI'(X,., —)
for Ray. For M € DV(X,,Z), H*(X., M) = H*RI'(X,, M) is the abutment of a
spectral sequence

E}?" = HU(X,, Mp) = H'(X,, M). 5)
For any K € D" (S, Z), we have an adjunction morphism
K — Ra,a*K. (6)

A key result of the theory of cohomological descent is the following theorem ([D29,
1974], 5.3.5), ([3], Vbis, 3.3.3,4.1.6):
Theorem 2 Assume that a is a proper hypercovering, which means that, for each

n > —1, the canonical map

(@n)nt1 : Xuy1 —> (cosky sk Xo)nt1 @)
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(induced by the adjunction map ¢y, : 1d — cosk,sk;, ) is proper and surjective (with
the convention that (p—1)o = ag : Xo — S). Then (6) is an isomorphism.

Here, as usual, sk, denotes the n-th skeleton functor, associating with a simplicial
space X, over S the underlying n-th truncated simplicial space (restriction to the
category of ordered sets [m] with m < n), and cosk,, the n-th coskeleton functor,
which is its right adjoint. For example, skoX = Xg, and, for a space Y over
S, coskoY is the simplicial space [n] (Y/S)["]. The space (cosk; sk, Xe)n+1
appearing in (7) consists of the maps from the n-th skeleton of the standard simplex
Ap+1 (a “simplical n-th sphere”) to X,. Its construction involves a finite projective
limit, deduced from the gluing of n-th faces along the (n — 1)-th skeleton of A,,.

The isomorphism (7) induces an isomorphism

H*(S, K) > H*(X.,a*K),

thanks to which H*(S, K) can be analyzed through the spectral sequence (5), which
reads

EP? = HY(X,, ayK) = HPTI(S, K),

a generalization of the Cech spectral sequence for a locally finite covering of S by
closed subsets.

Note that by ([3], loc. cit.) (6) would still be an isomorphism if, instead of being a
proper hypercovering, a was assumed to be a hypercovering for the topology on the
category of S-spaces generated by usual open coverings and proper surjective maps
(an analogue of the Voevodsky topology on schemes). In particular, if b : S, — S
is the corresponding morphism of sites, the adjunction map K — Rb.b*K is an
isomorphism (cf. ([246], 10.2) for a similar result on schemes). This observation
was used by Beilinson in his proof of the p-adic de Rham comparison theorem
[28].

1.4 Duality and Finiteness Theorems in Etale Cohomology
Global Duality

Poincaré duality in étale cohomology for quasi-projective morphisms f : X — Y
and coefficients A = Z/nZ with n invertible on Y, in the form of the construction
of a pair of adjoint functors (Rfi, Rf') between the derived categories D (X, A)
and Dt (Y, A), was established by Grothendieck in 1963 and he talked about
it in his seminar SGA 4 [4] in 1964. A sketch was given by Verdier in [252].
Grothendieck proposed to Deligne, who had not attended SGA 4, to write up a more
comprehensive version. This resulted in the exposés [D4, D5, 1969]. Not only did
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Deligne generalize the set-up and fill in details, but he made a number of original
contributions.

Derived Functors

A large part of [D4, 1969] is devoted to foundations for the theory of derived
functors. At the time, Verdier’s thesis had not been published.”? Hartshorne’s
treatment in [113] was insufficient for the needs of the étale global duality
formalism, and plagued by a number of sign mistakes. Deligne clarified the sign
conventions for multiple complexes, and introduced a more flexible notion of right
(resp. left) derived functor of a functor F, with values in categories of ind- (resp.
pro-) objects of derived categories. For example, if A and B are abelian categories,
and F : KT(A) — KT1(B) is an exact functor, then Deligne defines RF(K) as
the ind-object “colim”y.x_, ' F(K') of DT (B), where s runs through the filtering
category of classes up to homotopy of quasi-isomorphismsin Kt (A); F is said to be
derivable at K if RF (K) is essentially constant. This new viewpoint was especially
useful for the construction of generalized Kiinneth isomorphisms ([D4, 1969], 5.4),
and turned out to be essential for the definition of derived functors of non additive
functors ([D4, 1969], 5.5.5) (see also [120]).

Diagram Compatibilities

By an ingenious argument of fibered and cofibered categories Deligne solved Artin’s
perplexity in ([4], XII 4) about the coincidence of the base change maps defined in
the two natural ways ([D4, 1969], 2.1.3). His method was later exploited to prove
the diagram compatibilities involved in the Lefschetz—Verdier trace formula ([5],
I1I).

The Functors Rf; and Rf’

For A = Z/nZ and f : X — Y compactifiable, i.e., of the form f = gj with
g proper and j an open immersion, Grothendieck defined the direct image with
proper support functor Rfi : DY (X, A) — D' (Y, A) by Rfi = Rg,ji, where
Jj is the extension by zero functor. This definition was forced by the requirement
of transitivity, and the proper base change theorem guaranteed independence of
the choice of the compactification. However, a rigorous treatment demanded the
verification of a number of compatibilities, that Deligne neatly axiomatized in a
gluing lemma ([D5, 1969], 3.3) that can be used in other contexts (it was recently
revisited by Liu and Zheng [176]).

2The published version [254] doesn’t treat derived functors either.



Pierre Deligne: A Poet of Arithmetic Geometry 21

For n invertible on Y, Grothendieck defined Rf' : Dt (Y, A) — D1 (X, A) for
f smoothable, i.e., of the form f = gi, with g smooth and i a closed immersion, by
Rf' = Ri'g*[2d]1(d), where d is the relative dimension of g, and Ri' is the derived
functor of the functor F %@?(F )|X. Independence of the factorization was
guaranteed by the relative purity theorem, and the main bulk of the global duality
theorem rested on the definition of a trace morphism Tr : Rg g*[d](d) — Id making
Rf' = g*[2d](d) right adjoint to Rg,. This is the approach explained by Verdier in
[252]. Deligne chose a different path, enabling him to get rid of the assumption of
the existence of such a factorization. Imitating Verdier’s method to prove Poincaré
duality for topological spaces, he showed that, for f compactifiable, R f; admits a
right adjoint Rf", thus shifting the core of the proof of the global duality theorem to
the calculation of Rf" for f smooth, i.e., recovering the formula Rf' = f*[2d](d).

He also realized that the same method could be used in the quite different context
of global duality for coherent sheaves on locally noetherian schemes, provided that
a suitable direct image with proper support functor Rf; could be defined. This is
what he does in the appendix [D2, 1966] to Hartshorne’s seminar [113].

Picard Stacks and Geometric Class Field Theory

Whatever the method used to prove global duality in étale cohomology, at the end
of the day the key point is Poincaré duality on curves. For X a smooth connected
curve over an algebraically closed field k and » invertible in k, the fact that cup-
product followed by the trace isomorphism Tr : HC2(X ) — Z/nZ is a perfect
duality between HC1 (X, un) and H'(X,Z/nZ) is a by-product of geometric class
field theory: if X = X — D, where X is proper, smooth, connected and D a reduced
divisor, then, given a closed point x¢ of X, the Abel-Jacobi map X — Pic%(X ),
X +— O(x — xp), induces an isomorphism

Hom(Pic%(X),, Z/nZ) > H'(X,Z/nZ), (8)

where Picp(X) := HY(X, pGm), pGn, is the sheaf of sections of G, congruentto 1
mod D, and (—), denotes the kernel of the multiplication by n (so that HC1 X, un) =
Pic% (X)n). See ([D39, 1977], Arcata VI 2.3, Dualité 3.4) for a short, self-contained
proof.

In ([DS, 1969], 1.5.2, 1.5.14) Deligne gives a generalization of this, where X/k
is replaced by a smooth relative curve X/S, S a base scheme, and Z/nZ by a certain
complex of abelian sheaves on the big fppf site of S. First, in the proper case, he has
the following general theorem, that he calls formule des coefficients universels:

Theorem 3 Let [ : X — S be a projective and smooth curve, K a complex of
abelian sheaves on Stppt, locally isomorphic, in the derived category, to a complex
of the form [G™! — G°), where G' is of one of the following types: smooth of
finite presentation, inverse image of a torsion sheaf on the small étale site of S,
affine and equal to the kernel of an epimorphism of smooth groups, defined by a flat,
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quasi-coherent sheaf on S. Then there is a natural isomorphism
t<0RA om(t<0R f(Gu[11), K) = t<0Rfs f*K. ©)

Applied to K = Gy,[1], this gives a refined version of the self-duality (with
value in Gy,[1]) of the Jacobian Pic())(/s. In the non proper case, for f : X — S

a smooth curve of the form X = X — D, with X /S proper of relative dimension
1 and D C X a closed subscheme finite over S, (8) is refined to an isomorphism
é’xtl(PicD’X/S, G) = le*G, for G a torsion sheaf annihilated by an integer
invertible on §.

To prove Theorem 3, Deligne first reformulates it in terms of Picard stacks, a
sheaf-theoretic generalization of Grothendieck’s notion of Picard category [107].3
Then he uses a technique of integration of torsors, consisting in the construction of
symbols generalizing those of geometric class field theory ([235], III). For a group
G of the type described in Theorem 3, these symbols associate to an invertible sheaf
% on a projective smooth curve X over S and a G x-torsor K on X a G-torsor

(Z, K] (10)

on S ([D5, 1969], 1.3.10), which depends functorially on .Z and K, additively on
%, and whose formation is compatible with any base change. For G = G,,, and
A the line bundle corresponding to a G,,-torsor M, the line bundle associated with
(&, M]is denoted (&, . ). For D a (relative) Cartier divisor on X, (0 (D), ) is
the norm Np,s(.#), and, for D and E effective, (0 (D), O(E)) = det Rf(Op L
Of). When S = Spec(k), k an algebraically closed field, functoriality of the
construction yields, for rational functions f, g on X, the classical product formula

[Liex(fs 8)x = 1, where

(f, 8)x = (=P (v prigy, (11)

v denoting the valuation at x.

Deligne revisited these questions in [D68, 1987] and [D73, 1991]. In [D68,
19871, which is an amplification of a letter to Quillen (and earlier private notes),
Deligne uses the symbols (10) to write a Grothendieck—Riemann—Roch formula
without denominators for a projective smooth curve f : X — S and a line bundle
% on X, in the form of a canonical, base change compatible isomorphism

det(Rfe.2)®" 5 (0, 0) @ (L, L @ w )8, (12)

3Picard stacks appear in deformation theory: in [61] Deligne sketched a method to use them to give
an alternate proof of the theorems of ([121],VII) on deformations of torsors and group schemes—a
program that has not yet been carried out. See [44, 208, 255] for recent developments.

4Le déterminant d’une courbe, undated.
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where w = 2 )1( /s Actually, in (loc. cit., 9, 10, 11), a more general isomorphism is
constructed for vector bundles. In the case of a projective smooth curve X/C and
a vector bundle, both endowed with hermitian metrics, an enriched isomorphism
is defined, taking into account the Ray-Singer analytic torsion. In [D73, 1991],
he gives analytic variants and refinements of the above product formula, see
Sect. 4.5 “Link with the Tame Symbol”.

Symmetric Kiinneth Formula

The proper base change theorem in étale cohomology implies a very general
Kiinneth formula for cohomology with proper support: given a base scheme S and
a finite family (u; : X ;/ — Xj)ies of compactifiable morphisms of S-schemes,
A =1Z/nZ, and a family of objects K; of D’(le, A), the natural map

®bRuinKi — Ruy(®%,K),
where u = [u; : [[¢ X] — [[g X; and ®ex; denotes an external tensor product,
is an isomorphism ([D4, 1969], (5.4.4.1)). In particular, taking I = {1,--- ,n},
Xi=X,X;=X',u; = f,and K; = K for each i, we have an isomorphism

(RAK) =" S ROF(K "), (13)

In ([D4, 1969], 5.5.21) Deligne proves a formula which looks like being deduced
from (13) by taking invariants under the symmetric group S,: for S quasi-compact
and quasi-separated, and f quasi-projective, and K € D”(X’, A), of tor-amplitude
in an interval [0, a], then there is defined a symmetric Kiinneth map

€

LI (RAK) — RSymg(fW LI K, (14)

which is an isomorphism. Here LI, is an external variant of the derived functor
of the (non additive) functor I'" (n-th component of the divided power algebra I”
over A), and Sym%(f) : Sym’s(X’) — Sym/((X) is the morphism induced by f¢
on the symmetric power Sym(X') = X'"/S,,. Despite its appearance, (14) is not a
formal consequence of (13). Its proof is by dévissage, and for n invertible on S, by
reduction to the case of curves and a transcendental argument. Deligne will use (14)

several times:

(a) in ([D39, 1977], Fonctions L modulo £" et modulo p), to give an alternate proof
— and a generalization — of Katz’s congruence formula SGA 7 ([7], XXII) for
the zeta function of a proper scheme over F;

(b) the proof of the functional equation of Grothendieck’s L-functions on a curve
(see Sect. 6.3 “The Case of Function Fields”);

(c) in [74], to prove the product formula for local constants (cf. (149)) in the tame
case, using a strategy developed in his letter to Serre [D30, 1974].
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Finiteness

For A =Z/nZ, let Df (X, A) denote the full subcategory of DP(X, A) consisting of
complexes with constructible cohomology sheaves. For a compactifiable morphism
f : X — Y, the preservation of Df by Rfi is an easy corollary of the proper base
change theorem and the structure of the cohomology of curves, and was proved by
Artin and Grothendieck in 1963 ([4], XIV). However, the preservation of Df under
Rf%, assuming n invertible on Y (otherwise there are simple counter-examples),
was a wide open problem in the 1960s, even when Y is the spectrum of a field k
(except for X/k smooth and locally constant coefficients, by Poincaré duality). In
the early 1970s Deligne made a breakthrough, by simultaneously proving several
basic finiteness theorems ([D39, 1977], Th. finitude):

* Generic constructibility If S is a noetherian scheme over which 7 is invertible,
and f : X — Y a morphism of S-schemes of finite type, then, for K €
Df (X, A), there exists a dense open subscheme U of S such that Rf, K |Yy
belongs to Df(YU, A) and is of formation compatible with any base change
S"— U C S (where Yy :=Y x5 U).

* Finiteness and biduality over regular bases of dimension <1 If S is a regular
noetherian scheme of dimension < 1 over which 7 is invertible,and f : X — Y
a morphism of S-schemes of finite type, then Rf; sends Df. (X, A) to Df(Y, A).

Let D¢ip(X, A) denote the full subcategory of Df (X, A) consisting of
complexes K of finite tor-dimension. Then, for K € D (X, A), DK belongs
to D¢r(X, A), and the biduality map K — DDK is an isomorphism, where
D := R#om(—,a'Z/nZ),a: X — S being the structural map.

* Constructibility of nearby cycles Let S be a strictly local trait, i.e., the spectrum
of a strictly henselian discrete valuation ring, with closed point s and generic
point 1, and let X be an S-scheme of finite type. Then, for K € Df (X, A),
the complex of nearby cycles R¥, K belongs to Df (X5, A), and its formation
is compatible with base change by any surjective morphism S’ — S of strictly
local traits.

Proofs of the basic results of SGA 4 [4] proceed by dévissage and reduction
to relative curves. To establish the above theorems Deligne used an ingenious new
method, later called the global to local method. Roughly speaking, the principle is
the following. In order to prove that a certain canonical map u (like the biduality
map, or the base change map for R¥) is an isomorphism, one uses induction on the
relative dimension. Cutting by a finite number of pencils one constrains the cone C
of u to be concentrated on a union X of a finite number of geometric points. One
then concludes by a global argument, knowing that RI" (X', C) = 0, hence C, = 0
forallx € X.

Since then the global to local method has been successfully applied to various
problems: construction of du Bois complexes (see Sect.4.2 “The du Bois Com-
plex”), Gabber’s theorems on the compatibility of R¥ with duality and external
tensor product ([125], 4.2, 4.7), ([24], 5.1) to mention only a couple of them.
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Given a regular noetherian base S of dimension <1 and an integer n invertible
on S, Deligne’s theorems imply the existence of a Grothendieck formalism of six
operationsin D¢y (—, A) over S-schemes of finite type. A variant of this formalism
for ¢-adic coefficients (Zy, Qg, Q) for a prime ¢ invertible on S was constructed
by Deligne [D46, 1980] (for S satisfying certain restrictive hypotheses), and
later improved and generalized by several authors (see Sect.5.6 “Mixed Sheaves,
Statement of the Main Theorem”, (b)). Over bases S of higher dimension, and
for torsion coefficients, an extension of the above formalism, under (necessary)
assumptions of quasi-excellency, has recently been obtained by Gabber [131], using
new tools.

2 Algebraic Stacks

2.1 Deligne-Mumford Stacks

The notion of stack—a fibered category over a site in which objects as well as
morphisms can be glued—and of gerbe—a stack in groupoids in which fibers
are locally non-empty and any two objects of a fiber are locally isomorphic—are
due to Grothendieck, and were used by Giraud to develop a theory of non-
abelian cohomology [100]. However, the purpose was purely topological (and
cohomological). Deligne showed that one could do algebraic geometry with them.
The motivation was to build a geometric framework that could incorporate the
automorphism groups preventing moduli problems to be represented by schemes.
In [198] Mumford had defined moduli topologies .# whose “open subsets” were
families of curves of genus g and “intersections” involved isomorphism schemes
between families. The terminology was misleading as those topologies were not
Grothendieck topologies on a category, nor objects of .# sheaves on a site.
Nonetheless they gave a hint to what should be the right notion to introduce.

Let .7 be the category of schemes, and let . be the corresponding étale site. In
[D8, 1969] Deligne and Mumford define an algebraic stack, later called Deligne—
Mumford stack, as a stack in groupoids 2~ over . such that the diagonal 2~ —
Z x Z is representable by schemes and there exists a surjective étale morphism
X — Z where X is a scheme. They then extend to these new objects classical
results of algebraic geometry, such as Chow’s lemma or the valuative criterion for
properness, critical in one of the two proofs of their main theorem.

Closely related objects are:

* orbifolds, which are topological or differentiable analogues of Deligne—
Mumford stacks, in the case when an open and dense subset is an ordinary
space; introduced by Satake in 1956 under the name of V -varieties, they play an
important role in differential geometry (e.g., Thurston’s work) and string theory;

* algebraic spaces, introduced just before Deligne—Mumford stacks by Artin and
Knutson [157], which are Deligne—Mumford stacks with trivial inertia groups.
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Shortly afterwards Artin proposed a generalization of the notion of Deligne—
Mumford stack, now called Artin stack, with “étale” replaced by “smooth” for the
surjective map X — 27, and gave powerful criteria for a stack in groupoids (on
Fer OF its variant Afpf) to be representable by an Artin stack [14, 15]. While
Deligne-Mumford stacks are well adapted to the study of moduli of curves (see
below), Artin stacks are needed for other types of moduli problems, such as moduli
of vector bundles, and those appearing in the theory of stable maps and Gromov-
Witten invariants, and in the Langlands program (Langlands correspondence over
function fields, geometric Langlands correspondence).

2.2 Moduli of Curves of Genus > 2

Let g be an integer >2. If k is an algebraically closed field, a stable curve of genus
g over k is a proper, reduced, connected, 1-dimensional k-scheme C such that C
is smooth except for ordinary double points, dim H%(#¢) = g, and any smooth
rational component of C meets the other components in at least three points. If S is a
scheme, a stable curve of genus g over S is a proper, flat S-scheme whose geometric
fibers are stable curves of genus g. Let ./, be the fibered category over ., whose
fiber at S is the groupoid of S-stable curves of genus g and S-isomorphisms. It is
shown in [D8, 1969] that ./Z, ¢ is a Deligne-Mumford stack over % (or, for short,
over Spec Z), in which the diagonal map .#, — //lé, x M is finite and unramified.
Let //lg(,) C ./, be the open substack such that ///g (S) consists of smooth (stable)
curves over S. The two main results of loc. cit. are:

Theorem 4 The stack ., is proper and smooth over Spec Z, and My — ///5(,) isa
divisor with normal crossings relative to Spec Z.

For a smooth stable curve f : X — S of genus g over a scheme S over which
an integer n > 1 is invertible, a Jacobi structure of level n on X is defined as a
homogeneous symplectic isomorphism between R f,(Z/nZ) and (Z/nZ)>S.

Theorem 5 For any integer n > 1, let 1 : n///é? — SpecZ[1/n, 2/ be the
stack® classifying smooth stable curves of genus g endowed with a Jacobi structure
of level n. Then the geometric fibers of | are normal and irreducible.

In particular, for any algebraically closed field &, (l///é?)k, and the coarse moduli
quotient (Mg)k = (Hg)k/PGL(Sg —6), where (Hg)k is the scheme of tri-canonical
smooth stable curves of genus g over k (a dense open subscheme of a certain Hilbert
scheme), are irreducible.

A key ingredient in the proof of Theorem 4 is the stable reduction theorem for
curves, deduced in loc. cit. from Grothendieck’s semistable reduction theorem for
abelian varieties (independent proofs were found later, see, e.g., [16, 223]). The

5 A scheme, for n > 3, by Serre’s rigidity lemma.
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proof of Theorem 5 uses the fact that the result is known for the fiber at the standard
complex place of Spec Z[1/n, ¢>™'/"] by Teichmiiller theory.

It was later proved by Knudsen and Mumford—and, independently, by Mumford
using another method—that coarse moduli spaces of stable curves are projective
[154-156, 199].

2.3 Moduli of Elliptic Curves

Classically, a modular curve X is the quotient .7 /I" of the upper half-plane
A = {z € C,Imz > 0} by a congruence subgroup I" of SL(2, Z). This is the
complement of a finite number of points (the cusps) in a compact Riemann surface,
hence an algebraic curve over C. The interpretation of X as a (coarse) moduli space
for elliptic curves endowed with a so-called level structure and its relation with
modular forms has given rise to a huge literature on the geometry and arithmetic
of these curves, starting with the pioneering works of Igusa and Eichler—Shimura.
In [D24, 1973] Deligne and Rapoport give a comprehensive account of the state of
the art in 1972. Their monograph also contains new constructions and results. I will
only briefly mention some of these pertaining to the compactification of modular
curves and their reduction modulo p.

Generalized Elliptic Curves and Compactifications

Given a base scheme S, a generalized elliptic curve over S is defined as a proper
and flat scheme p : C — S, whose every geometric fiber is either a proper,
smooth, connected curve of genus 1 or a Néron n-gon (n > 1, together with a
commutative group scheme structure on the subscheme C™# of smooth points of
C and an extension of this action to C rotating the graphs of the n-gons ([D24,
1973], I 1.12). For n > 1 fixed, invertible on S, a level n structure on C is an
isomorphism Cj¥ = (Z/nZ)% (compatible with the action of C™ on C and
of Z/nZ on (Z/nZ)?* by translation on the second factor), where the subscript n
denotes the kernel of the multiplication by n. If S is a scheme over which n is
invertible, let .#,,[1/n](S) denote the groupoid of generalized elliptic curves over S
with level n structure (morphisms being S-isomorphisms). One of the main results
of [D24, 1973] is:

Theorem 6 .#,[1/n] is a proper and smooth Deligne—Mumford stack of relative
dimension 1 over Spec Z[1/n], and the complement of the open substack ///,?[l/n]
such that //{,?[l/n](S) consists of elliptic curves over S is finite and étale over
SpecZ[1/n]. For n > 3, .#,[1/n] is a projective and smooth scheme over
SpecZ[1/n].
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The e, -pairing A2E, = uns for E in //[,?[l/n](S) defines a morphism
//l,?[l/n] — Spec Z[¢,, 1/n], and the coarse moduli space of ///,?[l/n] ®Zi¢y,1/n]
C is the (affine) modular curve .7 /I" corresponding to the principal congruence
subgroup I" = I'(n) consisting of matrices congruent to the identity matrix mod #.

Reduction mod p

The above results are extended to level H structures for congruence subgroups 'y
inverse images of subgroups H of GL(2,Z/nZ), such as I'j(n) = I'y for H =
( o ) The reduction modulo a prime number p of the corresponding modular stacks
My [1/n] is examined. For p dividing n, a model .#y of .#[1/n] over Spec Z is
needed: Deligne and Rapoport define .# as the normalization of .4\ in A 1(-)1 [1/n].
The stack .#r;(p) has a modular interpretation: it classifies pairs (C/S, A) of a
generalized elliptic curve over S and a rank p locally free subgroup A meeting each
irreducible component of any geometric fiber of C. They prove a refinement of the
Eichler—Shimura congruence formula ([D24, 1973], V 1.16):

Theorem 7 The stack ./, () is regular, proper and flat over SpecZ, of relative
dimension 1, smooth outside the supersingular points of characteristic p, and
with semistable reduction at these points; My py ® F) is the union of two irre-
ducible components crossing transversally at the supersingular points. Moreover,
the (open) coarse moduli space M%o(p) is the spectrum of the normalization
of Z1j, j'1/(@,(j, j)), where @,(j, j") is the modular equation, a polynomial
congruent to (j — j'P)(j' — jP) modulo p.

For more general groups H the definition of .#y as a normalization made it
difficult to study its reduction mod p. Drinfeld’s notion of full level N structures,
providing a simple modular interpretation of .#y, solved the problem. See Katz—
Mazur’s treatise [148] for a systematic exposition of this theory.

3 Differential Equations, de Rham Cohomology

3.1 The Canonical Extension and Hilbert’s 21st Problem
The Curve Case

Let X be a projective, smooth, connected curve over C, Y a (possibly empty) finite
subset of closed points, and U = X —Y. An (algebraic) differential equation on U is
the datum of a vector bundle E on U equipped with aconnectionV : E — E® 9[1]
Let y € Y. The connection V is said to have (at most) regular singular points along
Y if the following condition is satisfied:
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(reg) there exists a vector bundle E over X extending E such that, for any
point y in Y, given a local parameter ¢ of X at y, and D = td/d¢t, the (additive)
endomorphism V(D) of E near y leaves E stable, i.e., the entries of its matrix in
a local basis (¢;) of E are sections of Oy (in other words, if Ve; = Zaijej, the
differential forms a;;’s have poles of order at most one at y).

Given a smooth connected curve U over C, the smooth projective model X/C
such that X — U is finite is unique, and (reg) depends only on (E, V). Moreover,
it is a classical result of Fuchs, re-interpreted by Deligne, that (reg) is equivalent
to a moderate growth condition along Y on the solutions of the associated analytic
differential equation V*" on the corresponding Riemann surface U?", i.e., near each
point y of Y, the solutions are O(|t|7N) in fixed sectors, see ([D11, 1970], 11 1.19).
Solutions of V*" form a locally constant sheaf of finite dimensional C-vector spaces

EV :=Ker(V®: E™ > E" @ .Qll,an)

on U?". Given a point x¢ of U, this local system is determined by its stalk £ xVO at xg
and its monodromy representation

p(V) : (U™, x0) — GL(EY). (15)

Hilbert’s 21’st problem was the following: given a finite dimensional C-vector space
V, and a representation

o (U™, x0) - GL(V),

can one find an algebraic differential equation (£, V) on U, with at most regular
singular points along Y, such that p = p(V)? Deligne positively answered the
question, and in fact solved a more general problem in higher dimension.

Higher Dimension: The Riemann-Hilbert Correspondence

Let X be a smooth scheme over C, Y C X a normal crossings divisor, j : U <— X
the complementary open immersion. Differential forms on U with logarithmic
poles along Y (a generalization of differentials of the 3rd kind on curves) briefly
appear in ([117], Lemma 17). However, their formal definition, and that of the
corresponding de Rham complex, are due to Deligne. In a letter to Atiyah [60],
Deligne defines 2% (Y) as the subcomplex of j.§27,, where £27; is the (algebraic)
de Rham complex of U/C, consisting of forms w having a pole of order <1
along Y and such that dw enjoys the same property. This complex, later called
de Rham complex of X with logarithmic (or log) poles along Y, and now usually
denoted £2%(logY), was to play a fundamental role in Deligne’s mixed Hodge
theory and spur many important developments in algebraic and arithmetic geometry.
Its components .Q)l; (logY) = AP 2 )1( (logY) are locally free of finite type: if étale
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locally near a point of Y, (¢1,--- , #;) are sections of Ox such that (dt1, -- -, dty)
form a basis of Q}( and Y is defined by the equation #1 - - - t, = 0, then .Q)l( (logY) =

@1555,ﬁ‘ltf" ® @;~,Odt;; the dual of .Q)l( (logY) is the subsheaf Zery (X/C) of the

tangent bundle Zer(X/C) = (.Q)l()v consisting of vector fields tangent to each
branch of Y. If E is a vector bundle on X, a connection on E with log poles along Y
is an additivemap V : E - E ® .Q)l( (log Y) satisfying the Leibniz rule; V is said
to be integrable if V> : E — E ® .Q%(log Y)iszero.If V: E - E® .Q(l] is an
integrable connection on a vector bundle E on U, V is said to have regular singular
points (or to be regular) along Y if there exists a vector bundle £ on X extending
E, and a connection V with log poles along Y on E extending V. This is a local
condition at points x of ¥ which can be expressed in terms of sectorial moderate
growth of the entries of a fundamental matrix solution of V along each branch of Y
passing through x.

Fix now a smooth scheme U over C, separated and of finite type. By Nagata’s
compactification theorem,® there exists a dense open immersion j : U < X
with X/C proper, and by Hironaka one may further require that X is smooth and
Y = X — U is a divisor with normal crossings. Let’s call such a compactification
a good compactification. If U is of dimension >1, a good compactification of U is
not unique, but any two good compactifications j; : U < Xy, j» : U < Xj are
dominated by a third one, i.e., there exists a good compactification j : U — X
mapping to j; and j». Given an algebraic differential equation on U, i.e., a vector
bundle £ on U equipped with an integrable connection V, one says that V is
regular at infinity if for one good compactification X (or, which can be shown to be
equivalent, for any good compactification X) of U, V isregularalong Y = X — U.
Basic examples are the relative de Rham cohomology group E = 3 (Z/U) =
R" 4825 JU° for f : Z — U proper and smooth, equipped with its Gauss—Manin
connection V (the regularity was proved by Deligne ([D11, 1970], II 7.9), and,
independently, by Griffiths and Katz, see [142]).

Let .#:e(U) denote the category of vector bundles on U equipped with an
integrable connection which is regular at infinity, and let .2 (U) denote the category
of locally constant sheaves of finite dimensional C-vector spaces on U?". As in the
case of curves, we have a functor

Mreg(U) - Z(U) (16)

associating with (E, V) the local system EV := Ker(V® : E¥ — E" ® .QLl,an). In
([D11, 1970], II 5.9) Deligne proves the following theorem:

Theorem 8 The functor (16) is an equivalence of categories.

6Nagata’s original proof is obscure to today’s readers. A modern presentation was given by Deligne
in [D112, 2010].
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The equivalence (16) was later called Riemann—Hilbert correspondence. The
statement of Theorem 8 is global, but the proof relies on a local analytic construc-
tion. No longer assuming X proper, and supposing Y is a union of smooth branches
Y; (1 < i < r), given an analytic differential equation (M, V) on U?", Deligne
shows that there exists a unique (analytic) extension (M, V) of M on X" having
log poles along Y'*", and such that for each k, if Ry := Resy, (V) € End(M ® Oy, ) is
the residue of V along Y%, the eigenvalues of Ry at each point of Y} have real parts in
the interval [0, 1). This extension is called the canonical extension of V. Identifying
Z(U) with the category of analytic differential equations on U?", the canonical
extension, combined with the GAGA functor, yields a quasi-inverse to (16).

Given an algebraic differential equation (E, V) on U, regular at infinity, an
extension (£, V) on X with log poles along Y is not unique, see [88] for a
discussion of this. Theorem 8 has given rise to several variants and generalizations—
the first ones by Deligne himself, see Sect.3.3 “Discontinuous Crystals”’—the
most important one being the Riemann—Hilbert correspondence between regular
holonomic Z-modules and perverse sheaves [139, 140, 191].

3.2 Betti-de Rham Comparison Theorems

Let U be a smooth scheme over C. The resolution of the constant sheaf C on U*" by
the holomorphic de Rham complex £2. (Poincaré lemma) induces an isomorphism

H* (U™, C) > H*(U™, 2pum).
On the other hand, Grothendieck proved in [106] that the GAGA comparison map
H*(U, Q[.]) — H*(Uan,gl.]an) (17)

is an isomorphism, so that the Betti cohomology of U?" can be calculated purely
algebraically as the algebraic de Rham cohomology of U. For U/C proper, this
is an immediate consequence of Serre’s classical GAGA theorem. In the general
case, which is easily reduced to the case where X is separated, or even affine, this
follows from the existence of a good compactification j : U — X (Sect. 3.1 “Higher
Dimension: The Riemann—Hilbert Correspondence”) and a local calculation ([117],
Lemma 17). In [D16, 1971] Deligne gives refinements of this result, of local nature,
involving certain canonical filtrations.

Let us assume, for simplicity, that ¥ has strict normal crossings, i.e., is a sum of
smooth divisors ¥; (1 <i <r) crossing transversally.7 Consider the inclusion

2% (log Y™ < jQ8 .. (18)

7One can achieve this by a sequence of blow-ups ([138], 7.2).
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As jA20m > Rj 2820w since j is affine, by the Poincaré lemma the right hand
side calculates Rj2"C. Deligne proves ([D16, 1971], 3.1.8) that (18) is a quasi-
isomorphism, and even a filtered quasi-isomorphism, with respect to increasing
filtrations W and 7 on the left and right hand sides respectively, i.e., induces quasi-
isomorphisms on the associated graded complexes gr¥ — gr’. The filtration 7
is the filtration by the canonical truncations 7<;. For n > 0, W, 2 § (logY) (resp.
W .Q)l;an (log Y2)) is the subsheaf of .Q§ (logY) (resp. Q§an (log Y2M)) additively
generated by local sections of the form a A dlogfi A --- A dlogfi,, withm < n,
a in .Q;;fn (resp. .Q)l;;nn), and f; in j, O, (resp. j2"Opw). The associated graded
complex is calculated by the Poincaré residue isomorphism:

Res : g 2% (log¥) > @823 [—n]

(resp.
Res : grl 2% (log V™) = ©2pm[—n]),
I
where I runs through the subsets 1 < i; < -+ < i, <rof{l,---,r} withn

elements, and Y7 := Y; N --- N Y;,. The statement that (18) is a filtered quasi-
isomorphism with respect to W and t follows from this and the calculation of
grr Rji"Cln] = R" j2"C[—n]:

R"j¥"C = A"R'ji"C = &Cym.

This result is at the core of the construction of a mixed Hodge structure on
H*(U®™,Z) (see Sect. 4.2 “Mixed Hodge Theory”). The algebraic analogue of (18),

Q% (og¥) = j.2}). (19)

is also a quasi-isomorphism, but it is no longer the case that it is a filtered quasi-
isomorphism with respect to W and t. Instead, Deligne proves in ([D11, 1970], IT
3.13) that it is a filtered quasi-isomorphism with respect to the (decreasing) filtration
F on the left hand side given by the naive truncations (the so-called Hodge filtration)
and a (decreasing) filtration P on the right hand side ([D11, 1970], I 3.12), already
introduced in a letter to Atiyah [60] in the more general framework of complexes
of differential operators, called the filtration by the order of the pole (for Y smooth,
P"j.Oy = Ox(—nY), P"j.R}, = P"7j.0y ® 2%). By the classical GAGA
theorem, (18) and (19) yield the isomorphism (17). The quasi-isomorphisms (18)
and (19) also imply that the inclusion

]*QZ] ® ﬁUaﬂ —> jj(lng[.]an (20)

is a quasi-isomorphism. In ([D11, 1970], II 3, 6) Deligne generalizes the fact
that (19), (20) are quasi-isomorphisms to algebraic differential equations (E, V)
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on U, extended to (E, V) on X, V having log poles along Y, hence getting a
comparison isomorphism

H*(U, 23(E)) = H* (U™, 2 (E™)). 1)

generalizing (17). He will consider again the filtration by the order of the pole
in ([D29, 1974], 9.2) (in relation with a theorem of Griffiths on Hodge theory of
smooth hypersurfaces) and in [D70, 1990] (for its extension to the singular case).

3.3 Crystalline Cohomology
Discontinuous Crystals

In his exposé [108] in [1] Grothendieck introduced crystalline sites, crystals and
crystalline cohomology, both in characteristic zero and in characteristic p > 0.
In positive characteristic the theory was extensively developed by Berthelot in
his thesis [30]. The case of characteristic zero retained less attention. In his
seminar at the IHES in 1970 [62] Deligne generalized both the Riemann—Hilbert
correspondence (16) and the comparison isomorphism (21) to certain crystals on
possibly singular schemes over C. Let X be a scheme separated and of finite type
over C, and let X*" be the associated analytic space. The category .Z(U) of (16)
is replaced by the category ons(X) of algebraically constructible sheaves V of
C-vector spaces, i.e., for which there exists a finite partition of X into locally closed
subschemes X; (for the Zariski topology) such that V |(X;)®" is locally constant with
finite dimensional fibers. Let X5 denote the crystalline site of X/C, consisting of
C-nilpotent thickenings U — U of open subschemes U of X, and O, the sheaf
of rings on Xcris, (U < U) — I'(U, Oy;). The category .#reg(U) is replaced by
a category €’r(X) consisting of pro-coherent crystals of Ox . .-modules M having
the property that there exists a partition of X into smooth locally closed subschemes
X; of X such that M|(X;)cris is given by a vector bundle E; on X; equipped with an
integrable connection V; which is regular at infinity. Then Deligne defines a functor

Cris(X) — Gons(X) (22)

generalizing (16), which he proves to be an equivalence of categories. The reason
for the introduction of pro-objects lies in the need of realizing the functor extension
by zero for constructible sheaves on the crystalline level, which he does by the
techniques he had developed in [D2, 1966] for Grothendieck global duality in the
context of coherent sheaves (Sect. 1.4 “Global Duality”, the functors R f; and Rf").
If V is the constructible sheaf associated with an object M of € ris(X) by (22),
Deligne constructs a canonical isomorphism

H* (Xeris, M) — H*(X™, V) (23)
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generalizing (21). For M = Oy, V is the constant sheaf of value C on X?", and the
isomorphism (23) solves a conjecture of Grothendieck. Moreover, if X is embedded
as a closed subscheme of a smooth scheme Z, and 7 = h_I)n Z, the completion of
Z along X, then the left hand side of (23) is the completed de Rham cohomology

H*(Xcris’ ﬁxcris) _N) H*(Z’ Q%) = 1(&1 H*(va Q%n)

n

In this particular case, (23) was re-discovered by Hartshorne in [114]. It was quite
recently revisited by Bhatt [31], who proved relative variants, using derived de Rham
complexes. However, it seems that the relation between the crystalline approach and
that of Z-modules, briefly mentioned at the end of Sect. 3.1 “Higher Dimension:
The Riemann—Hilbert Correspondence”, is not yet well understood.

Liftings of K3 Surfaces, Canonical Coordinates

Let Xo be a K3 surface over an algebraically closed field k of characteristic p > 0,
and let T = Tx,x =~ 9)1(0 ¢ be its tangent bundle. Rudakov and Shafarevich
[217] and, by other methods, Nygaard [202] and Lang—Nygaard [161] proved that
H(Xo, T) = 0. This implies that the formal versal deformation S of X is universal
and formally smooth of dimension 20 over the Witt ring W (k). Using a crystalline
Chern class argument, Deligne [D49, 1981] deduced that, given a non-trivial line
bundle %) on Xy, the formal scheme X'(.%) pro-representing the deformations
of (Xo,-%) is cut out in S by one equation f not divisible by p, which, by
Grothendieck’s existence theorem, implies that X, together with a polarization, can
be lifted to a polarized K3 surface X over a finite extension of the field of fractions
of W (k).

In [D50, 1981] Deligne examines more closely the structure of S and X (%)
when X is ordinary, i.e., its crystalline cohomology H*(Xo/ W) (W = W(k)) is
an ordinary F'-crystal, which means that its Hodge and Newton polygons coincide,
or equivalently that the absolute Frobenius F on H>(Xg, €') is non-zero. Assuming
moreover p > 2, he proves that S = Spf A has a structure of formal torus of
rank 20 over W, and that one can choose canonical coordinates gi € 1 + mA,
1 <i < 20, m the maximal ideal of A, such that A = W[[gq1 — 1, -, g20 — 1]1,
and a distinguished basis (a, b1, - -+ , byg,c) of H = HZ(XO/ W) in which, for the
lifting ¢ of Frobenius to A given by ¢(g;) = qf , the Gauss—Manin connection V
on H and its Frobenius endomorphism are given by simple formulas (in particular,
Fa =a, Fbj = pb;, Fc = pzc). This follows from a general structure theorem for
ordinary F-crystals of level <1 (based on a lemma of Dwork), and a Dieudonné type
theory for infinitesimal liftings of a K3. In particular, g; = 1 defines a lifting Xcan
of X¢ to W, called the canonical lifting, by analogy with the Serre—Tate canonical
lifting of an ordinary abelian variety. Moreover, the first crystalline Chern class of

% corresponds to a character x = (xp,--- ,x20) € Z?,O (= Hom(G,znOZp, é;zp))
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of S, and the equation f above defining X (%) is [ ¢;", i.e., £ (%) = Ker x. The
structure theorem mentioned above applies to the crystalline H' of ordinary abelian
varieties, and yields canonical coordinates g;; (1 < i, j < g) on the corresponding
formal moduli space. Shortly afterwards it was shown by Katz [145] that these
coincide with the parameters defined by Serre-Tate using the equivalence between
liftings of an abelian variety and those of its p-divisible group.

The above theory for K3’s could be carried out with minor adjustments assuming
only k perfect. The restriction p > 2 posed more serious problems. It was removed
by Nygaard [203]. Given an ordinary K3 surface X over a perfect field k of
characteristic p > 0, Nygaard at the same time gave a functorial description,
a la Serre-Tate, of the group structure on S, as pro-representing the functor
of liftings of the Artin-Mazur p-divisible group ¥x,,« (enlarged formal Brauer
group), and, using the Kuga—Satake-Deligne abelian variety associated with X
(see Sect. 5.3 “K3 Surfaces”), proved, for k finite, the Tate conjecture for X¢. After
partial results by several authors [51, 52, 190, 204, 249], the Tate conjecture has
been established by Madapusi Pera [187] for all K3’s over finitely generated fields
of characteristic not equal to 2.

The de Rham—-Witt Complex

Let X be a proper and smooth scheme of dimension d over a perfect field k of
characteristic p > 0, and let W = W (k) be the Witt ring on k. In [34], assuming
p > 2 and d < p, Bloch constructed a projective system of complexes C; =
(€Y — ... — €% (n > 1) on the Zariski site of X, where C;! is the sheaf of
typical curves T'C,.%; 11 on the symbolic part of Quillen’s K -group K, 1, together
with operators F : C;l — CZ_ LV C! — C, enjoying remarkable properties, in
particular:

(i) construction of a projective system of isomorphisms H*(X, Cy) >
H*(X/ W), where H*(X/W,) is Berthelot’s crystalline cohomology, hence,
by applying 1<i£1n, an isomorphism H*(X, C*®) > H*(X/W), where the action
of the absolute Frobenius on H*(X /W) is deduced from the endomorphism of
C*:= 1<iLnn C,! givenby p?F on C4,

(ii) degeneration at £1 modulo torsion of the spectral sequence

EY = H/(X,C) = H™ (X, C*)(S HM (X/W)),

called the slope spectral sequence, with HJ(X, C")/(torsion) being finitely
generated over W, and, together with F and V being the Cartier module of
a p-divisible group, in such a way that (H/(X, C') ® Q, p'F) calculates the
part of slope in [i,i + 1) of H/(X/W) ® Q.
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In [66], revisiting work of Lubkin on bounded Witt vectors, Deligne sketched
a purely differential geometric construction of Bloch’s complex that could work
without any restriction of dimension or characteristic. His program was carried
out in [122], where the new complex was called the de Rham—Witt complex, and
proved to coincide with that of Bloch in its range of definition. Generalizations,
refinements, and applications of (i) and (ii) were given. This theory has generated
many developments up to now.

3.4 Irregular Connections

In the mid 1970s Deligne got interested in irregular connections. In a letter to Katz
of Dec. 1, 1976 ([D107, 2007], p. 15) he wrote: “Je collectionne les analogies entre
conducteur de Swan et irrégularité d’un systeme différentiel (au sens de Malgrange,
Gérard, Levelt).” The prototype of this is the analogy between the irregular Z-
module (Ox, V) on the affine line X = Spec(C[x]), with V(1) = —dx, whose
solutions on X" are ce®, ¢ € C, and which has irregularity 1 at infinity, on the one
hand, and the Artin—Schreier sheaf .2, on Spec(F,[¢]) (see (111)), which has Swan
conductor 1 at infinity, on the other hand.

In his letter, Deligne sketched a proof of a semicontinuity result for the
irregularity similar to the one he proved for the Swan conductor (see (42)). He
continued to think about this topic and had an extensive correspondence with
Malgrange and Ramis, published in [D107, 2007]. In (loc. cit., p.1), he mentions
four characteristic p > 0 phenomena, and states problems that they suggest on
holonomic Z-modules with not necessarily regular singularities:

(a) construction of a Betti structure (generalizing the classical Stokes structure in
dimension 1), periods;

(b) definition of nearby cycles;

(c) (real) Hodge filtration and slopes;

(d) global and local epsilon factors.

He proposes a solution to (b) in a letter to Malgrange (loc. cit., pp. 37, 167).
He also suggests an analogue of Laumon’s stationary phase principle (134); the
construction of RY uses his notion of tensor product of abelian categories (see
Sect.9.1), where the universal cover of the punctured disc is “replaced” by the
category of finite dimensional C((#))-vector spaces with a connection. He addresses
(a) and (c) in (loc. cit., Théorie de Hodge irréguliere), first written in March, 1984,
and revised in August, 2006. In particular, as regard to (c), he defines a filtration
on a twisted de Rham complex on a curve, and shows degeneration at E; of the
corresponding spectral sequence (loc. cit., p. 123). This is generalized to higher
dimension in ([91], th. 1.2.2). A complete answer to (a) (in arbitrary dimension)
was given by T. Mochizuki [193].

Problem (d), i.e., finding an analogue of the product formula for the global
constant of the functional equation of L-functions (see Sect.6.3), was part of the
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subject of the seminar he ran at the THES in 1984. The seminar was unfinished.
Laumon took faithful notes, that remained unpublished. The subject was revisited
in the early 2000s by Beilinson, Bloch, and Esnault [25, 39-41]. There, they also
discuss (a), give a solution to (d) in the de Rham context, and in a joint unpublished
manuscript with Deligne [26], give a solution to (d) in the Betti context, following
the line of proof proposed by him in his seminar. A full treatment of (d) is given by
Beilinson in [27].

The general problem in the background is the construction of a Riemann—Hilbert
correspondence for (not necessarily regular) holonomic Z-modules extending
that of the regular case (cf.Sect.3.1 “Higher Dimension: The Riemann—Hilbert
Correspondence”). It has been actively studied during the past 30 years. In the 1980s
a solution in dimension 1 was known to the contributors of [D107, 2007], though
it seems difficult to give a precise reference. In arbitrary dimension, d’ Agnolo
and Kashiwara [58] have recently constructed a fully faithful functor, compatible
with the six operations, from the derived category of cohomologically holonomic
complexes of Z-modules to a certain derived category of R-constructible enhanced
ind-sheaves. A criterion for detecting objects of the essential image by restriction to
curves is given by T. Mochizuki in [195].

3.5 Monodromy of the Hypergeometric Equation, Lattices

Let X be a connected, smooth scheme, separated and of finite type over C, (¥, V)
a vector bundle on X with an integrable connection, V = ¥V the local system
on X" of its horizontal sections. If xo € X" is a base-point, V corresponds to a
homomorphism (the monodromy representation, cf. (15))

P w1 (X*™, x0) = GL(Vy)- (24)

When (72", V) underlies a polarizable variation of Q-Hodge structures on X",
then V = Vo ® C for a Q-local system V, p factors through GL((VqQ)s,), and, by a
theorem of Deligne and Griffiths—Schmid, the identity component G° of the Zariski
closure G (in GL((V)x,)) of the image I" of p is semisimple (see Sect.4.2 “The
Fixed Part and Semisimplicity Theorems”). This is the case, for example, when
(¥, V) is defined by a relative de Rham cohomology group 3 (Z/ X), for Z — X
proper and smooth, equipped with its Gauss—Manin connection, in which case V
is regular (Sect. 3.1 “Higher Dimension: The Riemann—Hilbert Correspondence’).
Apart from this, and from a related finiteness theorem due to Deligne (Theorem 16),
little seems to be known in general on the monodromy representations (24). In the
geometric situation just mentioned, the determination of I" C G is already, in each
case, a difficult problem.
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Basic questions, for example, are to decide whether the image I of p in its
Zariski closure in GL(Vy,) (or a suitable real algebraic subquotient G of it) is
discrete, and in this case, if it is a lattice in G(R), i.e., I" has finite covolume,
and, if so, if it is arithmetic, i.e., roughly speaking, commensurable® to G(0), for a
ring of integers & of a totally real number field (see ([D63, 1986], 12) for a precise
definition).

A classical laboratory for these questions is the hypergeometric differential
equation on PlC

x(x=1)yY"+(c—(@a+b+1x)y —aby =0, (25)

for a, b, ¢ in C, which has regular singular points at 0, 1, oco. Its study goes back
to Euler, and it has been the subject of extensive work for over 200 years, with
an enormous amplification during the past 40 years. In [D63, 1986], Deligne and
Mostow revisit (25) and higher dimensional analogues.

The starting point is Schwarz’s study of the monodromy representation of (25).
Here X = Pé —{0, 1, 00}), ¥ is of rank 2, with a basis (e, e3) such that

V(ax)(€1) = e, V(ax)(ez) — N abel ((a + b + l)x — C)ezl

(1—x) x(1—x)
For xp a base-point in X, W := V,, is of dimension 2, with the hypergeometric
function
(a,n)(b,n) x"
F(a,b,c;x) = 26
(a,b,c; x) Z(:) n) ol (26)
n>

(c not an integer < 0) as a distinguished solution (defined by (26) for |x| < 1 and
by analytic continuation outside, using its classical integral representation). Instead
of (24), Schwarz considered the projective representation

p (X, x0) = Aut(P(W))(= PGL2(0)) 27)

defined by the local system of lines in VV, x — w(x) = wa(x)/wi(x) € P(Vy),
where (w1, wy) is a basis of W (viewed as multivalued functions on X, or a single
valued function w on its universal cover). Schwarz gave criteria on (a, b, ¢) for
p(I") to be finite, and, more generally, for its discreteness in PGL;(C). Picard
extended this to a 2-variable analogue of F(a, b, c; x), but his proof contained fatal
errors. In [D63, 1986], Deligne and Mostow correct it, and generalize it to the d-
variable case (d > 1). Namely, given rational numbers u; (0 < i < d + 1), none
of which is an integer, they consider the function of (x2, --- , x441) given by the

8L attices I} and I's are called commensurable if ] N I is of finite index in I} and in 1.
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integral representation

Fxa, o xas) = / wrow—n [T @—xMde @8
1

2<i=<d+1

(generalizing that for F'(a, b, c; x)ford =1, po=c—a,pu1 =14+b—c, u2» =a,
up to a product of constant gamma factors), where each x; is different from 0, 1, oo,
and the x;’s are pairwise distinct. Let @ be the differential form on PlC — S under
the integral sign on the right hand side of (28), where S = {0, 1, 0o, x2, - - - , X441}
It is shown in (loc. cit., 3) that by integrating w on suitable cycles on P%: — S, one
obtains a projective local system P(¢) of rank d on the open subspace Q of (Pé)d
consisting of points (#;)1<ij<q such that#; # 0,1,00 and 1; # t; fori # j,ie., a
map (of Schwarz type)

W:0 — P, (29)
hence a monodromy representation (for o a base-point in Q)
p:m1(Q, 0) = PGL4(C) (30)

(S is the local system of horizontal sections of a relative j‘fjﬁ{ for a relative curve
C over Q and a regular singular rank 1 (.2, V) on C). One of the main results of
loc. cit. is the following theorem:

Theorem 9 Let (1o be the order of the pole of w at co. Assume that 0 < p; < 1
foralli, including i = oo, and that (1 — p; — ,uj)_1 is an integer for all i # j such
that u; + wj < 1. Then the monodromy group I' image of p (30) is discrete, and,
in fact, is a lattice in PU(1, d), i.e., has finite covolume.

Then Deligne and Mostow investigate when I is arithmetic. In the last sections,
they give a criterion for arithmeticity, and provide examples of non-arithmetic
lattices for d = 2, 3 (and, in fact, Q-algebraic families of them). In [197], Mostow
had announced the first such example for d = 2 (with a different construction, using
complex reflections).

A natural continuation of this work is the study of commensurability between
lattices in PU(1, n). This is the subject of [D74, 1993], where Deligne and Mostow
examine several categories of lattices: (a) those coming from reflections (like in
[197]), (b) those arising as monodromy groups of hypergeometric local systems (as
above), (c) the lattices I" such that the quotient by I" of a hyperbolic complex ball
in PU(1, n) is a certain orbifold. They discuss commensurability in each category,
and between lattices of different ones.
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4 Hodge Theory

4.1 Hodgel

Hodge theory has a long history, going back to Abel, Riemann, Picard, and others
(see, e.g., P. Griffiths’s talk Abel to Deligne, IAS, 14 October, 2013 for a survey).
The Hodge decomposition of H"(X, C), for X a compact Kéhler variety, led to
the notion of pure Hodge structure, whose systematic study (variations, moduli,
relations with hermitian symmetric domains and Shimura varieties, Mumford—Tate
groups) began in the late 1960s.

Forn € Z, a pure Hodge structure H of weight n is the data of a finitely generated
Z-module Hz and a decomposition of the C-vector space Hc = Hz ® C into
@ prq=nHP?, with H9? = HP4, or, equivalently, a finite decreasing filtration F
of Hc n-opposed to its complex conjugate F, i.e., satisfying F? @ F ! = Hc for
p+q =n+1,with H?? = FP N F4 for p + q = n. For example, the Hodge
structure of Tate Z(1) is the Hodge structure of rank 1 and weight —2, purely of
bidegree (—1, —1), with integral lattice 2niZ C C (and for n € Z, Z(n) is its n-
th tensor power). The notion of pure Q- (resp. R-) Hodge structure of weight n is
defined similarly, with Z replaced by Q (resp. R).

In his talk at the Nice ICM [D15, 1971] Deligne introduced a generalization of
this notion, which he called mixed Hodge structure. A mixed Hodge structure H
consists of the following data:

(a) aZ-module Hyz, of finite type (the integral lattice);
(b) a finite increasing filtration W of Hq := Q ®z Hz (the weight filtration);
(c) afinite decreasing filtration F of Hc := C ®z Hz (the Hodge filtration).

These data are subject to the condition that, for each n € Z, gr,‘f’ Hq, with the
filtration induced by F on C ®q arV Hy, is a pure Q-Hodge structure of weight n.
The numbers

hP4 = dime H, 31)

thge HPl = gr?gr‘;gr[v,‘/ﬂ Hc = (grlv,VJrq Hc)?P-1 are called the Hodge numbers
of H.

With the obvious definition of morphisms, it is proved in ([D16, 1971], 2.3.5) that
mixed Hodge structures form an abelian category, in which morphisms are strictly
compatible with the weight and Hodge filtrations.

In [D15, 1971], Deligne sketched a program of construction of mixed Hodge
structures on the cohomology of complex algebraic varieties, generalizing classical
Hodge theory for smooth projective ones. He carried it out in [D16, 1971] and
[D29, 1974]. The idea that Betti cohomology groups of arbitrary complex algebraic
varieties should carry such a structure was suggested by Grothendieck’s—at the
time—conjectural theory of weights in the £-adic cohomology of algebraic varieties
over finite fields (coming from the Weil conjectures), and the link between Betti
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cohomology and ¢-adic cohomologies provided by Grothendieck’s conjectural
theory of motives. Deligne’s definition and study of mixed Hodge structures made it
possible to formulate (and sometimes prove) precise conjectures concerning weight
filtrations in the two contexts. This is the subject of his report [D15, 1971].

First, Deligne discusses the problem of the existence of a weight filtration in
the £-adic setting. Let Xo be a normal, integral scheme of finite type over Z, with
generic point 7, and geometric point n over . Let £ be a prime number invertible
on Xg. A lisse Q¢-sheaf 7# on X corresponds to a continuous representation p :
m1(Xo, n) — GL(H), where H is a finite dimensional Qg-vector space. Given such
a sheaf 77, Deligne conjectures (loc. cit., 2.1) that, if # “comes from algebraic
geometry”, then .7 admits a unique increasing filtration W by lisse sheaves, such
that each gr}”%ﬂ is “punctually pure of weight i” (see Sect.5.6 “Mixed Sheaves,
Statement of the Main Theorem”). By “comes from algebraic geometry”, one can
for example ask that # = R! f,Qq (or # = R’ f5.Qy) for fy : Yo — Xo
separated and of finite type, demanding that S is lisse. For Xo/F,, Deligne said
that, assuming (i) resolution of singularities, (ii) the Weil conjectures, one could
“in many cases” define a conjectural filtration W. A few years later, he proved
(ii), and though (i) is still open today, he constructed W unconditionally in ([D46,
1980], 3.4.1) (see Sect. 5.6 “First Applications”, The weight filtration). Nowadays,
de Jong’s alterations serve as a good substitute for resolution, and could be used
(in conjunction with the Weil conjectures) to construct W. In the simple case of the
complement of a divisor with normal crossings in a projective and smooth scheme
over C, Deligne explains how this filtration arises as the abutment of a certain
spectral sequence, and what is the (non conjectural) analogue (involving mixed
Hodge structures) that one obtains in Hodge theory, which is the main theme of
[D16, 1971].

In the second part, Deligne makes a parallel between the ¢-adic cohomology
of families over a trait on the one hand, and Hodge theory of families over a
complex disc on the other hand. The conjectures he formulated (or suggested) there,
concerning weights and monodromy, the so-called weight-monodromy conjectures,
turned out to be a focus of interest in both £-adic cohomology and Hodge theory
(see Theorem 25, and Sect. 10).

4.2 Hodge Il and Hodge 111
Homological Algebra Infrastructure

As Deligne explains in [D15, 1971], thanks to Hironaka’s resolution of singularities,
the desired weight filtrations on the Betti cohomology of complex algebraic varieties
can be defined as abutment filtrations of spectral sequences whose initial terms
are the cohomology of projective smooth ones. Showing that their combinations
with the Hodge filtrations appearing on these abutments give rise to mixed Hodge
structures relies on new tools of homological algebra: (i) filtered derived categories
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(introduced in ([120], V) in the case of finite filtrations), and used systematically
in [D29, 1974] (ii) décalage of filtrations, mentioned in Sect. 1.2 “Décalage of
Filtrations”.

This décalage is used in the proof of a technical result on which all geometric
constructions of mixed Hodge structures ultimately rest, the so-called lemma of
two filtrations ([D16, 1971], 1.3.16), ([D29, 1974], 7.2). Given a complex K of
an abelian category, equipped with two filtrations W and F, F being biregular,
i.e., inducing on each component a finite filtration, this lemma provides a handy
criterion to ensure that the three natural filtrations” cut out by F on the E, terms of
the spectral sequence of K filtered by W coincide (and on E&;? = grPy, HPT9(K)
coincide with the filtration induced by F on the right hand side).

Deligne associates with complex algebraic varieties finer objects than mixed
Hodge structures, namely mixed Hodge complexes. Their definition involves filtered
and bi-filtered derived categories, whose definition we recall first (loc. cit., 7.1).

Let <7 be an abelian category. The category K+ F (/) is the category of bounded
below filtered complexes (K, F) (with F biregular) and homotopy classes of maps
preserving the filtration. The filtered derived category DT F (<) is the triangulated
category deduced from K+ F (/) by inverting the filtered quasi-isomorphisms, i.e.,
morphisms u such that gry (1) is a quasi-isomorphism.

The category K+ F> () is the category of bounded below bi-filtered complexes
(K, F,W) (with F and W biregular) and homotopy classes of maps preserving
F and W. The bi-filtered derived category DT F(47) is the triangulated category
deduced from KT F,(%/) by inverting the bi-filtered quasi-isomorphisms, i.e.,
morphisms u such that grpgry, (#) is a quasi-isomorphism.

Let n € Z. A Hodge complex of weight n is a triple (Kz, (K¢, F), «), where
K7, is an object of DT (Z) with finitely generated cohomology groups, (K¢, F) an
object of DTF(C), and & : K¢ — Kz ® C an isomorphism of Dt (C) such that
the following conditions are satisfied:

(i) the differential of K¢ is strictly compatible with the filtration, in other words
([D16, 1971], 1.3.2), the spectral sequence of (K¢, F) degenerates at Ey;

(ii) F induces on each H*(K¢)(— HY(Kz) ® C) a filtration which is (n + k)-
opposed to its complex conjugate, i.e., such that H*(K¢) = D prg=ntk(FP N
F q)H k(K¢), in other words, defines a pure Q-Hodge structure of weight n + k
on HX(Kq).

For A a noetherian subring of C such that A ® Q is a field (e.g., Q, R), one
similarly defines an A-Hodge complex of weight n, by replacing Kz by K 4, with
K4 in DY (A), with cohomology groups finitely generated over A.

9They come from the three descriptions of E/?: as a subobject of a quotient of K”*4, as a quotient
of a subobject of K714, as a quotient of a subobject of EX7,.
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An A-mixed Hodge complexis atuple K= (K4, (KagQ, W), (Kc, W, F), B, a),
where K4 is an object of DT (A) with finitely generated cohomology modules,
(KagQ, W) an object of DV F(Q) (W being increasing), (K¢, W, F) an object
of DTFK(C), B : K agQ = K4 ® Q an isomorphism in DT(A ® Q),

o : (Kc,W) = (KazQ, W) ® C in DT F(C) such that for all n € Z, the
triple

(gr) Kagq. (gry Kc, F) g o : grf) K¢ — gr) Kagq ® €)

is an A ® Q-Hodge complex of weight n.

For A = Z, one simply says mixed Hodge complex. An A-mixed Hodge complex
K such that gr’ﬁ, Kagq = 0 fori # n can be viewed, by forgetting W, as an A-
Hodge complex of weight n. The link between mixed Hodge complexes and mixed
Hodge structures is provided by (a) of the following theorem (loc. cit., 8.1.9) (whose
other statements yield the basic degeneration results for the spectral sequences
arising from geometric situations):

Theorem 10 Let K be a mixed Hodge complex.

(a) Foreach k € Z, the shifted filtration W[k] (Wlk]l, = Wp_y) on Hk(KQ) and
the filtration F of H*(K¢) = Hk(KQ) ® C define a mixed Hodge structure.

(b) The spectral sequence of (Kqg, W) (weight spectral sequence) degenerates
at E».

(c) The spectral sequence of (Kc, F) (Hodge spectral sequence) degenerates
at E1.

(d) For each p € Z, the spectral sequence of gr? Kc filtered by W degenerates
at E».

Morphisms of mixed Hodge complexes are defined in the obvious way. It follows
from Theorem 10 (and the fact that morphisms of Hodge structures are strictly
compatible with the Hodge filtrations) that a morphism © : K — L of Hodge
complexes such that the underlying morphism uz : Kz — Lz is an isomorphism
of D(Z) is an isomorphism. This does not extend to morphisms of mixed Hodge
complexes. However, if u : K — L is a morphism of mixed Hodge complexes such
that uz : Kz — Lz is an isomorphism, then the morphism deduced by décalage
of W,

(Kz, (K@, Dec(W)), (K¢, Dec(W), F)) — (Lz, (Lg,Dec(W)), (Lc, Dec(W), F))

is an isomorphism (the décalage comes from (d) and (4)). In particular, H" (u) :
H"(K) — H"(L) is an isomorphism of mixed Hodge structures.
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Mixed Hodge Theory
The Smooth Case

If X is a projective, smooth scheme over C, the associated complex analytic variety
X2 is Kihler, hence, for each n € Z, H"(X,Z)'° comes equipped with a pure
Hodge structure of weight n. The filtration F' on H" (X, C) doesn’t depend on the
Kéhler structure, as it is the abutment filtration of the Hodge to de Rham spectral
sequence

EP = HI(X, 28) = HPY(X,O)(S> HPM(X, 23)), (32)

which degenerates at Eq. In ([D3, 1968], 5.3), Deligne shows that if X is only
assumed proper and smooth, the same degeneration holds for the similar spectral
sequence (32) (an algebraic proof of this was later given in [D65, 1987], see
Sect. 4.6), and the abutment filtration F again provides H" (X, Z) with a pure Hodge
structure of weight n.

Let X be a separated and smooth scheme of finite type over C. As we have seen in
Sect. 3.1 “Higher Dimension: The Riemann—Hilbert Correspondence”, by Nagata’s
compactification theorem, followed by Hironaka’s resolution, one can find a dense
open embedding j : X — X, with X/C proper and smooth, and D = X — X a
strict normal crossings divisor. Recall (Sect. 3.2) that the inclusion (18) (of analytic
complexes)

Q3 (logD) = ju2%

is a filtered quasi-isomorphism, where the left (resp. right) hand side is filtered
by W (resp. 7). By the Poincaré lemma, j.$2% > Rj,C, so we get a fil-
tered complex (Rj.Q, t) with Rj.Q = Q ® RjxZ, and a bifiltered complex
(.Q;( (logD), W, F) (where F is the naive filtration), with a filtered isomorphism
C ® (Rj:Q, 1) = (.Q)‘((logD), W). Applying RI'(X,—) we get an object
RI'(X,Z) of D™ (Z), an object (RI'(X,Q), W) of DT F(Q) (W being induced
by t on Rj,Q) with an isomorphism Q ® RI'(X,Z) = RI'(X,Q), and an
object RI'(X, .Q;( (logD), W, F) of D™ F,(C) with a filtered isomorphism C ®
(RI'(X,Q), 1) = RI(X, Q)‘((logD), W). Deligne proves the following result
([D29, 1974], 8.1.7, 8.1.8):

101n this section, sheaves on and cohomology groups of schemes of finite type over C are taken
with respect to the classical topology (on the associated complex analytic spaces), and we omit the
superscript “an” for brevity.
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Theorem 11 The triple

(RIN(X,Z),W,F)=(RI'(X,Z),(RI"'(X,Q), W), (RI'(X, .Q;((logD), W, F)),

(33)
endowed with the above isomorphisms, is a mixed Hodge complex.
In particular, by Theorem 10, for each n € Z,
(H"(X,Z), (H"(X,Q), W[n]), (H"(X, 225 (logD), W[n], F)) (34)

is a mixed Hodge structure. As compactifications j : X < X as above form a
connected category, it follows from the remark after Theorem 10 that this mixed
Hodge structure (H"(X,Z), W, F), j) is independent of the compactification j:
the structures associated with various j’s are related by a transitive system of
isomorphisms. As morphisms f : X — Y can be embedded in morphisms of
compactifications, it depends functorially on X. The same holds for the complexes
(RI'(X,Z),Dec(W), F) deduced from (33) by décalage of the filtration W (loc.
cit. 8.1.16).

The General Case

Let X be a scheme (or algebraic space) separated and of finite type over C.
Using Hironaka’s resolution, Deligne shows that by a step by step construction
(axiomatized in ([3], Vbis, 5.1) and recalled in (loc. cit., 6.2.5)) one can construct a
commutative diagram of simplicial C-schemes

Jo _
Yo —— Y.

l (35)

X —— SpecC,

IS}
<;

where a is a proper hypercovering (for the classical topology), Y, a simplicial C-
scheme which is proper and smooth in each degree, and j, a map which is in each
degree n a dense open immersion such that the complement D, = Y, — Y, is a
strict normal crossing divisor. The constructions of the smooth case yield a triple of
(filtered) complexes on Y,:

(RjexZ, (RjexQ, 7)., (27 (log Do), W, F)), (36)
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with isomorphisms Q ® Rje«Z = Rje:Q, C ® (Rje+Q, 7) > (§2y (log Ds), W).
By applying RI" (Y., —) to (36) we get a triple of (filtered) complexes:

(RI'(Ye, RjoxZ), (RI' (Yo, RjexQ), 87), (RI" (Y4, 27 (log Ds), 5W, F)),
(37)

with isomorphisms Q® RI" (Y,, Z) = RI'(Ye, RjexQ), CR(RI' (Y, RjexQ), 67)
= (RI'(Y,, .Q;. (log D,), 8W). Here the filtrations 6t and §W are obtained by a

diagonal process: if M is a complex on Yo, RI'(Y,, M) is the total complex of a
bicomplex K**, whose second degree corresponds to the simplicial degree: K *¢
calculates RI" (Y4, My); if M is filtered by an increasing filtration W, the filtration
SW on sK**is given by (§W),(sK) = ®p ¢ W14 (KP?), with associated graded
gV (sK) = @ggr,) g (K> D[—q].

By Theorem 2, the adjunction map

7 — Ra.Z

is an isomorphism, hence RI'(Y,, RjexZ) = RI'(X,Z), so that (37) can be
rewritten

(R (X,Z),(RI(X,Q), W), (RT"(Y,, 2y, (log D,), 8W, F)), (38)

(where the filtration W on RI"'(X, Q) is induced by the diagonal filtration 6W of
(RI" (Yo, RjexQ)). Deligne proves the following generalization of Theorem 11:

Theorem 12 The triple (RI'(X,Z), W, F) defined by (38) (and the above isomor-
phisms) is a mixed Hodge complex.

Again, by Theorem 10, for each n € Z,
(H"(X,Z),(H"(X,Q), W[n]), (H"(X,, -Q;(.(IOgD.), Winl, F)) (39)

is a mixed Hodge structure, and, as before, it follows from the remark after
Theorem 10 that, up to a transitive system of isomorphisms, it does not depend
on the choice of the diagram (35) (and a similar statement holds for the com-
plexes (RI'(X, Z), Dec(W), F)). Moreover, Deligne shows that this mixed Hodge
structure is functorial in X: a morphism f : X; — X5 induces a morphism of
mixed Hodge structures f* : (H"(X,Z), W, F) — (H"(X1,Z), W, F) (which is
automatically strictly compatible with the filtrations W and F).

Concerning the Hodge numbers h?? = hP41(H"(X,Z)) (31), Deligne proves
([D29, 1974], 8.2.4) that they are concentrated in the square [0, n] x [0, n] (and
even in the smaller square [n — N,n — N]if n > N = dim(X)), an that in addition:
if X is proper (resp. smooth) they are concentrated on or under (resp. above) the
diagonal p + g = n. When X is smooth, the bottom (i.e., smallest weight) part
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W,H" (X, Q) of the weight filtration is the image of H"(X, Q) in H" (X, Q) for
any smooth compactification X «— X.

Simplicial Variants

Let X, be a simplicial scheme (or algebraic space) over C, whose components X,
are separated and of finite type. Similar constructions equip the cohomology groups
H"(X,, Z) with mixed Hodge structures H"(X,, Z), W, F), functorial in X,. The
spectral sequence (5)

EV" =HY(Xp,Z) = H'*(X,,Z)

is a spectral sequence of mixed Hodge structures. Deligne gives two applications of
this.

The first one concerns relative cohomology. If f : Y — X is a continuous map
between topological spaces, the relative cohomology complex of f (or X mod Y)
could be defined as C[—1], where C is a cone in DV (Z) of f* : R['(X,Z) —
RI'(Y,Z). However, this definition is not functorial, and, when f underlies a
morphism of separated schemes of finite type over C, doesn’t yield a definition of
mixed Hodge structures on the groups H” (C) making the relative cohomology exact
sequence an exact sequence of mixed Hodge structures. Instead, Deligne defines the
cone of f, C(f), as the simplicial scheme which is the push-out of the diagram (of
simplicial schemes)

Y x ({0}, {1}) —— X U SpecC

J | w

Xu@ xAd) ——— C(H)

(where the left vertical arrow is defined by the inclusion of A(0) = ({0}, {1})
into A(1),'! and the top horizontal arrow sends (y, 0) (resp. (v, 1)) to f(y) (resp.
Spec C).'? Thus the cohomology groups

H"(XmodY,Z) := H"(C(f),Z)

W A(n) is the simplicial set [p] — Hom([p], [n]).
12The n-th component of C(f) is the disjoint union of X,,, ¥; fori < n, and Spec C.
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come naturally equipped with a mixed Hodge structure, and one checks (loc. cit.
8.3.9) that the exact sequence of relative cohomology

o> H"XmodY,Z) —» H"(X,Z) — H"(Y,Z) — ---

is an exact sequence of mixed Hodge structures. This formalism is used in the proof
of the above assertions on the Hodge numbers. it could also be applied to define
mixed Hodge structures on compactly supported cohomology groups. However, this
is not discussed in loc. cit., and would not suffice to construct a good theory of
duality. A formalism of six operations in Hodge theory was later provided by M.
Saito’s theory of mixed Hodge modules [221, 222]. See Sect. 4.5 for its bearing on
Deligne cohomology groups.

The second application is to algebraic groups. The cohomology of Lie groups
and their classifying spaces was extensively studied by Borel in the 1950s. Let G be
a linear algebraic group over C. The Betti cohomology of its topological classifying
space BG can be calculated as the cohomology of the simplicial scheme (where [ p]
is the ordered set (O, - - - , p))

B.G = ([p] = G1/G)

(sometimes called the nerve of G); in stack theoretic language, this is
cosko(Spec C — [Spec C/G]). The corresponding spectral sequence (cf. (5)),

E{* = HI(G".Z) = H'(B.G. Z),

sometimes called the Eilenberg—Moore spectral sequence, underlies a spectral
sequence of mixed Hodge structures. Using it and the splitting principle, Deligne
proves (loc. cit. 9.1.1,9.1.5):

Theorem 13 Let G be a linear algebraic group over C.

(@) H Y(B,G,Q) =0, and H*'(B,G, Q) ® C is purely of type (n, n).

(b) If G is connected, the primitive part P* of the Hopf algebra H*(G, Q) is
a mixed sub-Hodge structure, P = 0, P*~! is purely of type (i,i) and
H*(G, Q) = A* P* as mixed Hodge structures.

Deligne mentions that similar results hold in £-adic cohomology. He gives some
details in ([D39, 1977], Sommes trigonométriques, 8.2).

The Fixed Part and Semisimplicity Theorems
While Deligne was developing his theory of mixed Hodge structures, variations of

(pure) Hodge structures and their local and global monodromies were being studied
by Griffiths and Schmid by analytic methods. Mixed Hodge theory enabled him to
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prove key results on the global monodromy of variations of Hodge structures of
geometric origin.

The main one is the so-called fixed part theorem. Let S be a smooth, separated
scheme over C, and f : X — S a proper and smooth morphism. Then, by Deligne’s
criteria in [D3, 1968], the Leray spectral sequence of f,

HP(S, R ,.Q) = HPT(X, Q)

degenerates at E; (cf. (1)) (we write here f for f"*). In particular, for all n, the edge
homomorphism

H"(X,Q) — H(S, R" Q)

is surjective. The fixed part theorem is the following statement ([D16, 1971], 4.1.1):

Theorem 14 With the above notation, let X be a smooth compactification of X.
Then the induced morphism

H"(X,Q) — H'(S, R" £.Q) (41)

is surjective.

In general, the restriction map H"(X,Q) — H"(X, Q) is far from being
surjective: its image is the bottom layer W, H" (X, Q) of the weight filtration of
H"(X, Q).

Theorem 14 has several remarkable consequences. Here is one which plays a
crucial role in the next theorem:

Corollary 1 Under the assumptions of Theorem 14, suppose S connected. Let
(R" £,Q)° be the largest constant sub-local system of R" f.Q (thus, for s € S, the
restriction map H°(S, R" f,Q) — (R" f*Q)g is an isomorphism). Then (R" f*Q)?
underlies a sub-Hodge structure of H"(Xy, Q), inducing on H°(S, R" f.Q) a
Hodge structure which is independent of s.

Actually, the conclusion holds assuming only § reduced and separated (and
connected). In particular, a global section a of R" f,.C on S is of Hodge type (p, q)
at one point s, then a is of type (p, q) everywhere.

Deligne mentions in a footnote to loc. cit. that one can deduce from results of
Griffiths and Schmid a generalization of Corollary 1, with R" f,Q replaced by a
polarizable variation of (pure) Hodge structures on the (smooth scheme) S.

In loc. cit. Deligne proves a general semisimplicity theorem for representations
of the fundamental group of a good connected topological space S associated with
continuous variations of pure Q-Hodge structures on S satisfying a number of
properties, verified for example in the case of “algebraic” variations (by Corollary 1)
or variations a la Griffiths—Schmid as above. He derives from it the following
consequence ([D16, 1971], 4.2.9):
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Theorem 15 Let S be as in Corollary 1, s € S, andn € Z. Let f : X — S bea
morphism, with X /C separated and of finite type, such that R" f,.Q is a local system
on S. Let G be the Zariski closure of the image of the representation p : w1(S, s) —
Aut(R" £,Q)s, and G° the identity component. Then:

(a) The radical of G° is unipotent.
(b) If f is proper and smooth, p is semisimple (hence G is semisimple).

Part (a) will later resonate in £-adic cohomology (see Sect.5.6 “Ingredients of
the Proof”, Theorem 23).

In turn, the Weil conjectures resonate in Hodge theory: Deligne will show that
they imply that the weight filtration of H" (X, Q) (36) is a discrete invariant, i.e., is
invariant under algebraic deformation of X (see Theorem 39).

The semisimplicity theorem, combined with distance decreasing properties of
Griffiths period maps, implies the following striking finiteness result ([D66, 1987],
0.5):

Theorem 16 Let S be a smooth, connected, scheme over C, and N a nonnegative
integer. There exists only a finite number of isomorphism classes of local systems
on S of Q-vector spaces of rank N that are direct summands of local systems
underlying a polarizable variation of Hodge structures.

For f : X — § proper and smooth, with § as above, consider the monodromy
representation p as in Theorem 15. Theorem 16 implies ([D66, 1987], 0.1):

Corollary 2 Fix (S, s) and the integer N > 0. For variable n and (proper and
smooth) f : X — S, the associated monodromy representations p which are of
dimension N form a finite number of isomorphism classes.

1-Motives

While Grothendieck’s conjectural theory of motives inspired Deligne’s construction
of mixed Hodge theory, in turn, mixed Hodge theory suggested an (even more
remote) theory of mixed motives. Though such a theory (or even a precise formu-
lation of it) seems to be still out of reach today, interesting pieces could be defined
and studied unconditionally, namely, (i) 1-motives, and (ii) mixed Tate motives over a
number field. In the 1980s Deligne proposed a conjectural formalism for (ii), which
was later constructed as a by-product of Voevodsky’s theory (see Sect. 9.2 “Mixed
Tate Motives”, (c)). He developed (i) at the end of [D29, 1974].

If A is a complex abelian variety, the homology group Hz = Hi(A, Z) is the
kernel of the (surjective) exponential map Lie(A) — A. Let F be the (one step)
filtration on Hc = Hz ® C defined by the kernel of the (surjective) homomorphism
Hi(A,Z) ® C — Lie(A). Then (Hg, F) is a polarizable pure Hodge structure of
type ((—1,0), (0, —1)), and it has been known since Riemann that this construction
defines an equivalence between the category of complex abelian varieties and that
of polarizable pure Hodge structures of type ((—1, 0), (0, —1)).
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In ([D29, 1974], 10.1) Deligne gives a similar geometric interpretation for certain
mixed Hodge structures of weight between —2 and 0. He first defines the beautiful
geometric notion of 1-motive.

A 1-motive M over a scheme S consists of the following data: an abelian scheme
A and a torus T over S, an extension G of A by T, and a morphismu : X — G,
where X is a group scheme over S, which étale locally is the constant group scheme
defined by a finitely generated and free Z-module.

Let M = (X,A,T,G,u) be a I-motive over C. Deligne constructs a mixed
Hodge structure T (M) of type t = ((0,0), (—1,0), (0, —1), (—1, —1)), called
the Hodge realization of M, whose integral lattice T(M)z is torsion free, and
isomorphisms of pure Hodge structures H (T, Z) = ngVZT(M)Z, H (A, Z) =

grv_VlT(M)Z, X S grgVT(M)Z, where T (M)yz is endowed with the filtration W
induced by the filtration W on T (M) . He shows that M + T (M) is an equivalence
from the category of 1-motives over C to that of mixed Hodge structures H of type
t such that Hz is torsion free and ngV1 H is polarizable.

For 1-motives over an algebraically closed field k, Deligne defines similar
realizations in the ¢-adic and de Rham contexts. In addition, using Grothendieck’s
formalism of bi-extensions, he constructs a self-duality M +— M™* of the category of
1-motives over k, which, when k£ = C induces on the Hodge realization 7(M) —
Hom(T (M), Z(1)) (where Z(1) is the Hodge structure of Tate (Sect.4.1)).

Let X/C be separated and of finite type, of dimension < N. Forn > 0, H" (X, Z)
has a mixed Hodge structure 7, whose Hodge numbers 474 are concentrated in the
square [0, n] x [0, n] (12). From 4 one can deduce 1-motives, that Deligne denotes
by I and 11,: I (resp. 11,) is the largest mixed sub-Hodge structure (resp. quotient
Hodge structure) of (J#Z/torsion)(1) (resp. (7 /torsion)(n)) which is purely of
type ((—1, —1), (-1, 0), (0, —1), (0, 0)). He makes the following conjecture ([D29,
19741, 10.4.1):

Conjecture I The 1-motives I and /1, (forn < N) and IIy (for N > n) admit a
purely algebraic description.

In (loc. cit., 10.3) he proves it for curves. In a slightly different form, the
conjecture was proven (independently) by Ramachandran [212], and Barbieri-Viale,
Rosenschon, M. Saito [18].

The notion of 1-motive has given rise to many developments and generated a
huge literature, see [19] for a recent survey.

The du Bois Complex

Let X be a quasi-projective scheme over C. In ([D29, 1974], 9.3) Deligne constructs
a complex K of coherent sheaves on X, concentrated in nonnegative degrees, with
differential given by differential operators of order < 1 such that C — K" is a
quasi-isomorphism, and factors into C — £25., — K, where the first arrow is
the natural augmentation. In particular, H*(X?", C) appears as a direct summand
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of the analytic de Rham cohomology H*(X®", £2%.,) (a result previously proved by
Bloom and Herrera by other methods).

In his letter [64], he proposes a strong refinement of this. He makes the following
conjecture:

Conjecture 2 Let 2 be a complex analytic space. Let ¢ : %, — %2 be a
proper hypercovering, with %}, smooth over C for all n. Consider the total complex
RS*.Q;% res filtered by the Hodge filtration Q?Z%p/c on 90.2/, Jco an object of the
bounded below derived category of filtered complexes of sheaves of & 2--modules,
the filtration being biregular, with differential given by differential operators of
order < 1, and & g -linear associated graded. Then, in this category, Rs*.Q'g. /C
is independent of the choice of &, namely there should exist a transitive system
of isomorphisms between these objects when ¢ varies. Denote this object by

. Then, in particular, for all p, 2% 9 = grP§2%- is a well defined object of
D*(ﬁ&’ 0 9°). Moreover, for £ = X*" for X/C a prOJectlve scheme, £2%- should
be the analytification of a similar object £2% on the Zariski site of X, and the spectral
sequence

EV?" = HI(X, 2%) = H'M(X, 2%)

should degenerate at E; and abut to the Hodge filtration of (the mixed Hodge
structure) of H*(X*", C).

The analytic conjecture is still open. In the algebraic case, in a second letter
[68], Deligne explained how, in the projective case, one could prove the desired
independence by the global to local argument, that he had used to prove finiteness
of étale cohomology (see Sect. 1.4 “Finiteness”). Details and generalizations were
written up by du Bois in his thesis [85]. The complex §2% was later called the du Bois
complex, and singularities for which 0y — g2 Y= Rs*ﬁy.) is an isomorphism,
du Bois singularities. They are important in birational geometry. They were studied
by various authors after du Bois (Steenbrink, Ishida, Kollar, etc.), see [233] for
recent applications.

Hodge Theory and Rational Homotopy

Let M be a connected CW-complex (or simplicial set). By different methods Quillen
[211] and Sullivan [245] (see ([D31, 1975], 3) for the details of the construction)
attached to M anticommutative Q-differential graded algebras £2*(M) which
capture its rational homotopy type. Furthermore, Sullivan introduced the notion
of minimal model of such an object, namely an anticommutative Q-differential
graded algebra .# = @,>0.#" quasi-isomorphic to £2*(M), with .#° = Q,
A free in the graded sense, generated by its indecomposable elements, and with
d.# c (#>%?. Such a minimal model is unique up to isomorphism. It has the
property that H*(.#) = H*(M, Q), and, if M is simply connected, then the dual of
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7 (M) @ Qis .4>°/(.#>°)*. When M underlies a Kiihler, or algebraic, structure,
inputs from Hodge theory or from the Weil conjectures produce constraints on .Z .

In [D31, 1975] Deligne et al. prove that if M is a compact Kéhler manifold,
then .# ® R is a minimal model of the cohomology algebra H*(M, R) (with zero
differential).'® In particular, if in addition M is simply connected, the whole real
Postnikov tower of M can be reconstructed from H*(M, R). See [196] for a survey.

When M underlies a scheme X separated and of finite type over C, Deligne uses
the Weil conjectures to show that .#Z ® Q, comes equipped with a rich structure
(weight filtration with natural splittings) (see Sect.4.2 “First Applications”, Qg-
homotopy type).

4.3 Shimura Varieties

In the 1960s Shimura, in connection with his work on complex multiplication, stud-
ied quotients of hermitian symmetric domains by discrete congruence subgroups.
By a theorem of Baily—Borel, such quotients turn out to be algebraic. Sometimes
they are moduli spaces for abelian varieties with additional structures. In a number
of cases Shimura showed that they can be defined over a number field.

In his Bourbaki report [D13, 1971] Deligne defined a large class of such objects,
which he later called Shimura varieties in his Corvallis survey ([D42, 1979], 2.3).
These two texts have become standard references for the foundations of the theory,
in which he introduced new angles and approaches that proved to be seminal.

Axiomatization of Shimura Varieties

Deligne emphasized (and popularized) the use of the real torus (sometimes called,
nowadays, the Deligne torus)

S:=]]Gn. (42)

C/R

Weil restriction of G, from C to R, to express a real Hodge structure V, defined
by a finite dimensional R-vector space VR and a bi-grading V79 of V¢ = Vg ® C
satisfying VP4 = v , as an action of S on VR, i.e., a homomorphism of real
algebraic groups & : S — GL(V): VP4 is the summand where h(z), for z €
C* = S(R), acts by z7Pz~9 (with the conventions of ([D42, 1979], 1.1.1.1)). The
weight decomposition V = ®,cz V", where V" = ®,4—, VP9 can be read on the
weight homomorphism wy, : G, — GL(V), which is the restriction to G;,, C S
(corresponding to R* € C*) of A~!': V" is the summand where wy, (1) is x — A"x.

3In the terminology of (loc. cit., p. 260), .# & R is a formal consequence of H*(M, R).
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In ([D13, 1971], 1.5) and ([D42, 1979], 2.1.1), Deligne considers the following
object (later called Shimura datum):

(G, X), (43)

where G is a reductive group over Q, and X a G (R)-conjugacy class of morphisms
h : S — Gp of algebraic groups over R, satisfying the following conditions (i)
(iii):

(i) For h € X, Lie(Gr), endowed with the Hodge structure defined by the
composition S — Gr — GL(Lie(GRr)) where the second map is the adjoint
representation, is purely of type {(—1, 1), (0, 0), (1, —1)}.

(i) The involution int(x (7)) of the adjoint group G%d is a Cartan involution.

(iii) The adjoint group of G has no factor G’ defined over Q into which & projects
trivially.

14

Axioms (i) and (ii) imply that X can be described in the following two ways:

(a) X is a finite disjoint union of hermitian symmetric domains (= hermitian
symmetric spaces with negative curvature, i.e., with no compact nor euclidian
factor),

(b) at least in the case where the restriction of 4 € X to Gy, is defined over Q, X
is a parameter space for G (Q)-equivariant Q-variations of polarizable Hodge
structures associated with representations of G.

More precisely, for (b), Deligne proves that X has a unique complex structure
such that, for each representation p : GR — GL(V) (V a finite dimensional R-
vector space), the Hodge filtration Fj, of V¢ induced by ph : S — GL(V) varies
holomorphically with 4 and satisfies Griffiths transversality VF;; C F;;_l ® .Q)l(
Condition (ii) has a Hodge theoretic interpretation. By (i), for 1 € X, the image of
the restriction wy, of 1 to G, lies in the center of G, in particular C = h(i)2
is central, so int(k(i)) is an involution; by an elementary key lemma in ([D20,
1972], 2.8), condition (ii) is equivalent to requiring that for all representations
p : G — GL(V) (or for one faithful representation p), V is C-polarizable,
i.e., admits a G-invariant bilinear form  such that ¥ (x, Cy) is symmetric and
positive definite — which is equivalent to the polarizability, in the usual sense, of the
homogeneous components of V. Concerning (a), Deligne proves a converse: any
hermitian symmetric domain is a connected component of an X as above. As for
(iii), it is seen to be equivalent to saying that G has no factor G’ such that G’ (R)is
compact, and by the strong approximation theorem, it ensures that G(Q) is dense in
G(AY), where G is the universal cover of the derived group of G, and A =Z® Q
is the ring of finite adeles.

141 e., an involution o such that the real form (Gi‘{‘)" of Gi‘f‘ relative to the complex conjugation
g > o(g) is compact, in the sense that (G“Rd)a (R) is compact.



Pierre Deligne: A Poet of Arithmetic Geometry 55

Deligne defines a Shimura variety (relative to a Shimura datum (G, X)) as a
quotient

kMc(G, X) := GAQ\(X x (G(A))/K)), (44)

where K is a compact open subgroup of G(A/). Such a variety is a finite disjoint
union of quotients of connected components of X by arithmetic subgroups of G(R).
It is a complex analytic space, which (by Baily—Borel) has a natural structure of
quasi-projective scheme over C, unique for K small enough. For variable K, the
varieties ¥k Mc(G, X) form a projective system, with finite transition morphisms,
and Deligne considers its projective limit

Mc(G, X) :=lim k Mc(G, X), (45)
K

a C-scheme equipped with a natural right action of G(AY), such that g Mc(G, X) =
Mc (G, X)/K. Itis this action which makes Shimura varieties especially interesting
in view of the Langlands program.

The simplest example of such a structure is the tower of modular curves
M,? (C) = 52/ I (n) (cf. Theorem 6). It corresponds to the Shimura datum (G, X)
where G = GL,, X = C — R = J# U —J7 the conjugacy class of the canonical

inclusion g : S — G (x + iy +— * ), i.e., the homogeneous space
—yx

GL(R)/R*SO;(R), orbit of i in C under thi natural action of GL;(R). We have
MY(C) = k,Mc(G, X) for K, = Ker(G(Z) — G(Z/n)) (ID24, 1973], 5.3).
The projective limit Mc (G, X) = Linn M,?(C), denoted M, in ([D6, 1969], 3.7),
has an action of G(Af ), a fact which, according to Deligne, was first noticed by
Shafarevich.

A basic generalization is the Shimura datum (G = GSp(2n), X), where X is the
unique conjugacy class of homomorphisms z : S — GSp(2n)g satisfying condition
(i) (or, simply, such that 4, sends A to the homothecy or ratio A~ 1); X is the union
S of two Siegel upper half spaces. The corresponding Shimura varieties are moduli
spaces for principally polarized abelian varieties with level structure.

Canonical Models

In this set-up Deligne tackles the question of the existence of models of Shimura
varieties over number fields. He essentially follows Shimura’s method, but in order
to do so, he develops foundational preliminaries. They comprise the following
notions: reflex field, special (or CM) points, canonical models.

e The reflex field E(G, X) C C of a Shimura datum (G, X) is the field of definition

of the composite morphism uj : Gme < Sc(= (an)c) i Ge, forh € X,
where the first map is (z + (z~1, 1)). When G* is simple, E(G, X) is either a
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totally real field, or a totally imaginary quadratic extension of a totally real field
([D13,1971], 3.8).

e A point i € X is called special (or of CM type) if there is a torus T C G
(over Q) such that 4 : S — GRr factors through Tg. A point x of ¥ Mc (G, X)
or Mc(G, X), class of (h, g) € X x G(AY), is called special if h is special; the
G (Q)-conjugacy class of 4 (which depends only on x) is called the #ype of x, and
the corresponding reflex field is denoted E (x). In the example of modular curves,
apointx € X = C—Ris special if and only if x generates an imaginary quadratic
extension E of Q (and E = E(x)). Using the reciprocity isomorphisms for the
tori 7', Deligne defines an action of Gal(Q/E(t)) on the set M(t) of special
points of a given type 7, commuting with the right action of G (A').

* A canonical model of Mc (G, X) is a scheme M (G, X) over E(G, X), equipped
with an action of G(AY), and an equivariant isomorphism M (G, X) ®E(G,x)
C 5> Mc(G, X), such that the special points are algebraic and for each type ©
the action of Gal(Q/E (7)) on M(t) is induced by that of Gal(Q/E (G, X)) on
Mc (G, X). Deligne proves that a canonical model, if it exists, is unique up to a
unique isomorphism ([D13, 1971], 5.5).

In the case of Shimura varieties corresponding to moduli of abelian varieties with
additional structures (later called of PEL type, for “polarization”, “endomorphism”,
“level”), and especially in the case of Siegel modular spaces, the modular interpre-
tation yields such canonical models. In the general case, the existence of canonical
models is a difficult problem. To construct canonical models, Deligne follows a

method due to Shimura, which relies on the following criterion ([D42, 1979], 3.1):

Proposition 1 [f there exists an embedding G — CSp(2n) sending X to the Siegel
double-space SE, then Mc(G, X) admits a canonical model.

In [D42, 1979] Deligne mentions, at the end of the introduction, that his theorem
on absolute Hodge cycles (see Sect. 4.4) leads to a simpler proof than his earlier one
in [D13, 1971]. It doesn’t seem, however, that it has been published.

As for the construction, very roughly speaking, the idea is to define M (G, X) as
the closure of the set of special points in the canonical model of a Siegel modular
variety. Deligne shows that the existence of a canonical model for a datum (G, X)
depends only on the derived and adjoint groups of G and a connected component
of X, and that such a model exists for G Q-simple adjoint of type A, B, or C, or for
certain types D.

4.4 Absolute Hodge Cycles

Let X be a smooth projective C-scheme. Recall that H2" (X", Q(n)) is a pure Q-
Hodge structure of weight 0 (Z(n) is the pure Hodge structure of weight —2n, purely
of type (—n, —n), with integral lattice (277)"Z). The rational Betti cohomology
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class is a homomorphism
cl: CH"(X) ® Q — H"(X*, Q(n)*° (46)

where C H"(X) is the Chow group of codimension n cocycles, and the group on
the right hand side, called the group of rational Hodge cycles (of degree 2n), is the
intersection, in H>" (X", C), of H*"(X*, Q(n)) with the part of bidegree (0, 0) of
H>(X™ Q(n)) ® C, i.e., the part of type (n, n) of H**(X™, Q) ® C. The Hodge
conjecture asserts that (406) is surjective.

In the late 1970s, Deligne discovered that, in the case of an abelian variety A,
rational Hodge cycles enjoy many of the (motivic) properties they would have
if we knew the Hodge conjecture. In particular, strikingly, the property for a
cohomology class in H>"(A®, C) of being a rational Hodge cycle is invariant
under automorphisms of C. In order to formulate his theorem, he introduced new
objects, which he called absolute Hodge cycles, possessing all the good properties
of cohomology classes of algebraic cycles. This notion turned out to change the
perspective one had so far on Grothendieck’s theory of motives, by suggesting
unconditional approximations of it (as suggested by Deligne in ([D43, 1979], 0.9),
and developed by several authors, see especially [13]).

Let k be an algebraically closed field of characteristic zero, which, for simplicity,
will be assumed to admit an embedding into C. Let X be a proper and smooth
scheme over k. Let A/ = (I'T; Z¢) ® Q be the ring of finite adeles of Q. One can
make a single package of de Rham cohomology and all £-adic cohomology groups
of X, in the following way. For m, r in Z, let

HY' (X)(r) := Hyp(X/k)(r) x H"(X)(r), (47)

where H™(X)(r) := ([, H™(X.Z¢(r))) ® Q (restricted product of the
H™(X,Qq(r)) relative to the Zg(r)), and Hjp(X/k)(r) is Hjp(X/k) :=
H™(X, 2% ), with Hodge filtration F"(H‘TR(X/k)(r)) = F"+’H51R(X/k). This
is a (finitely generated and free) k x A/-module. Let o : k < C be an embedding
and 0 X := X ®,0) C. We have a comparison isomorphism

ot (Hip(X/K)(r) ko) C) x H"(X)(r) > HE (0 X)(r) ® (C x AT),  (48)

where, for a proper smooth scheme Y/C, Hg (Y)(r) := H™(Y*", Q(r)). Deligne
makes the following definitions.

Let n € Z. An element t = (4R, ter) € Hﬁ"(X)(n) is called a Hodge cycle
relative to o if its first component t;g € Hin(X)(n) lies in FOHI%(X)(n) =
F"H32%(X/k), and the image of # by o* lies in H3" (0 X)(n) (diagonally embedded
in Hﬁ"(aX)(n) ® (C x AY)); for k = C and o = Id, it means that 7 is the image
of a rational Hodge cycle (cf. (46)).

One says that ¢ is an absolute Hodge cycle if t is a Hodge cycle relative to any
embedding o : k < C. There is an obvious generalization of these definitions
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to elements of Tate twisted tensor products of tensor powers of HZ’" (Xq) and
HZ“ (Xo)V for (X4) a family of smooth projective schemes over k, and in particular
for cohomological correspondences.

A codimension n cycle Z in X has a class cl(Z) in Hi"(X)(n) which is an
absolute Hodge cycle. But there are other easy examples, such as the Kiinneth
components of the cohomology class of the diagonal in X x X (though it is
one the standard conjectures that they are algebraic, see Sect.5.2). A beautiful
example, which may have been the source of Deligne’s inspiration, is Deligne’s
cohomological correspondence between a K3 surface and its associated Kuga—
Satake variety (see Sect. 5.3).

The main result is the following theorem ([D47, 1981], 3, T. 1), ([D52, 1982], I
2.11)):

Theorem 17 Let k be an algebraically closed field embeddable in C, and let X [k
be an abelian variety. If t € Hi” (X)(n) is a Hodge cycle relative to one embedding
o 1k — C, thent is an absolute Hodge cycle.

The idea of the proof is to reduce, by a deformation argument, to a case where
Hodge cycles can be proved to be absolutely Hodge, namely when X is of CM-type.
In order to do so, Deligne applies two key results, which he calls principles A and B.

Principle A is a statement of Tannakian nature. It says that if we are given a finite
family (¢;) of (possibly Tate twisted) Q-valued Betti cohomology classes (over C)
which are absolute Hodge cycles, then any Betti cohomology class fixed by the
Mumford-Tate (Tannakian) group defined by the (#;)’s is again an absolute Hodge
cycle (see ([D52, 1982], 3.8) for a precise statement).

Principle B is a deformation statement. It says that, given f : X — S proper
and smooth, with § connected and smooth over C, a horizontal global section
t of R2P f+82% /s X (R2P f*z(p) ® Q) which is horizontal for the Gauss—Manin

connection and whose de Rham cohomology component lies in F°, then, if at one
closed point s of S, 7, is an absolute Hodge cycle, then, for all s, 7y is an absolute
Hodge cycle ([D52, 1982], 2.12).

The proof of these principles is not difficult. The main bulk of the proof of
Theorem 17 consists in: (a) proving that it holds for abelian varieties of CM type (b)
constructing a deformation space S having the following property: the given (A, o)
is the fiber at one point s of a pair of an abelian scheme X /S and a horizontal
class ¢ as in principle B, such that there exists a point sy at which Xy, is of CM
type. The space S is a certain Shimura variety. A slightly different approach, with
simplifications due to André and Voisin, is given in Charles-Schnell’s notes [53].

For k = C, Deligne makes the following conjecture (weaker than the Hodge
conjecture) '3 ([D43, 19791, 0.10):

Conjecture 3 Every Hodge cycle is absolute Hodge.

This conjecture is still wide open today. See [53] for a recent discussion.

15He calls it “hope”.
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4.5 Deligne Cohomology

In the early 1970s, in an unpublished work, Deligne introduced certain variants of
the de Rham complex of a complex manifold, which turned out to play an important
role in various questions pertaining to mixed Hodge theory and the arithmetic of
L-functions.

Let X be a complex manifold, A a subring of C as in Sect.4.2 “Homological
Algebra Infrastructure”, and n € Z. Deligne defined the complex

Ax(M)g =0 — Ax(n) —» Ox — 2% — - — 21— 0) (49)
(where A(n) := (2miZ)®" ® A). There is a natural quasi-isomorphism

Cone(Ax(m) ® 22" 'SV @) —11 > Ax()g. (50)

in other words, A x (n) ¢ can be thought of as a derived category kernel of the above
map (1, —1).

Let now X be a projective and smooth scheme over C. Let us write Ay (n)¢ for
Axan(n) ¢. Deligne considered the cohomology groups

H'(X, Ax(1)9) (51
(calculated for the classical topology on X*"). They are now called Deligne (or

Deligne—Beilinson) (or sometimes, absolute Hodge) cohomology groups. They
contain deep information, as examplified below.

Link with the Hodge Conjecture and Intermediate Jacobians

The long exact sequences deduced from (50) yield in particular short exact
sequences

0— J,(X)" = J,(X) > H*(X,Z(n)) N H™" — 0, (52)
where H>"(X, Z(n))NH™" denotes, with an abuse of notation, the group of integral
Hodge classes of degree 2n which modulo torsion are of type (n, n) (cf. Sect.4.4),
Jo(X) := H*(X, Zx(n) ), and

In(X)° = H*1(X, O)/(a(H>" (X, Z(n))) + F"H*" (X, ©)) (53)
is the Griffiths intermediate Jacobian (o denoting the map induced by the inclusion

Z(n) — C). Forn = 1, J1(X) = Pic(X). Let Z"(X) denote the group of
codimension n cycles on X. Deligne constructed (see, e.g., ([256], 12.3.3)) a
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morphism (the Deligne cycle class)
cg: Z"(X) —» J,(X), 54)

lifting the classical morphism ¢ : Z"(X) — H?>"(X, Z(n))NH™" It factors through
the Chow group CH" (X), and, on the subgroup CH" (X)nom of cycles homologically
equivalent to zero, induces the Griffiths Abel-Jacobi map

CH" (X)hom — Jn(X)°.

The morphism cy is compatible with the intersection product on Chow groups, and
on a product on Deligne cohomology deduced from a certain associative pairing
Ax(m)g ® Ax(n)g — Ax(m + n)g. While the image of ¢ ® Q is expected to
be the whole group of rational Hodge classes (Hodge conjecture), there is as yet
no conjecture predicting which subgroup of J, (X) is the image of cy (see [D104,
2006] for a brief discussion).

Link with the Tame Symbol

Let X be a complex analytic manifold. The productZx (1) @ Zx (1) g — Zx(2) g
can be rewritten as a morphism in D(X, Z)

oy oL 0% — 105 S 2L, (55)

where the complex in the right hand side is placed in degrees (—1,0). This
morphism, and its generalization with &* replaced by a commutative complex
analytic group G, plays a central role in [D73,1991]. For G = & and X of
dimension 1 (a Riemann surface), the right hand side is quasi-isomorphic to C*[1].
If f:72Z — 0% g :Z — O are invertible holomorphic functions on an open
subset U of X, then the composition of f @ g — 0* @ 0* with (55) gives an
element of HI(U, C*), i.e., the class of a C*-torsor (f, g) on U. Deligne shows
that, for U = X — {x}, x a point on X, if f and g are meromorphic at x, the
image in C* by the residue map H'(X — {x},C*) — C* is the tame symbol
(f, 8)x = (—=1PWHv@)(gu(H)/fv(&) with v the valuation at x (cf.(11)). The fact
that (55) (and its generalization mentioned above) come from an actual pairing of
complexes enables to define torsors, not just isomorphism classes of them. Classical
formulas on symbols then translate into new phenomena, that Deligne studies in
detail.
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Link with Mixed Hodge Structures and Regulators

Beilinson showed [21] that the Hodge complex (RI'(X,Z), (RI'(X,Z) ® C, F))
(of weight zero) constructed by Deligne (cf. Theorem 11) underlies a finer object,
namely an object RI" (X, Z) of a certain derived category Dgf » of polarizable mixed
Hodge complexes, which he proved to be equivalent (via a realization functor, see
Sect. 5.8 “t-Structures™) to D? (MHS), where MHS denotes the (abelian) category of
polarizable mixed Hodge structures on Spec(C). The same holds with Z replaced by
A(n) (and MHS by the category MHS 4 of polarizable mixed A-Hodge structures),
and the miracle (Joc. cit.) is that one can re-write Deligne cohomology groups as

H'(X, Ax(n)g) = Hom'y, \ i (A, RI"(X, A(n))). (56)

(then (52) comes from a Leray spectral sequence, as MHS has cohomological
dimension 1). More generally, Beilinson defined RI'(X, A(n)) in DP(MHS »)
assuming only X/C separated and of finite type, using simplicial techniques a la
Hodge III (Sect. 4.2 “Mixed Hodge Theory”), thus obtaining a definition of Deligne
cohomology by (56), as well as another construction of the Deligne cohomology
class (54). An alternate approach today is to consider the constant sheaf A(n)x
on X as an object of M. Saito’s category D?(MHM4 (X)) (the bounded derived
category of mixed A-Hodge modules on X), apply Ra, (a : X — Spec(C)) and use
the equivalence between DP(MHM 4 (Spec(C)) and DP(MHS ).

Let now X be a projective and smooth scheme over Q, and X¢ = X ® C.
The description (56) of Deligne cohomology as an extension group fits with
the conjectural description of the so-called motivic cohomology HL//(X ,Z(n)) as
an extension group HomiDb A (Z, Ra,Z(n)x) in a derived category of mixed
motives over Q, as suggested by Deligne in his letter to Soulé ([76], A. Motifs). In
any case, Deligne’s real cohomology groups of X ¢ appear as targets for Beilinson’s
regulator maps (see [241], 3.3) for precise statements.

4.6 Liftings mod p* and Hodge Degeneration

In [D65, 1987] an elementary algebraic proof of the Hodge degeneration and
Kodaira—Akizuki—Nakano vanishing theorems is given. By a usual spreading out
argument, these theorems are deduced from a decomposition theorem in positive
characteristic. Before stating it, recall that, if k is a field of characteristic p > 0,
X/k a smooth scheme, F : X — X’ the relative Frobenius, where X’ is deduced
from X by base change by the Frobenius endomorphism of k, we have the Cartier
isomorphism

7l el S oA (F2Yy), (57
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which is Oy -linear, graded, multiplicative, coincides with the natural inclusion in
degree zero, and sends a 1-form dx to the class of x? ~ldx in 2. The main result
of loc. cit. is the following:

Theorem 18 Assume k perfect. Let W (k) be the ring of Witt vectors on k, Wy, (k) =
W (k)/p" W (k), and let X/ k be a smooth scheme. With the above notation, with any
smooth lifting of X to Wy (k) there is associated an isomorphism

Bicp 24 > T Fu2y (58)

in DP(X’', Oy), inducing C~' in each degree i (where Tep = T<p_1 is the
canonical truncation).

In particular, if X is of dimension < p, (58) is a decomposition of the de Rham
complex Fy£2% (in the sense of Sect. 1.2 “Degeneration and Decomposition in the
Derived Category”). It is shown in loc. cit. that such a decomposition still holds if
X is of dimension p, provided that X is furthermore assumed to be proper. Whether
this extends to dimension > p is still an open question in general.

The proof relies on the following simple observation, due to Mazur: if F : X —
X lifsto F : X > X' (such a lifting exists only locally), then C~! lifts to a
morphism ¢ : .Qé(, — Zi Fy 2% (where Z! = Ker(d)), which is multiplicative, and
sends the image in .Q)l(, of a I-form w on X to })F*E), where F* : .Q)l?, — pf*Q}l?
is the morphism induced by F, and & lifts w.

For X proper and smooth of dimension < p, and liftable to W, (k), the degen-
eration at E; of the Hodge to de Rham spectral sequence Ei/ = H/(X, 22} W =
H'™I (X, £23,) follows from the decomposability of F,.2% , by a simple dimen-
sion count. A more subtle argument (due to Raynaud) is needed for the Kodaira-
Akizuki-Nakano vanishing theorem under the same assumptions.

Several variants and generalizations (general bases, log poles) are discussed in
loc. cit. In the recent years the method has been often imitated. See for example
[207] for a “mod p?” proof of an analytic theorem of Barranikov and Kontsevich
(and [91] for generalizations).

4.7 The Hodge Locus

Let f : X — S be a projective and smooth morphism, with § separated and of finite
type over C. Lets € S(C), p € Z,and u € H*P(X,,Z) N HPP a Hodge class.
The locus T, where, in a simply connected neighbourhood U of s in $2", u remains
of type (p, p) (as a constant section of the local system R?? f,Z trivialized on U)
is a closed analytic subspace of U. It had been observed long ago (probably in the
1960s) that the Hodge conjecture implies that the germ of 7, at s is algebraic. In
[D80, 1995], Deligne, Cattani and Kaplan prove this consequence unconditionally.
In fact, they prove a stronger result, for polarized variations of Hodge structures:
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Theorem 19 Assume S/C smooth. Let (Vz,V = V7 @ Osm, F*,V, Q) be a
polarized variation of Hodge structures on S of weight 0. Fix an integer K > 0.
Let

SEK = ((s € S,u e ¥)lue (Yz)s N F%, Qu,u) < K}. (59)

Then S® is finite over S (hence algebraic).
This implies algebraicity of the components of the so-called Hodge locus:

Theorem 20 Assume S/C smooth, quasi-projective. The components of the ana-
lytic subset (the Hodge locus)

R? £ .0 FP AT (X /5% (60)

of the (analytic) fibre bundle Jz’ﬁ{p (X™/§%) = R*P f,Z.® O%" are finite covers of
algebraic subsets of S.

The core of the proof of Theorem 19 is a delicate extension theorem for integral
Hodge classes in a polarized variation of Hodge structures over a product of
punctured discs, making heavy use of Schmid’s nilpotent orbit and SL(2) orbit
theorem.

These results are so far the strongest evidence towards the Hodge conjecture. See
[50, 257] for comments and complements.

5 The Weil Conjectures

Deligne’s contribution to the proof of the Weil conjectures is his most famous
achievement. It broke down what seemed to be an impassable barrier. With the
refinements, generalizations, and applications he derived, it changed the face of
arithmetic geometry.

In this section, all schemes are assumed to be noetherian and separated unless
otherwise stated.

5.1 The Zeta Function of a Variety Over a Finite Field
Basic Definitions

We fix a prime number p and denote by F an algebraic closure of F,. If g is a
power of p, we denote by F,; the subfield of F with ¢ elements. Following Deligne’s
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conventions in [Weil I] and [Weil II],16 when ¢ is fixed, we denote by a subscript 0
objects over F,, and remove it to denote the object deduced by base change to F.

Let g be a power of p, and let X be a scheme of finite type over F,. Let me
recall the definition of the zeta function of Xy, see, e.g., ([Weil 1], 1). This is the
formal series

Z(Xo/Fg. )= [] (1=t~ 61)

xelXo|

where |T'| denotes the set of closed points of a scheme T, and, for x € |Xjy|,
deg(x) := [k(x) : F;]. We omit /F, when no confusion can arise. The Galois group
Gal(F/F,) is topologically generated by the Frobenius substitution o, o (a) = a?.
It acts on the set X((F) of points of X with value in F (which is also the set of
closed (or rational) points of X = X ®p, F). This action of o on X (F) is the same
as that induced by the F,-endomorphism F of Xy (identity on the underlying space,
and raising to the g-th power on Ox). Closed points of degree d of X correspond
bijectively to orbits of F on X¢(F) = | X] of cardinality d. More generally, Xo(Fyn)
is the set | X|¥" of fixed points of | X| under F":

Xo(Fgn) = |X|F". (62)

In particular, #X (Fyn) = erlxol,deg(x)\n deg(x), which implies that Z (X, #) can
be re-written

Z(Xo.1) = exp(Y_ #XoFy)' ). (63)

n>1

Statement of the Weil Conjectures

In [260] Weil made the following celebrated conjectures. Suppose that X is
projective, smooth, of dimension d. Then:

(a) (rationality) Z(Xo, t) belongs to Q(¢);
(b) (functional equation) Z(Xy, t) satisfies an equation of the form

( 1
Z(Xo,1) =2~ 102X, ), (64)
q

where x (X) is the Euler—Poincaré characteristic of X, defined as the self-
intersection number of X in X xp X;

16[Weil I] = [D27, 1974], [Weil IT] = [D46, 1980].
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(c) (product decomposition and weights)

Pi(t)--- Pyg—1(2)

Z(Xo,1) = ) (65)
Po(t) -+ - Poa(1)
with P;(¢) a polynomial with coefficients in Z, of the form
Py = ] (0 —ayn), (66)

1<j<b;

where the o;;’s are algebraic integers, all of whose conjugates are of absolute
value ¢'/2, i.e., are q-Weil integers of weight i.'” Moreover, for X geometrically
connected, Po(t) =1 —1t, Pyg(t) =1 — th.

Statement (c) was traditionally called the Riemann hypothesis for varieties over
finite fields. Weil proved (a), (b), (c) for curves and abelian varieties [258, 259].

The polynomials P;, and in particular their degrees b;, are uniquely determined
by Xo. In particular, (65) implies x (X) = Z(—l)ibi. In [260] Weil observed this
analogy of b; = b;(X) with a Betti number and conjectured that, for a projective
smooth variety 2~ over a number field K, given an embedding of K into C, for
each i, the topological Betti number b; (2" @ C) := dim H (2 ®k C, Q) should
be equal to the numbers b; corresponding to the reductions of 2~ at places of
good reduction. Elaborating on this, in [261] Weil conjectured the existence of a
cohomology theory with coefficients in a field Q of characteristic zero, functorially
assigning to every projective, smooth variety Y over an algebraically closed field £ a
finite dimensional Q-algebra H*(Y) = @H' (Y), satisfying a Kiinneth isomorphism
and Poincaré duality, and such that fork = Fand ¥ = X = X¢ ® F as above, the
cardinality of Xo(Fyn) = | X]| F" could be calculated by a Lefschetz fixed point trace
formula

#Xo(Fyn) = Z(—l)"Tr(F"*, H (X)). (67)

Furthermore, the alternating sum of the dimensions of H’(Y) should equal x(Y),
and, for k = C, these dimensions should coincide with the topological Betti
numbers of Y (C). By (63) the fixed point formula (67) would yield a product
decomposition for Z(Xy, t) of the form

Z(Xo.n= [] detd — F*e, H (x)V"", (68)
0<i<2d

For w € Z, a g-Weil number (resp. q-Weil integer) of weight w is an algebraic number (resp.
algebraic integer) all of whose conjugates are of absolute value ¢*/2.
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which would imply (a), and (b) by Poincaré duality, « + ¢¢/a giving a bijection
from the set of reciprocal roots of det(1 — F*t, H (X)), i.e., the eigenvalues of F* on
Hi(X), to that of det(1 — F*r, H*?~'(X)). However, (68) would not a priori solve
(¢), as there would remain to prove that the polynomial det(1 — F*t, H (X ))(_1)1+l
has coefficients in Q and its inverse roots would be g-Weil integers of weight i. Note
that Serre observed that such a cohomology theory could not have coefficients in Q.
More precisely, he showed that, given an algebraically closed field k of positive
characteristic, there could not exist a contravariant functor H! on the category of
smooth projective schemes over k with value in finite dimensional vector spaces
over a subfield Q of R, compatible with products, and such that H!(E) be of
dimension 2 for E an elliptic curve over K (see ([4], IX, Introduction)).

Grothendieck’s Trace Formula

As the search for a “Weil cohomology” was actively pursued, Dwork’s proof [86]
of the rationality of Z(X,t) for any X of finite type over k, using methods of
p-adic analysis and no cohomology theory, came as a big surprise. However, it
gave no insight into (c), nor even into (b). A few years later, the formalism of
étale cohomology constructed by Artin, Grothendieck, and Verdier provided Weil
cohomologies, namely the ¢-adic cohomologies, one for each prime number ¢
invertible on the schemes under consideration. Through the use of constructible
coefficients and derived categories this formalism displayed a power and flexibility
that had not been dreamed of by Weil. Concerning torsion coefficients, I recalled
the main points in Sect. 1.4 “Global Duality”. The case of £¢-adic coefficients
raised new questions, which were fully solved only much later (see the end of
Sect. 1.4 “Finiteness”). But the results in SGA 4 [4] and SGA 5 [5] sufficed
to establish (a), (b), and a decomposition of the form (67): finiteness of Q-
cohohomology with compact support of schemes separated and of finite type over
an algebraically closed field was known, and for such an Xo/F, (and £ # p), with
the notation of (62), Grothendieck had proved the trace formula

#Xo(Fgn) = Y (—1)'Tr(F™, HL(X, Qp)), (69)
giving a decomposition

ZXo.ny= [ det(— F'r, HI(X, Qo)™ (70)
0<i<2d

for dim Xo = d, in particular recovering Dwork’s theorem. Moreover, Poincaré
duality had been established, thus giving a functional equation (64) for Xo/F,
proper and smooth. In fact, Grothendieck proved a much more general formula
than (69), with Qg replaced by any (constructible) Q¢-sheaf .y, namely, if .7 is the
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inverse image of .%( on X,

Yo T(FT, F) =) (—D'Te(F*, HI(X, .F)), (71)
xeXo(F n) i
which implies
LXo, Fo.0) = [] det(t — F*1, Hi(X, 7)) D™, (72)
0<i<2d

Here the L function on the left hand side (sometimes denoted Z(Xg, %o, t)) is
defined by

L(Xo, Zo,1) = [] det(1 — Fut®2®, 7o)~ (73)

x€|Xol
with the notation
det(1 — Fr98™) | Z0) := det(1 — F198™ | 7)), (74)

where x € |X| denotes a geometric point over x and F, the endomorphism of the
stalk .%, induced by F #deg(x) (which leaves x fixed) (the right hand side does not
depend on the choice of x). For .% the constant sheaf Q, L(Xo, Fo, 1) = Z(Xo, t).
Formula (72) for X a curve was to be a basic tool in Deligne’s proof of the Weil
conjectures.

5.2 A False Good Plan: Grothendieck’s Standard Conjectures

At this point, what remained to be proved of (c) was the following statements (for
Xo/F, projective, smooth, £ # p and all i):

(D) Integrality and independence of ¢: The polynomial
Py (1) == det(1 — F*t, H'(X, Qo)) € Qult]

has coefficients in Z and is independent of ¢.
(W) Weights of Frobenius: The eigenvalues of F* on H'(X,Qy) are q-Weil
numbers of weight i.

Actually, in view of (70), (W) implies (I) by a lemma of Fatou ([Weil I], 1.7).

Inspired by Serre’s proof of analogues of the Weil conjectures for Kéhler varieties
([236], ([240], 45)), Grothendieck [109] made certain conjectures on algebraic
cycles, which he called standard conjectures, and thanks to which Serre’s arguments
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could be transposed into the context of varieties over finite fields, thus yielding a
proof of (I) and (W). The conjectures were the following ([109], see also Kleiman’s
exposition [152, 153]).

Let k be an algebraically closed field of characteristic p > 0 and ¢ a prime
number # p. Let X be a projective, smooth, irreducible scheme over k, purely of
dimension d, L € H*(X, Q¢(1)) the class of an ample line bundle on X. Then:

®

(i)

(iii)

Hard Lefschetz: For i < d the cup-product map
LT HY(X, Qo) — HY (X, Qe(d — 1) (75)

is an isomorphism.

Algebraicity of A: Fix an isomorphism Qg >~ Q(1). Assume that (i) holds.
Let A : H (X, Q) — H'72(X, Q) be the operator defined by the following
commutative square (where the rows are isomorphisms)

) L )
HI(X,Qp) —— H*71(X,Qyp)

L4—i+2

H' 72X, Q) —— H* 72X, Qo)

for 0 < i < d (and the similar diagram for A : H2‘1’i+2(X, Q) —
H?*=1(X, Qy), with vertical arrows interchanged). Then there exists an alge-
braic cycle A € CH d’l(X x X) ® Q, independent of £, such that, for all
a € H*(X, Qg), one has

Aa = pry, (pria.[A]),
where [A] € H?*72(X x X, Q) is the cohomology class of A, and pr,, :
H*(X x X,Q¢) — H*24(X x X, Qy) is the Gysin homomorphism.
Hodge positivity: Assume (i) holds. For j < d, let
P/(X,Qq) :=Ker(L/™: H/(X, Qo) — H*/H(X,Qu)
be the primitive part of H/(X,Qy), and let A’(X) denote the Q-vector
subspace of H% (X, Q) generated by the cohomology classes of elements of

the Chow group CH ’ (X). Then, fori < d/2, the Q-valued symmetric bilinear
form on A'(X) N PZ (X, Qp),

(x,y) > (=D)L x - y),

where Tr : H2(X, Q) — Qy is the trace map, is positive definite.
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Elementary arguments show that (i) and (ii) imply the integrality and indepen-
dence conjecture (I) above. On the other hand, arguments similar to those of Serre
[236] show that the validity for all X of (i), (ii) and (iii) together implies the
weight conjecture (W) (for all X). In addition, (i), (ii), (iii) imply the coincidence
of homological and numerical equivalence for algebraic cycles, another famous
conjecture. See [109] (and [152, 153] for more details).

Establishing the standard conjectures seemed to be a royal path towards (I)
and (W). As they would yield much more, being the foundation of his theory of
motives, Grothendieck in [109] considered their proof as “the most urgent task in
algebraic geometry”. Unfortunately, (ii) and (iii) proved to be intractable, and they
are in fact still widely open today. For comments on the difficulty of constructing
interesting algebraic cycles, see [D76, 1994]. Ignoring the conventional wisdom
of the time, Deligne proved conjectures (I) and (W) by a totally different method,
and, eventually, deduced from their proof the hard Lefschetz conjecture (i) (see
Theorem 29). But he first established special cases, exploiting the motivic interplay
between £-adic cohomology of varieties over finite fields and Hodge theory when
working over schemes of finite type over Z. Though these special cases were of no
utility for the general one, the methods he developed there had a lasting impact.

5.3 Partial Results Using Hodge Theory

With the notation of Sect. 5.2, assume that dim Xo = 2. Then, thanks to (68), (I)
holds, as it holds for i = 1 or 3 as a corollary of the case of abelian varieties, and for
the same reason, (W) holds for i # 2. It thus remains to show that the eigenvalues
of F* on H?(X, Q) have all their complex conjugates of absolute value g.

K3 Surfaces

In [D20, 1972], Deligne proves this, i.e., (W) for i = 2, for X¢ a liftable K3
surface. Actually, as we have seen in Sect. 3.3 “Liftings of K3 Surfaces, Canonical
Coordinates”, Deligne later showed that this hypothesis of liftability is always
satisfied [D49, 1981]. His proof is inspired by Grothendieck’s philosophy of
motives, which suggests a comparison between H 2(X) and End(H!(A)) for a
certain abelian variety A, via a construction due to Kuga—Satake over C [158].
More precisely, Deligne shows that, up to enlarging the finite field F,, there exist
a complete discrete valuation ring V of mixed characteristic, with residue field F,
and fraction field K, an abelian scheme <7 over V, with complex multiplication by
the even part C = CT(Lz) of the Clifford algebra of the underlying lattice of a
certain polarized Hodge structure of weight zero, type ((—1, 1), (0, 0), (1, —1)), and
rank 21, and a Gal(F/F,)-equivariant isomorphism

CT(P2(X, Z)(1), ¥) — Endc(H'(A, Zy)), (76)
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where A = o, ¥ is the symmetric bilinear form on H 2(X ,Z¢(1)) defined by
the cup-product, and P2 denotes the primitive part, i.e., the orthogonal of the class
IS H2(X, Z,(1)) of an ample line bundle on X. By Weil, the eigenvalues of F on
the right hand side of (76) are g-Weil numbers of weight zero, hence also those of
F on A*(P2(1)) c Ct(P?(1)), and finally, also those of F on P2(1) as dim P> =
21 > 2, which proves (W) (as F*& = ).

A key ingredient for (76) is Kuga—Satake’s construction of an abelian variety
B associated with a (polarized) K3 Y over C. For such a Y, the primitive part
Pz = P2(Y , Z(1)) underlies a polarized Hodge structure of weight zero and type ((-
1,1),(0,0),(1,-1)), with A~"1 = 1 and h%° = 19. The action of the Deligne torus S
on PR (giving the Hodge decomposition of Pc) lifts to the group CSpin(PRr) acting
by left translations on the even part CR = C*(PR) of the Clifford algebra C(PR).
The corresponding (real) Hodge structure on CR is purely of type ((0,1),(1,0)) and
polarizable. Together with the lattice Cz = CT(Pz), it defines an abelian variety B
(see Sect. 4.2 “1-Motives”), such that

Cz = H' (B, Z).

The abelian variety B has complex multiplication by Cz, and (tautologically) left
multiplication defines an isomorphism of algebras

u: Cz = Endc,(H'(B, 7))

(where H'(B, Z) is considered as a right Cz-module), equivariant under the action
of CSpin, acting by conjugation on the left hand side and left multiplication on H!.
Lifting Xo/F, to Y/C (via some embedding of K into C) yields such a pair (B, u),
but it’s unclear whether B would descend to a finite extension of K (with good
reduction over V), and u & Z, to an isomorphism of type (76). This is nonetheless
the case. To show it Deligne constructs—via an algebraicity theorem of Borel
(complementing the Baily—Borel theorem on quotients of hermitian symmetric
domains by torsion free arithmetic subgroups)—a variant (and refinement) of u
with parameters, as an isomorphism of families of polarized Hodge structures over
a formal moduli space of K3’s. As mentioned in Sect. 3.3 “Liftings of K3 Surfaces,
Canonical Coordinates”, his construction has been extensively used since then in all
questions pertaining to the Tate conjecture for K3 surfaces. The “motivic injection”
H?(X) — H'(A)® H'(A) cryptically mentioned by Deligne in 1.3 of [D20, 1972]
can be realized by an absolute Hodge cycle (Sect.4.4), cf. [53].

Complete Intersections of Hodge Level < 1
At the same time, Deligne used a similar argument in [D21, 1972] to prove (W) for

complete intersections Xo/F, of odd dimension n = 2m + 1, and of Hodge level
< 1, i.e., such that H/ (X, “QS(O/FC,) =0fori+ j =nand|j—i| > 1. Here the
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Kuga—Satake variety is replaced by the intermediate Jacobian
J(Y) = H"(Y,)\H" (Y, C)/H"*""(¥)

(for Y a complete intersection of dimension n and level < 1 over C).

5.4 Integrality and Independence of {

Despite their ingenuity and their beauty, the above results offered no clue towards
the general case of (Sect.5.2, (W)). Meanwhile, Deligne made progress on two
related issues: integrality of eigenvalues of Frobenius, and rationality and indepen-
dence of ¢, i.e., (Sect. 5.2, (I)).

Integrality

In ([D19, 1972], XXI, Appendice) Deligne proved a weaker result than (Sect. 5.2,
(I)), namely that the reciprocal zeroes of P; ¢(¢), which a priori are only £-adic units,
are algebraic integers. But he did it in greater generality, for coefficients, and with
g-divisibility refinements. More precisely, he proved the following theorem:

Theorem 21 Let Xo/F, be separated and of finite type, of dimension < n, and let
Fo be a (constructible) Q-sheaf on Xo. Assume that, for any closed point x¢o of
Xo, the eigenvalues of Fx, on F, (with the notation of (73)) are algebraic integers.
Then, for all i, the eigenvalues of F on H(f (X, F) are algebraic integers, and for
i > n, they are divisible by ¢' .

The proof proceeds by dévissage and fibration into curves. Assuming resolution
of singularities, Deligne also shows that the eigenvalues of F on H(X,.%) are
algebraic integers (and even proves a relative variant of this for fy : Xo — Yo and
R fox). The restrictive hypothesis could later be lifted, using de Jong’s alterations.
Further results, pertaining to the number of rational points over finite fields, or
variants of the integrality theorem over local fields were obtained in the 2000s by
Esnault, Deligne—Esnault [D103, 2006], Esnault—Katz (see [127] for a survey) and
Zheng [264].

Independence of ¢

Shortly afterwards Deligne made a breakthrough on (Sect.5.2, (I)). Namely, he
proved it assuming p > 2 and that Xo/F4 lifts to a projective scheme in
characteristic zero. Deligne did not write up his theorem, but it was the subject of
an exposé by Verdier at the 1972—-1973 Bourbaki seminar [253]. Though the result
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itself couln’t be of any help for the general case of (I) (not to speak of (W)), its proof
already contained some of the key ingredients that Deligne was to use in [Weil I].
The strategy, which will be that of [Weil IJ, is to proceed by induction on the
dimension of Xo, using the monodromy of Lefschetz pencils. Assume that (I) has
been shown in dimension < 7, and let Xo/F, be of pure dimension n + 1. After a
possible finite extension of Fy, let Xo < Py = Pg be a closed embedding, and

let (Xo); = Xo N (Ho)t)rep, (Do aline in POv ) be a Lefschetz pencil of hyperplane
sections of X¢. Recall that this means the following.Let Aog = (Dg)Y C Py be the
axis of the perlgil. Then Ay is transverse to X, and if X is the blow-up of XpNAg in
Xo, and fp : Xo — Do the canonical projection, induced by pr, : X X Pa/ — POv s
with fiber (Xg); att € Dy, then there exists a finite closed subscheme Sy of Dg such
that f|Up := Do — Sop is smooth, and the geometric fibers of fj above points of Sy
have one single singular point, which is ordinary quadratic.

By the weak Lefschetz theorem, for any geometric point ¢ in U above a closed
point ¢ € Uy, the restriction map

H'(X,Q¢) — H'(X;,Qu) (77)

is an isomorphism for i < n and injective for i = n. The induction assumption,
combined with Poincaré duality, thus reduces to proving (I) for i = n (or, because
of Theorem 21, that det(1 — FT, H*(X, Qg)) is in Q[7T] and independent of £).
Moreover, the above injection for i = n shows that, for all such point ¢ above ¢, and
F; asin (73),

(%) det(1 — F¥eOT H"(X, Qy)) divides det(1 — F,T, H"(X,, Q¢)).

Let ¢4 be the set of polynomials g(T) = [](1 — «T), where « are £-adic
units, such that, for all closed point 7 of Up, [](1 — o487y divides det(l —
F:T,H"(X,;,Q)). By (*), det(1 — FT, H"(X, Qg)) belongs to ¢4. Belonging to
% does not imply any rationality or independence of ¢ condition. However, since
det(1 — F;T, H"(X;, Qg)) is in Z[T] and independent of £, so is the lcm G of the
polynomials g in ¢, as the family of such g is defined over Q, i.e., if g is in ¢ and
o is an automorphism of Qy, then g is in ¢. Let’s call G the Deligne gcd of the
polynomials det(1 — F; T, H"(X;, Qg)). By definition, det(1 — FT, H" (X}, Q¢))
divides G. The miraculous property, that Deligne proved in [253], is that if the given
Lefschetz pencil has sufficiently big monodromy, then in fact,

det(l1 — FT,H"(X,Qp)) =G. (78)

Here it is assumed that p > 2 and that X lifts in characteristic zero as a smooth
projective scheme. In ([Weil II], 4.5) Deligne proved the same result without
these restrictions, and in a slightly stronger form (Sect.5.6 “First Applications”,
Theorem 31).

Let me say a few words about the proof of this gcd theorem, under the
assumptions made at the beginning of Sect.5.4 “Independence of ¢”. For a fixed
geometric point u in U above u, the choice of paths from u to geometric points
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s above closed points s € Sy defines a finite family of vanishing cycles (8 €
H"(X,;,Q¢)(m)), for n = 2m or 2m + 1, all conjugate up to sign18 under the
geometric fundamental group nf’yeom(Uo) = m1(U, u). Let

E C H'(X,, Qp) (79)

be the Qg-linear subspace generated by the A§; for A € Q¢(—m). This subspace

is called the vanishing subspace of H"(X,, Q). It is stable under the action of

n‘lgeom(Uo), and is an absolutely irreducible representation of it. Let’s write H" for

H"(X,, Q). Cup-product defines a non-degenerate bilinear form

(x,y) :="Tr(xy) : H* @ H" — Qq(—n), (80)

symmetric for n even, alternating for n odd, compatible with the action of nfyeom(Uo)

(and even that of 71 (Up, u)). The Picard-Lefschetz formula implies that
EL = (H" W), 81)
This doesn’t use the lifting assumption on X¢. This assumption, however, was to be
used in a critical way in the proof of the gcd theorem. First of all, it implies that
the hard Lefschetz theorem holds for X and its hyperplane sections, which in turn
implies that the restriction of (, ) to E is non-degenerate:
ENE+ =0, (82)
and gives an orthogonal decomposition
H"=H"(X,Q) ®E, (83)
in other words,

H"(X,Qp) = H"(X,, Q)™ 0, (84)

where the left hand side is considered as a subspace of H"(X;, Q¢) by (77). The
action of nf’yeom(Uo) on H" induces a representation

geom

p:my (Up) — GL(E), (85)

whose image is contained in Sp(E) (resp. O(E)) for n odd (resp. even). By a
theorem of Kazhdan—Margulis,19 for n odd, ,o(nlgeom(Uo)) is open in Sp(E). For n

18The hypothesis p > 2 enables to apply the results of Katz in ([7], XVIII) — actually p > 2 or n
odd would suffice for this reference; see also the comment after Theorem 31.

19 According to Katz [143], privately communicated to P. Deligne in 1971.
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even, p (n‘lgeom(Uo)) may be finite. Deligne shows that there exists an integer do > 1
such that for any d > dy and any Lefschetz pencil of hyperplane sections of X
relative to the d-th multiple of the given embedding Xy — Pp, then ,o(rr‘lgeom(Uo))
is open in O(E). The proof uses a lifting to characteristic zero, and a transcendental
argument over C, based on formulas of A’Campo and Thom-Sebastiani [234] on
the monodromy of certain isolated singularities. Once the openness of the image of
n‘lgeom(Uo) in Sp(E) (or O(E)) is achieved, then Deligne proves (78) by a rather
involved argument using the Chebotarev density theorem. This argument will again
be crucial in [Weil I] (see Sect. 5.5, Step 3).

55 Weill

Combined with a new idea coming from the theory of modular forms, the techniques
of monodromy of Lefschetz pencils finally enabled Deligne to prove the Weil
conjecture (Sect. 5.2, (W)) for any projective, smooth Xo/F, [Weil I]. Let me sketch
the main points in the proof.

Step 1: It suffices to show that, for any Xo/F,, projective, smooth, geometrically
connected of even dimension d + 1, any eigenvalue a of F* on H*t1(X, Qp) is an
algebraic number, all of whose conjugates oo satisfy

(86)

By induction on the dimension of Xj, using Poincaré duality and the weak
Lefschetz theorem, one is reduced to proving that, for Xo geometrically connected
and of dimension n, the eigenvalues « of F* on H"(X, Q) are algebraic numbers
all of whose conjugates o« satisfy |oa| = ¢”/%. If m is a positive, even integer,
then, by Kiinneth, & is an eigenvalue of F* on H™""(X™, Q). Applying (86) to
Xy with d + 1 = nm, and letting m tend to infinity yields the desired result, i.e.,
loa| = g"/%.

Step 2: Reduction to an estimate on the eigenvalues of F* on HC1 U, &/(ENEDY).

Let Xo/F, be as in Step 1. As in Sect. 5.4 “Independence of £”, after possibly
making a finite extension of F, choose a Lefschetz pencil (over F,;) of hyperplane
sections (Xo); = Xo N (Ho)r)rep, of Xo, satisfying a few additional rationality
conditions (exceptional set Sy C Dy consisting of rational points, geometric point
u over u with u € Uy = Dy — S rational over Fy, X,, smooth admitting a smooth
hyperplane section over Fg, vanishing cycles §; defined over Fy). We keep the
notation of Sect. 5.4 “Independence of £”. As the relative dimension d of fj : Xo —
Dy is odd, much of the monodromy theory described in Sect. 5.4 “Independence of
£” (with n = d) is still valid. Local monodromies are tame, the vanishing cycles
are conjugate up to sign, and, with E defined as above, (81) holds. A notable
difference, however, is that hard Lefschetz is no longer known, so that a priori
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E N E might be non-zero, and has to be taken care of. In particular, the orthogonal
decomposition (83) might fail. A good point, nevertheless, is that the representation

p: " (Uy) — GL(E/(E N E1)), (87)

analogous to (85), is absolutely irreducible, and, as above, its image is open in
Sp(E/(E N E1)). The representation HY = HY(X,, Q) is the stalk at u of the
lisse sheaf R” fp.Q¢|U (more generally, all the sheaves R J0+Qe|U are lisse, (80)
is induced by a non-degenerate, alternate pairing

() (R f0xQelU) ® (R fouQuIU) — Qe(—dD), (88)

and, because of the rationality assumptions on the pencil, E, E+ and E N E* are
the stalks at u of lisse subsheaves &, é"OJ-, and &y N é()OJ' of Rdfo*Qg|U. Since
HITN (X, Q) — HIT(X, Qp) is injective, it suffices to check (86) with X
replaced by Xo. A careful analysis of the Leray spectral sequence of f : X — D via
the Picard—Lefschetz theory shows that it suffices to prove the following assertion:

(A1) Any eigenvalue of F* on HY(D, j.(&/(& N EL))), where j : U — D, is
an algebraic number, all of whose conjugates oo satisfy

g "2 <ol <q'7 t2, (89)

To prove (A1) it suffices to prove
(A2) Any eigenvalue of F* on HCl (U, &)E N EL) is an algebraic number, all of
whose conjugates oo satisfy

loal < g% +2. (90)

To see this, Deligne observes that, for any lisse Q-sheaf %) on an open
subscheme jo : Uy < Cp of a proper, smooth curve Co/F,, then, if D denotes
the dualizing functor R om(—, Q¢)[2](1) on Cy, then

D(jox20) = jorZy [21(D), oD

sothat H(C, j,.%)isdual to H>~(C, j..Z")(1) by Poincaré duality ([D39], 1977,
Dualité). This property is a particular case of the self-duality of an intermediate
extension: here jo..Zp[1] is the intermediate extension joi, of the perverse sheaf
Zo[1]. Tt was first noted by Deligne in ([D26, 1973], 10.8), as being the reason
for the simple form of the constant of the functional equation of L-functions (see
Sect. 6.3). As HI(D, j.(&/(EN&EL)) is aquotientof HI (U, &/ENEL), (90) gives
half of the inequalities (89), hence the other half by duality.

Let 7 1= &/(&NEL). To prove (A2) one may assume Uy affine, and one wants
to use Grothendieck’s cohomological expression for L(U, .Z, t). As HCO(U, F)=0
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(U affine), and H, E(U , %) = 0 by (81), Grothendieck’s formula reads
LU, .Z,t) =det(l — F*t, H\(U, 7)) (92)

To exploit (92) one needs information on the local factors det(1 — Fyr9e8()  7z4)~1
of L, for x a closed point of Uy. This is provided by the next two steps.

Step 3: For every closed point x of Uy, det(1 — Fyt, %y) € Q[t].

The proof follows the same lines as that of the gcd formula (78). But it requires
more work, as the orthogonal decomposition (83) is no longer available. It is
replaced by the filtration &p N @@OL C & C %’6”’ := R f0,Qy. The starting point is
the observation that the sheaves &y N é”OL, %‘6”’ /&0, as well as the sheaves R’ fo.Qy
for i # d are geometrically constant, hence that, if % is any of them, there exist
£-adic units o; in Q} such that, for any closed point x of Uy, det(l — Fyt,%p) =

11 — oW,

Step 4: The lisse sheaf %y = &y/(6p N é"OJ') on Uy is pure of weight d, i.e., for
any closed point x of Uy, the eigenvalues of Fy on %y are q%2%)-Weil numbers of
weight d.

This is the core of the proof, the place where a new idea enters. Deligne says at
the beginning of section 3 in [Weil I] that the above result was “catalyzed” by the
reading of a paper of Rankin [213]. For the genesis of this idea, see [143] and [163].

The main tool is again Grothendieck’s formula (72), applied to Uy, which may
be and is assumed affine, and the lisse sheaf ﬂ(;@z” over Uy, for an integer n > 1.
One has HO(U, #%2") = 0 (U affine), and

HZU, FE) = (F72") psem g (= 1) = (F 2 sp (<)

as the image of nf’yeom(Uo) is open in Sp(E/(E N EL)), where u is a geometric
point in U. By a theorem of H. Weyl on co-invariants of the symplectic group, this
yields HC2(U, FOmy = Qu(—nd — 1)V for a certain integer N > 1. Therefore
Grothendieck’s formula reads

_det(1 — F*t, H/(U, Z®™))

®2n
L (o, 90 1) a1- q”d+1t)N

(93)

Observing that each factor Py (¢) := det(l — Frdeg() 3768’2")’1 is a formal series
with rational (by Step 3) and nonnegative coefficients, one deduces from (93) that
the poles of Py(r) are of absolute value at least ¢~"¢~!, and hence that every

. . . d 1
conjugate « of an eigenvalue of F, on 968’2" is of absolute value < qdeg(x)(z+ ),

which by letting n tend to infinity yields the inequality |o| < qdeg(x)g, and hence
o] = ¢92)% by duality.

The arguments in the proof yield a general statement of purity ([Weil I], 3.2)
for lisse sheaves equipped with a perfect symplectic pairing satisfying certain
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rationality and monodromy conditions. This statement, however, doesn’t seem to
have had any other applications. But it suggested to Deligne a generalization, which
was of critical use in [Weil II], see (Sect.5.6 “Ingredients of the Proof”, Purity
criterion).

Step S (final step): Proof of (A2). By Step 3 the right hand side of (92) has rational
coefficients, hence any eigenvalue « of F* on HL.l(U ,&/(& N EL)) is an algebraic

. d+1 1 .
number. To show that any conjugate of & has absolute value < g 2 T2 it suffices

to show that the left hand side is absolutely convergent for || < q’(dgl +é), which
follows easily from Step 4.

5.6 Weilll

In [Weil II] Deligne gave an alternative proof of (Sect. 5.2 (W)), with far reaching
generalizations. Grothendieck’s conjectural philosophy of weights over finite fields
had inspired Deligne’s construction of mixed Hodge theory. Now that the Weil
conjectures were proven, mixed Hodge theory in turn inspired Deligne’s work in
[Weil II] and [D53, 1982].

The convention made at the beginning of Sect. 5 is still in force. In addition, we
fix a prime number £ invertible on all schemes to be considered, and denote by Q,
an algebraic closure of Q.

Mixed Sheaves, Statement of the Main Theorem

Deligne made the following basic definition ([Weil II], 1.2.2). Let X be a scheme
of finite type over Z, and .% a (constructible)’® Q,-sheaf on X(. One says that
Z is punctually pure if there exists n € Z, called the weight of %y, such that,
for any closed point x of X¢, with residue characteristic p and [k(x) : Fp] = ny,
the eigenvalues of F”* on the stalk (%p), of %y at a geometric point x over x
where F is the geometric Frobenius a — al'/? of k(x), i.e., on .%, in the notation
of (73), are p"x-Weil numbers of weight n. One says that % is mixed if %y admits a
finite filtration whose successive quotients are punctually pure. The weights of those
quotients which are nonzero are called the (punctual) weights of .%y. The category
of mixed sheaves is stable by sub-objects, quotients, extensions, tensor products,
and inverse images.

Given a mixed Q,-sheaf %y on X, one can ask whether it admits a “better”
filtration with successive quotients pointwise pure, hopefully functorial in %, and
which relation should then hold between the weights of the nonzero quotients. It is
shown in (loc. cit, 3.4.1), as a consequence of the main theorem of loc. cit., that for

20We will consider only constructible Q,-sheaves, and omit “constructible” in the sequel.
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lisse sheaves, there exists indeed such a functorial filtration, called the filtration by
the punctual weights, see Sect. 5.6 “First Applications”.
The main result of loc. cit. is the following theorem (loc. cit., 3.3.1):

Theorem 22 Let fo : Xo — So be a morphism between schemes of finite type over
Z, and Fo be a mixed Qg-sheaf on Xo of weight < n. Then, for alli € Z, R' /%y
on Sy is mixed of weight < n + 1.

In particular, if Xo is of finite type over F, HZ: (X, Qe) (Where X = Xo®r, F) is
mixed of weight < i. By Poincar€ duality, if Xo/F, is smooth, H i (X, Q) is mixed
of weight > i, which echoes the analogous results in Hodge theory ([D29, 1974],
8.2.4) (see Sect. 4.2 “Mixed Hodge Theory”, The general case). As a corollary, the
WEeil conjectures (Sect. 5.2, (I) (W)) hold for any proper and smooth Xo/F:

Corollary 3 If Xo/F, is proper and smooth, then, for all i, the polynomial
det(1 — Ft, H' (X, Q¢)) belongs to Z[t], and its reciprocal roots are q-Weil integers
of weight i.

In fact, Deligne proves refinements and generalizations of Theorem 22, of the
following two types:

(a) Weil sheaves. Let W (F/F,) be the Weil group, i.e., the subgroup of Gal(F/F,)
generated by the geometric Frobenius F : a + a'/?. A Weil sheaf %o on X
is a Qg-sheaf . on X, together with an action of W(F/F,) lifting the action
of W(F/Fg4) on X = Xo ®p, F. By pull-back to X, Q,-sheaves define Weil
sheaves, but the category of Weil sheaves is larger. For example, a Weil sheaf
on Spec F; corresponds to an element u € QZ; it is a Qg-sheaf if and only if u
is an £-adic unit. If X is normal, geometrically connected, any lisse irreducible
Weil sheaf is deduced by torsion from a Q,-sheaf %, i.e., there exists b € QZ

such that %) = % ® szh), where Q/(Zh) is a rank 1 Weil sheaf on SpecF, on
which the geometric Frobenius F acts by multiplication by b ([Weil II], 1.3.14).
This implies that Grothendieck’s formula (72) extends to Weil sheaves.

The definitions of punctually pure and mixed readily extend to Weil sheaves.
Theorem 22 (for Xo/F) holds with Q,-sheaf replaced by Weil sheaf.

As elements o of QZ which are g-Weil numbers of weight » are characterized

by the fact that for any isomorphism ¢ : Qz > C, w has absolute value
q"/?, Deligne finds it convenient to work separately for each (. One defines
the (-weight of « (rel. to g) as 2log, [ta|, and the corresponding notions of
(punctually) (-pure and t-mixed for Weil sheaves on X(. These (-weights are real
numbers, which are not necessarily integers. We will sometimes say “weights”
instead of “t-weight” when no confusion can arise.

(b) Six operations. The construction of a triangulated category Df (X, Q) stable
under Grothendieck’s six operations (®, R7%om, f*, Rf 'R f«, Rf1) raised
problems that had not been tackled in SGA 5 [5], nor in the unpublished thesis
of Jouanolou. In ([Weil II], 1.1.2) Deligne proposes a definition which works
well for schemes X separated and of finite type over a field satisfying certain
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finiteness conditions (verified for example if it is either finite or algebraically
closed): for the integer ring R of a finite extension E) of Q, with maximal ideal
m, Df(X , R) is defined as the 2-inverse limit of the categories th f(X , R/m")
(n = 1) (consisting of finite tor-dimension complexes K, of R/m"-sheaves with

constructible cohomology, where transition maps are given by ®§ s R/m™"),

D2(X,E;) := E5 ® DY(X, R), and D(X, Q) is the 2-inductive limit of
the Df (X, E,) for E, C Q. More flexible definitions were later given
independently by Gabber (unpublished) and Ekedahl [87]. Quite recently, a new
and seemingly better approach was developed by Bhatt and Scholze [32].

Let Xo be a scheme of finite type over F;. An object Ko of Df (X0, Qp) is called
mixed if, for all i € Z, 7€' K¢ is mixed. The full subcategory

D% (X0, Q) C D2(Xo, Qp) (94)

consisting of mixed complexes is a subtriangulated category, and it follows from
Theorem 22 that, for schemes separated and of finite type over F, it is stable under
the six operations.”! Given an integer w, a mixed complex K¢ over such a scheme
ap : Xo — SpecFy is said to be of weight < w if, for all i € Z, the pointwise
weights of 77" Ko are < w + i. It is said to be of weight > w if DK is of weight
< —w; here D is the dualizing functor D(—) = R# om(—, Ra(!)Qg). It is said to be
pure of weight w if it is both of weight < w and > w. If one denotes by DZw (resp.
Dﬁw, resp. Dg) the full subcategory of D,fi consisting of complexes of weight < w
(re_sp. > w, resp. w), Theorem 22, for a morphism fy : Xo — Sp of schemes of
finite type over F,; can be reformulated by saying that R f; sends D’iw (X0, Qy) into

Dbgw(So, Qy). Dually, Rfo« respects Dgw. In particular, if fj is proper, then R fy.
respects purity, more precisely, sends Dg into Dg. This formalism was to acquire its
full force with the introduction of perverse t-structures in [D53, 1982], see Sect. 5.8.

Ingredients of the Proof

* Purity criterion for real sheaves

The basic estimate (Sect. 5.5, Step 4), obtained by the so-called Rankin—Selberg
method relay on two facts: (i) The coefficients of the polynomial det(1— Fz, %)
belong to Q; (ii) HCZ(U, FO) = Qu(—nd—1)", a consequence of a theorem of
H. Weyl on co-invariants of the symplectic group, and the openness of the image
of the geometric fundamental group into Sp(E /(E N E71)).

In (i), the fact that the coefficients were supposed rational was not essential: real
instead of rational would suffice. For (ii), it turns out that, in the absence of any
assumption on the geometric monodromy group, general results on the global

21See ([Weil I], 6.1.11). For schemes over Spec Z, it seems that only generic variants are available
([Weil I1], 6.1.2).
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monodromy of lisse Weil sheaves coming from class field and algebraic groups
theory still enable to get enough control on the factors of the L-function.

The starting point is that, for a smooth curve X¢/F,, the Weil group W (F/F,)
acts very strongly on the prime to p abelian quotient of the geometric funda-
mental group m1(X, x) of Xo: the largest quotient of it on which the action
is trivial is finite. This is an easy consequence of class field theory. Deligne
proves a generalization for Xo/F, normal, geometrically connected (the image
of m1(X, x) in the quotient of W (Xo, x) by the closure of its derived group is an
extension of a finite group of order prime to p by a pro- p-group) (a generalization
which is in fact not needed).

An important corollary is that if %} is a lisse sheaf of rank 1 on Xy, corresponding
to a character y : W(Xgp, x) — QZ, then there exists ¢ € QZ and a character of
finite order & such that x (g) = ¢%€®)g(g). In particular, .% is t-pure, of weight
the weight of c. Given a lisse sheaf .%( on Xy, Deligne defines determinantal
weights of Zy as the numbers w(A%%)/d, for a constituent?? % of .%; of rank
d, where w denotes the (-weight relative to g. These numbers play a crucial role
in the purity theorem below.

From this Deligne deduces the following key result, which he calls
Grothendieck’s global monodromy theorem®? ([Weil I1], 1.3.8), and which echoes
Theorem 15:

Theorem 23 Let % be a lisse Weil sheaf on a scheme X of finite type, normal
and geometrically connected over F. Let x be a geometric point of X, let

G = G(#) (95)

be the Zariski closure of the image of 1 (X, x) in GL(.%,), and let G pe its identity
component. Then the radical of G% is unipotent.

In particular, if %y is semisimple, so that G% s reductive, then G is
semisimple. Moreover, if G is the extension of Z by G° defined by push-out of
the Weil group W (Xg, x) by m1(X, x) — GO,

0 deg
0->-G —>-G—>Z—0,

then the center of G has an image of finite index in Z by the degree map. This
corollary enables to describe the behavior of determinantal weights under tensor
operations. The upshot is the following theorem, which generalizes ([Weil 1], 3.2),
and plays a crucial role in the proof of the curve case of Theorem 22 for pure sheaves
(see Sect. 5.6 “Ingredients of the Proof”, Squaring of a curve):

2Le., a simple quotient in a Jordan-Holder filtration by lisse subsheaves.

23Grothendieck proved this theorem at a talk he gave during the SGA 7 seminar, on March 26,
1968.
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Theorem 24 Let Xo/F, be a smooth, geometrically connected curve, and let F
be a lisse t-real Weil sheaf on Xo. Then its constituents are t-pure.

Here ¢ is an isomorphism Q, S C, “s-real” means that, for any closed point
x € Xo, tdet(1 — Fyt, o) € R[t], and “i-pure” means that for any such constituent
Gy, there is w € R such that the eigenvalues « of F, on % are of t-weight wy ) (@)
equal to w, where N (x) = qdeg(x), with the notation of (Sect. 5.6 “Mixed Sheaves,
Statement of the Main Theorem”, (b)).

¢ Weight monodromy theorem

Let Xo/F, be as in Theorem 24, and let jo : Uy <> X¢ be the complement of
a finite closed subscheme Sy of X(. As in (Sect.5.5, Step 2, (Al)), sheaves of the
form jo..%, for g a lisse Weil sheaf on Uy are of special interest, in view of the
duality between jo«.%o and jo«.Z, (1)[2] (91). For %, pure, the weights of jo.. %o
decrease at points of Sp:

Lemma 1 If % is a lisse t-pure (Weil) sheaf of 1-weight 8 on Uy = Xo — So,
then for any closed point s of Sy, and any eigenvalue o of Fy on jo«.%¢, one has
WN(s) () < B (where wy(s) means a L-weight).

Actually, Deligne gave formulas for 8 — wy ) () in terms of the local monodromy
of % near s. Let s be a geometric point over s, Xo() (resp. Xo(s)) the henselization
(resp. strict henselization) of Xo at s (resp. s), and n a geometric point over
the generic point n of Xo(). Let W(n/n) be the Weil group, inverse image of
W(s/s) in Gal(n/n). Then V := %, is an {-adic representation p of W(n/n).
By Grothendieck’s local monodromy theorem ([237], Appendix), there exists an
open subgroup /; of the inertia group I C W(n/n) and a nilpotent morphism N :
V(1) — V, called logarithm of the monodromy, such that p(g) = exp(Nt¢(g)) for
all g € I, where t¢ : I — Z(1) is the £-primary component of the tame character.
It follows that the -weights (rel. to N (s)) of the eigenvalues of a lifting F' in W (n/n)
of the geometric Frobenius F; € Gal(s/s) do not depend on the choice of F. They
are called the t-weights of %,. When they are integers, there exists a unique finite
increasing filtration W of V, called the weight filtration, which is stable under N
and such that gr’;/V(V) is t-pure of weight i. On the other hand, whether the -
weights of Fo, are integers or not, by general nonsense on nilpotent endomorphisms
in an abelian category, there exists a unique finite increasing filtration M of V,
called the monodromy filtration, such that NM; V(1) C M;_»V and N " induces an
isomorphism grlM V(i) —> gr{”i V.

Deligne deduced from Lemma 1 the following theorem ([Weil II], 1.8.4), now
called weight monodromy theorem:

Theorem 25 If % is t-pure of weight B, then, for all j € Z, gr?’lﬁ%n is t-pure
of weight B + j. In particular, if B is an integer, then Foy is 1-mixed with integral
weights, and its monodromy filtration M coincides with its weight filtration up to
shift: Mj = Wgy ;.
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Once Theorem 22 is proven, Theorem 25 can be applied to %y = R" fy.Qy, for
fo : Yo — Xo proper and smooth, which is lisse and punctually pure of weight n.
Then %y , = H"(Y;, Q¢), and the monodromy operator N induces isomorphisms

N': glf H" (Y,, Q) — gry ' H" (Y, Qo), (96)

where W is the weight filtration.

A slightly more general statement is given in ([Weil II], 1.8.5). This theorem
was inspired by the theory (due to Deligne and Schmid) of variations of Hodge
structures on the punctured disc (see Sect. 4.1). The mixed characteristic analogue
of Theorem 25 is still an open conjecture (see Sect. 10). The proof of Theorem 25
relies on Grothendieck’s trace formula, and the determination of the monodromy
filtration of a tensor product, using the Jacobson—Morosov theorem.

* Hadamard-de la Vallée-Poussin method

It follows from Lemma 1 and Grothendieck’s formula (72) that under the assump-
tion of Lemma 1, for any eigenvalue « of F' on H 1 (X, j«ZF), one has

wy (o) < B+ 2. 97)

The desired formula is wy () = B + 1, or (equivalently, using duality), w, () <
B + 1. The variant of the Rankin—Selberg method used in (Sect. 5.6 “Ingredients
of the Proof”, Squaring of a curve) requires to know that, in the situation of
Theorem 24, if %y is t-pure, then the polynomials tdet(1 — Ft, H (X, .%))
have real coefficients. The estimate (97) does not suffice for this, as it does not
exclude cancellation between the numerator and the denominator in Grothendieck’s
formula (72). However, using a method inspired to him by Mertens’s proof of the
Hadamard—de La Vallée-Poussin theorem asserting that the Riemann zeta function
¢ (s) does not vanish on the line Zs = 1, Deligne proved the following refinement
of (97):

wy () < f+2, (98)
which indeed suffices to prove
et(1 — Fr, H'(X, %)) € Rlt]. (99)

The Riemann zeta function is replaced by the function s +— L(Xo, %o, q ). The
proof is a piece of analysis on continuous linear complex representations of a certain
real Lie group G, extension of Z by a compact group G%, defined by the global

monodromy group of % (see (95)) via an isomorphism ¢ : Q, > C, equipped with
a set of distinguished conjugacy classes in G% (playing the role of prime numbers)
defined by the semisimple parts of the Frobenius F; at closed points x of Xj.
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¢ Squaring of a curve

More or less standard dévissages reduce the proof of Theorem 22 to the following
special case ([Weil 11], 3.2.3):

Lemma 2 Let X be a projective and smooth curve over Fy, j : Uy <> Xg a dense
open subscheme, and % a lisse, pointwise -pure sheaf on Uy of weight . Then
any eigenvalue o of F on H' (X, j«F) satisfies wy () = B + 1.

In [Weil I] Deligne had used high cartesian powers of the given X (Sect.5.5,
Step 1), Lefschetz pencils of arbitrary odd relative dimension (Sect. 5.5, Step 2), and
high tensor powers of .# (Sect. 5.5, Step 4). Quite strikingly, the proof of Lemma 2
uses only X x Xg and %y Qext Fo over it, where ®,y; denotes an external tensor
product prj ® pr3. The main point is to prove, by induction on the integer k > 0,
that if 8 = 0, then any eigenvalue o of F on Hcl(U , F) satisfies wy (o) < 1+ 27k
(starting with (97) for k = 0). For this, Deligne uses a good pencil of hyperplane

sections of Zo := Xo x Xo. Zo =~ Zo 2% Do, (Zo)y = Zo N H,). t € Dy >
P%q (where mg is the blow-up of the axis). The proof combines an analysis of the
vanishing cycles at the points of non acyclicity of (fy, %), where Fg Qext -F0, and
Theorem 24 and (99) applied to the (-real sheaf % @ ¥’

A few years later, another proof of Theorem 22 was given by Laumon [171].
It uses neither the Hadamard—de la Vallée-Poussin method nor that of squaring,
but instead relies on deep properties of Deligne’s £-adic Fourier transform (see
Sect.5.7). However, Deligne’s purity criterion (Theorem 24) and the weight mon-
odromy theorem (Theorem 25) remain crucial ingredients.

First Applications

We briefly discuss here the applications of Theorem 22 contained in [Weil II], with
the exception of estimates of exponential sums, to which we devote Sect. 5.6 “Expo-
nential Sums”.

e The weight filtration

By definition, if %y is a mixed Q,-sheaf on a scheme Xo of finite type
over Fy, %) admits a finite filtration whose graded pieces are punctually
pure (Sect.5.6 “Mixed Sheaves, Statement of the Main Theorem”). Thanks to
Theorem 22, more can be said when % is lisse. Deligne shows that in this case
there exists a unique increasing filtration of % by lisse sheaves,

e CWi1 o Wi Fy e

called the weight filtration, such that each grlwﬁo is punctually pure of weight
i. Moreover, if 4 is a second mixed lisse sheaf, and ug : % — % is a
morphism, then ug is strictly compatible with the weight filtrations. This positively
answers a conjecture he made in his report ([D15, 1971], 2.1), see Sect. 4.1. Later,
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Deligne proved in [D53, 1982] a better statement, for mixed perverse sheaves, see
Theorem 37.

¢ The Ramanujan-Petersson conjecture

This is the most spectacular application of the Weil conjectures. Serre calls it
a theorem of Deligne—Deligne, as it relies on the construction of £-adic represen-
tations associated with modular forms, made earlier by Deligne (see Sect. 6). The
result is the following (see, e.g., ([D28, 1974], Sect. 1) for the basic definitions and
notation on modular forms):

Theorem 26 Let N be an integer > 1, k an integer > 0, ¢ : (Z/NZ)* — C* a
character, f =Y, anq" (q = e*™i2) a modular form on Th(N) of weight k + 2
and character g, which is cuspidal and primitive. Then, for all prime p not dividing
N, one has

k+1
japl <2p'%. (100)

In particular, for N = 1,k =10, f = A=q[[,o;(1 —¢"* =Y,- t(n)q",
we have, for all primes p,

lz(p)| < 2p'1/2, (101)

as conjectured by Ramanujan.

Deligne stated Theorem 26 in ([Weil I], 8.2), leaving it to the reader to fill in the
details of the proof using his Bourbaki exposé [D6, 1969] to construct a suitable
£-adic representation p ¢ attached to f. In ([Weil II], 3.7.1), he gives an elegant
argument for the main point (5.1) of [D6, 1969], using Theorem 22. Namely, if S is
a smooth curve over F,; and fy : Eg — So an elliptic curve, then R! fo«Qp is lisse
and pure of weight 1, hence Sym*R! o, Qy is pure of weight k, and therefore, by
Theorem 22 (or Lemma 2),

Im(H. (S, Sym*R" £,Q¢) — H'(S. Sym*R' £.Qy)), (102)

which can be identified with H'(S, j,Sym*R! £,Q¢), where jo : So < So is a
proper smooth compactification of Sy, is pure of weight k + 1. This avoids the
delicate compactification lemma 5.4 of [D6, 1969]. See (Sect. 6.1, Theorem 40) for
the definition of py .

The analogue of Theorem 26 for k = —1 was proven by Deligne and Serre in
[D28, 1974]. The proof relies again on the construction of p s for k > 0.

¢ Equidistribution of angles of Frobenius

As a by-product of the Hadamard—de la Vallée-Poussin method, Deligne obtains
general equidistribution results for the conjugacy classes in the compact group
GOR (Sect. 5.6 “Ingredients of the Proof”, Hadamard—de la Vallée Poussin method)
of the semisimple parts of the Frobenius elements Fy at closed points x of Xy
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([Weil II], 3.5.3). In particular, he proves a general Sato—Tate equidistribution
theorem in equal characteristic:

Theorem 27 Let fo : Eog — Xo be an elliptic curve, with Xo/F, of finite type,
normal, geometrically connected, of dimension N, such that the modular invariant j
of E/ X is not constant. For x € Xo(Fyn), let 0(x) € [0, 7] be the number such that
the eigenvalues of Fy on (R' f,Qe)y = HY(E,, Q) are q;eiie()‘). For6 € [0, 7],
let §[0] denote the Dirac measure at 6. Then, when n tends to infinity, the measure
q"}N erXo(Fq,,) 8[0(x)] vaguely converges towards the measure i sin26d6.

The original Sato—Tate conjecture for elliptic curves E over Q with no complex
multiplication ([248], p. 106) was recently established by Clozel, Harris, Shepherd—
Barron, and Taylor (assuming E has multiplicative reduction at one prime) [54, 112,
250]. For a discussion of motivic variants, see [239].

¢ Semisimplicity

The next result is an analogue of the semisimplicity theorem for variations of
Hodge structures ([D16, 1971], 4.2.6) (cf. Theorem 15 (b)):

Theorem 28 Let # be a lisse, punctually t-pure (Weil) sheaf on a scheme X of
finite type over ¥y and geometrically normal, then the pull-back F of Fo on X is
semisimple.

In view of Grothendieck’s global monodromy theorem (Theorem 23), this
implies:

Corollary 4 Under the assumptions of Theorem 28, the identity component of the
global geometric monodromy group (95) of Fy is semisimple.

On the other hand, by a specialization argument Deligne deduces the following
corollary, which generalizes ([D16, 1971], 4.2.9):

Corollary 5 If S is a normal scheme of finite type over an algebraically closed field
of characteristic # £, f : X — S a proper and smooth morphism, then the sheaves
R’ .Qq are semisimple.

¢ Hard Lefschetz theorem

Let k be an algebraically closed field of characteristic p # ¢, and let X/k be
a projective and smooth scheme, purely of dimension d. Then the hard Lefschetz
conjecture (Sect. 5.2, (i)) holds:

Theorem 29 If L € H*(X, Q.(1)) is the class of an ample line bundle €' (1) on X,
then, for all i € Z, the cup-product map (75) is an isomorphism.

The proof exploits the consequences of Corollary 5 on the monodromy of
Lefschetz pencils. Up to replacing &'(1) by a power, we may assume that it defines
an embedding in PV such that L is the class of a general member Y of a Lefschetz
pencil of hyperplane sections (X; = X N H;);ep of X (cf. Sect. 5.4 “Independence
of £” and 5.5, Step 2). We know by the weak Lefschetz theorem that, if n = d — 1,
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H"(X, Q) injects into H" (Y, Qg¢). Let U = D — S be the complement of the set
of points ¢ at which X; is singular, and « a rational point of U, such that Y = X,,. It
follows from the Picard—Lefschetz formula and the inductive assumption that hard
Lefschetz holds in dimension 7, hence for Y, so that

H"(X,Qq) = H"(Y, Q)™ V. (103)

As H"(Y, Q) is a semisimple representation of m1(U, u) by Corollary 5, the
restriction to H" (Y, Q)™ Y- of the cup-product pairing (80) is non-degenerate,
and by known arguments ([7], XVIII) this implies that hard Lefschetz holds for X.

As a corollary, (103) holds for any X, and as the right hand side of (103) is the
orthogonal of the vanishing subspace E C H" (Y, Q) (79), formulas (82) and (83)
hold, i.e., E N EL = 0, and we have an orthogonal decomposition

H"(Y,Q) =H"(X,Q)®E. (104)

¢ Local invariant cycle theorem
This the following result ([Weil II], 3.6.1):

Theorem 30 Let S be the henselization at a rational point of a smooth curve over
an algebraically closed field k of characteristic p > 0, and let f : X — S bea
proper morphism. Let s be the closed point of S, and let n be a geometric generic
point. Assume that X is essentially smooth over k, and X, is smooth. Then, the
specialization morphism

sp* : H* (X5, Qe) — H*(X,, Q) Cal/m (105)

is surjective.

Here sp* is the composition H* (X, Q) S H*X,Qp) — H*(Xy, Qg), where
the first isomorphism is the inverse of the proper base change isomorphism, and the
second one the restriction, whose image is contained in H*(X,,, Q,)Gal/m),

After reduction to the case where f comes by base change and localization from
aproper fy : Xo — Yo, where Yy is a smooth curve over F,, with smooth geometric
generic fiber and Xo/F, is smooth, the proof uses a weight argument, based on
Theorem 22 and the weight monodromy theorem (Theorem 25).

The analytic analogue of Theorem 30 for a projective morphism f : X — D
over a disc, with X/C smooth and f smooth outside 0 € D (cf. ([Weil II],
3.6.4)) was shown by Steenbrink [242] to follow from Deligne’s weight argument,
based here on mixed Hodge theory, and in particular on the weight monodromy
theorem over C.>* When the inertia I acts unipotently through t, : I — Z,(1),
so that H* (X, Q)Ca0/M = Ker N, the surjection (105) is refined into long exact

24*Whose proof in loc. cit. was incorrect, see Sect. 10, The weight monodromy conjecture.
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sequences (Clemens—Schmid exact sequences), see ([266], 7.8):
— HN{(X,)V(=N) - H'(X;) 2 HI(X,)
X H (X)) (=1) — H*N772(X)V(=N) —, (106)

where H*(—) = H*(—, Qy), and X is supposed to be purely of dimension N.

In ([Weil II], 6.2.9) Deligne gives a generalization of Theorem 30, where
the hypotheses of smoothness (resp. essential smoothness) of X, (resp X/k) are
dropped, and the constant sheaf Q, is replaced by a potentially pure complex
K € D"(X, Qy).

* gcd theorem

The hard Lefschetz theorem, and (as a corollary) the orthogonal decompo-
sition (83), having been established, Deligne could prove the gcd formula (78)
unconditionally, and with no assumption on the geometric monodromy group:

Theorem 31 Let Xg C P{?Vq be a projective and smooth scheme of pure dimension
n+ 1 over ¥y, equipped with a Lefschetz pencil (Xo)r = Xo N (Ho)t)rep, (defined
over ¥,) of hyperplane sections of Xo, whose axis is supposed to be sufficiently
general if p = 2 and n is even. Let Sy be the set of closed points t in Dy at
which X is singular, and let G(T) € Q[T] be the Ilcm of the polynomials
[1(0 — o;T) € QulT] such that for all t € (Do — So)(Fyr), [[(1 — & T) divides
det(1 — FT, H"(X;, Qy)) (in Qu[T]). Then (78) holds, i.e.,

G(T) =det(1 — FT, H" (X, Q)),

(and G(T) is in Z|T] and independent of £).

The proof uses the determination of the global geometric monodromy group (95)
of the sheaf &y (cf. Sect. 5.5, Step 2) on Dy — Sp, which is either finite, or open in
the automorphism group of £ = & C H"(X;, Q) equipped with its intersection
form. This determination, in turn, relies on the conjugacy of the vanishing cycles up
to sign. It is to prove this conjugacy that Deligne uses the restrictive hypothesis on
the pencil for p = 2 and n even. This restriction was later shown by Gabber and
Orgogozo [210] to be superfluous.

Katz and Messing [149] deduced from Theorem 31 that for any projective and
smooth? Xo/F,,and any i € Z, then

det(1 — Fr, H*(X, Qg)) = det(1 — Ft, Hi(Xo/W(Fq))), (107)

25Suh [243] showed that (107) holds more generally assuming only Xo /Fy proper and smooth,
and used it to prove the evenness of odd degree ¢-adic Betti numbers of X. Generalizations of this
last result to intersection cohomology are given by Sun-Zheng [247].
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where on the right hand side H'(Xo/ W(F,)) denotes the i-th crystalline cohomol-
ogy group of X and F the r-th power of the absolute Frobenius endomorphism, for

qg=7r"
* Q¢-homotopy type

Let X be a scheme separated and of finite type over an algebraically closed field
k and let £ be a prime number different from the characteristic of k. In ([Weil
II], 5) Deligne defines a Q-dga (differential graded algebra) A(X) (or rather an
object of the corresponding derived category), depending functorially on X, with
the following properties:

) H*(A(X)) = H*(X, Qo);

G if £k = C, A(X) = Q¢ ® A, where #4 = .#(X(C)) is a Sullivan
minimal model of the rational homotopy type of the topological space X (C)
(see Sect.4.2 “Hodge Theory and Rational Homotopy”). Using Theorem 22,
he constructs gradings W; of .# compatible with the weight filtration W of
H (X(C), Q) (W, = ®j<n¥), as announced in [D34, 1975]. These gradings
are such that the corresponding action of G, on .# is by automorphisms of its
dga structure. For X normal, the existence of these gradings implies a theorem
of Morgan on the pro-unipotent completion of 71(X), and for X proper and
smooth, that .Z ® Qg is a minimal model of H*(X, Q) (with zero differential)
(in particular, all Massey products are zero).

The definition of A(X) relies on a construction of Grothendieck and Miller.
A simpler approach is provided by the pro-étale theory of Bhatt—Scholze, which
directly produces a Q¢-dga RI" (X, Q) [32].

Exponential Sums

Estimates of exponential sums were one of the first applications of the Weil
conjectures, and one of those which have been the most extensively studied.

¢ The method

The main tool is the cohomological interpretation of exponential sums via
Grothendieck’s trace formula (71) applied to certain £-adic sheaves associated with
them, combined with the bounds on the eigenvalues of Frobenius given by the Weil
conjecture (Theorem 22).

The starting point is the so-called dictionary between functions and sheaves on
schemes over finite fields, introduced by Deligne in a letter to D. Kazhdan [73]
(see [171], 1.1, [124], 1). As in Sect. 5.6 “Mixed Sheaves, Statement of the Main
Theorem”, let X be a scheme separated and of finite type over F, and %y a Q,-
sheaf on X(. This sheaf defines a function

17, Xo(By) (= X¥) = Qp, x = Te(F, F). (108)
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More generally, for %, € Df (X0, Qy), one defines

17, Xo(Fy) = Qq, x> Z(—l)iw,-(%). (109)
i

The law %) — tg, transforms ® into product, inverse image into inverse image,
and, by Grothendieck’s trace formula and proper base change theorem, Rgo into
8o« (for go : Xo — Yp).

Let 7o : F, — C* be a nontrivial character, e.g., Yo(x) = e2mix/p Choosing
an isomorphism ¢ : Q, S C, we can view Yo as a character with values in Q;.

We denote by ¥ : F;, — Qz the character deduced from 9 by composition with
TrFq JF,- Let Ag be the affine line over F,. The Artin-Schreier F,-torsor

x—>x1—

0>F,—> A" > "A—0 (110)
defines, by pushout by w’l, a lisse Qg-sheaf %, of rank 1 on Ao, such that
ty, =V : Ao(Fy) =F; — Q. (111)
If fo : Xo — Ag is an F,-morphism, one defines
Ly (fo) = fo Ly (112)

By the compatibility zgg, = go+ and the Leray spectral sequence of fp, we have

0 Y(fo)) =Y (=D Te(F*, HA(X, Ly (). (113)

xeXo(F,) i

([D39, 1977], Sommes trigonométriques, 2.3). When Hci (X, Zy (f)) happens to be
concentrated in a single degree, and one is able to calculate both its dimension and
its weights, then Theorem 22 gives a bound on the absolute value of the exponential
sum in the left hand side of (113). The following theorem (([Weil I], 8.4), ([Weil 11],
3.7)), suggested to Deligne by Bombieri, is a typical example:

Theorem 32 Let Q € Fy[X1,---, X,] be a polynomial of degree d prime to p,
whose homogeneous component Q4 of degree d defines a smooth hypersurface in
Pgl. Consider Q as an ¥ -morphism Aj — Ag. Then:

@) H(f (A", Ly (Q)) =0fori #n, H} (A", £y (Q)) is of dimension (d — 1)" and
is pure of weight n, and therefore,'1 by (113),
(i) | Xeryn V(Q())| = (d = 1)"q2.

A generalization of Theorem 32 is given by Katz in ([144], 5.1.2) (see also
[166]).
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¢ Gauss, Jacobi, and Kloosterman sums

The Artin—Schreier torsor (110) is a particular case of the Lang torsor. Given a
connected algebraic group Go/F, the Lang torsor . is the Go(F,)-torsor on Gy
given by

Go— Go, x> Fxx~! (114)

Push-outs of the Lang torsor by £-adic representations of Go(F,) define £-adic
sheaves on Go. In particular, for Go commutative, a character x : Go(Fy) — QZ

defines, by push-out by x —1 alisse Q,-sheaf of rank 1 .% (x) on Gy, hence, for an
F,-morphism Xo — Go, a sheaf

F (X, fo) = f5F 00 (115)

on Xo. At a point x € X7, the endomorphism F} of .Z(x, fo)x is given by
multiplication by x (f(x)):

(Fy 2 F (X, fo)x = F (X, fo)x) = x(f(x)), (116)

so that by Grothendieck’s trace formula one gets the following generalization
of (113):

D x (o) =D (=DITe(F*, HX (X, Z (X, fo)))- (117)

x€Xo(Fy)
For Gg = Gy, and n prime to p, consider the Kummer torsor %, on Gy,,

x>x"

1= pin = G 5" G — 1 (118)

the Lang torsor (114) is a particular case of it: we have . = J7;_;. In ([D39,
1977], Sommes trigonométriques) Deligne gives applications of (117) to standard
identities between classical exponential sums, and old and new estimates of them.
Here is a brief sample.

(i) Gauss sums. With Deligne’s convention in (loc. cit. 4.1), the Gauss sum
associated with v : F; — Q, (as above) and the multiplicative character

X F:—>Qpis

TGP ==Y Y@ ). (119)

*
xqu
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(i)

(iii)

Let .Z (¥ x ") denote the pull-back on G,, by the diagonal inclusion G,, —
Gu X G of F(y x x~ ! - F, x F; — Qz) on G, x Gy,. This is a pure
lisse sheaf of rank 1 and weight zero. One has H: ((G),, Z (Y x 1)) = 0 for
i #1, H (Gw),, Z(¥x~ 1)) is 1-dimensional, and

t(x, ¥) = Te(F*, H (Gw),, ZWx ). (120)

If x is nontrivial, then H} = H*, so that HC1 is pure of weight 1, which
yields the classical formula [t (x, ¥)| = /g (which, as Deligne observes, also
reflects Poincaré duality).

Jacobi sums. For 1 <i <n,let y; : F; — Qj; be a nontrivial character, such

that the product of the y;’s is nontrivial, and let y : (FZ)" — QZ, x(x) =
T xi (xi). Deligne (loc. cit. (4.14.2)) defines the associated Jacobi sum as

Joo = (=" > XD - @) (121)

X1, € 3 xi=—1

Let Gy = Gj}jl and % (x) the rank 1 lisse sheaf on G¢ associated with the
multiple Kummer torsor Go — Go,x +— x4 and x = ((q1--- xn) ™',
X1>- > xn)- Then (loc. cit., 4.16), one has H. (X, F (x ~')) = Ofori # n—1,
Hf_l(X, Z(x~1)) is of dimension 1 and pure of weight n — 1, where Xo =
((x0 + - - -+ x, = 0) NG /Gy, and

J(0) =Te(F* H! ™' (X, Z (). (122)

In particular, |J(x)| = q"EI . The classical formula expressing a Jacobi sum
in terms of Gauss sums has a nice cohomological expression (loc. cit., 4.17),
which is a key ingredient in the proof. This interpretation is also at the source
of a cohomological proof of a generalized form of Weil’s theorem on the
existence, over number fields, of algebraic Hecke characters associated with
Jacobi sums (loc. cit., 6.5).

Kloosterman sums. Given an integern > 1, and a € F,
Knai= ) Y@+ +x), (123)
X1 Xp=a

where ¥ is as above, is called a generalized Kloosterman sum. Let (V;)o C
Ay = A%q be the hypersurface of equation xy---x, = a, and 7 : Afj —
Ag (resp. o : Aj — Ap) be the map defined by the product (resp. sum) of
coordinates. Thus (V,)p is the fiber of 7 at a. Analyzing the Leray spectral
sequence of 7w : A" — A for £ (o) (112), Deligne (loc. cit., 7.4) shows that,
it H} denotes H)(V4, £y (0)|V,), then Hg =0fori #n—1,and, fora #0,
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chfl is of dimension n and pure of weight n — 1. By (113), we have

Ko = (=D)"""Te(F*, H!"'(Va, Ly (0)|Va)), (124)
and, fora # 0,
Kl <ng"2". (125)
The rank n lisse sheaf
Hlyn = R 701.Ly (0) (126)

on G,,, with fiber HC'.'_I(VH, Zy(0)|V,) at the point a, was called Kloosterman
sheaf and studied by several authors, first by Katz [146], who determined its
global geometric monodromy group (95) and gave applications to equidistribution
properties of the angles of Kloosterman sums (123), in the spirit of ([Weil II], 3.5.3)
(cf. Theorem 27). For recent developments, see [115].

Deligne’s exposé Sommes trigonométriques in [D39, 1977] was the beginning
of a long series of studies on exponential sums, by Katz, Laumon and others,
in which the cohomological methods initiated there were reinforced by further
tools (also initiated by Deligne), such as the £-adic Fourier transform or geometric
convolutions. See [173] for a survey of results up to 1999.

5.7 The ¢-Adic Fourier Transform
Definition and First Properties

In the letter to D. Kazhdan mentioned above [73], Deligne introduced operations on
complexes of sheaves on schemes over finite fields lifting operations on functions
given by convolution or transformation by kernels. In particular, for G, = (Ga)¥,,

and ¢ : F; — Qj; as above, he defined the Fourier transform
Fy0: DY(Ga. Q) — DG, Q) (127)

by K — Rpr'\(Zy(xy) ® pr*K), where pr (resp. pr’) is the first (resp. second)
projection, and %y, (xy) is the sheaf (112) for fo : Gg — Gy, (x,y) = xy.Fora
function f : Fy — Qy, let f: F;, — Qq denote its Fourier transform, defined by
fy) = erFq f(x)¥(xy). The proper base change theorem and Grothendieck’s

trace formula imply that, for K € Df. (G4, Qp),

1 Fy0(K) = 1K (128)
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with the notation of (109). Deligne gives a number of basic properties of .7
which, via (128) imply standard properties of the Fourier transform on functions:
involutivity, exchange of product and convolution, Plancherel formula.

Deligne proposed generalizations where G, is replaced by a unipotent group.
The case of a vector space has been extensively studied [147, 171].

Let k be a perfect field of characteristic p > 0, k an algebraic closure of k, and,
for g a power of p, F, the subfield of k£ with g elements. Given an r-dimensional
k-vector space E, Laumon defines

Fy : DY(E, Q) — D2(E',Qy), (129)

Fy(K) = Rpr'\(Zy((,) @ prK)[r], (130)

where E’ is the dual of E, pr, pr’, are the canonical projections, {,) : E x E' — Gy
the canonical pairing, and %, the pull-back by (, ) of the Artin—Schreier sheaf £,
on A%p corresponding to the character v = v : F, — Qg (so that, if k = F,
Fy0 = Fy[—1] with the notation of (127)). The standard properties mentioned
above are proved in [171] (in a slightly more general framework).

Laumon’s Contribution and Applications

Deligne’s construction remained dormant until, in the late 1970s, Verdier made the
following observation. Instead of (129), one can consider the functor

Fys: DUE.Qq) — DI(E',Qy). (131)
defined by
Fyx(K) == Rpr' (L ((,)) @ prK)[r]. (132)
Forgetting supports gives a natural map
Fy(K) = Fy+(K). (133)

Verdier observed that, surprisingly, (133) is an isomorphism. In other words, the
Fourier transform commutes with duality: #y, DK = D.%, 1 DK(r), where D =

R om(—, a!QZ) is the Grothendieck—Verdier dualizing functor on an F,-scheme
a : X — SpecFq. Verdier’s unpublished argument was global (and possibly
incomplete). Laumon’s proof in ([147], 2.1.3, 2.4.4) is local, and shows more. After
reduction to E of dimension r = 1, and E’ compactified into a projective line
P’ = E’ U oo/, Laumon proves that, with Grothendieck’s notation for vanishing
cycles,

R®p (1L () ® PrK) , oy =0, (134)
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where j : ExE’' < E x P’ isthe inclusion, pr’ : Ex P’ — P’is the projection, and
(x, 00') is a geometric point of E x P’ above oo, such that K has lisse cohomology
sheaves at x: in other words, (pr’, 1<%y ({,)) ® pr*K) is locally acyclic above oo’
at points where K is lisse. This property is an analogue of the classical stationary
phase principle.

Laumon in [171] exploited this £-adic stationary phase principle (134) and the
isomorphism (133) to prove Deligne’s conjecture on the global constant of the func-
tional equations of L-functions (Sect. 6.3 “The Case of Function Fields”, (149)),
and to give an alternate proof of Deligne’s main theorem (22) bypassing the use of
the Hadamard—de la Vallée-Poussin method. The local additive convolution product
defined by Deligne in his seminar [74] is a key ingredient, and is extensively
studied in [171]. It follows from the isomorphism (133) that .7 transforms
perverse sheaves into perverse sheaves. Applications of this to uniform estimates
of exponential sums are given by Katz and Laumon in [147]. At about the same
time, other applications of the £-adic Fourier transform were found by Brylinski
[48] (Lefschetz theory for intersection cohomology, Radon transform), and Lusztig
([179-184] (theory of character sheaves)).

5.8 Perverse Sheaves

In the monograph [D53, 1982] Deligne and his co-authors construct a general for-
malism of truncation in triangulated categories, which they apply to develop a theory
of intersection cohomology in the étale setting, in positive characteristic. This work
was inspired by the definition and study of perverse and intersection cohomology
groups for certain singular stratified spaces by Goresky and MacPherson on the one
hand, and the Riemann—Hilbert correspondence for regular holonomic Z-modules
on smooth C-schemes on the other hand. Over finite fields, combined with Deligne’s
results in [Weil II] discussed above, it led to purity and decomposition theorems.

t-Structures

Let 2 be a triangulated category. A t-structure on Z ([D53, 1982], 1.3.1) is the
datum of a pair of strictly full subcategories (2=°, =) such that, if for n € Z,
9= = P —n), 22" .= 2Z%[—n], one has:

(i) Hom(X,Y) =0if X € 259 v € 27!,
(i) 2=° c 2=! and 22° > 2=,
(iii) for all X € 2, there exists an exact triangle A - X — B — with A € 2=0
and B € 271,

A t-category is a triangulated category equipped with a t-structure. A typical
example is provided by the derived category 2 = D(7) of an abelian category <7,
with the standard t-structure where 2= (resp. 2=9) is the subcategory consisting
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of complexes K such that H'K = 0 for i > 0 (resp. i < 0). In this case, the
intersection 2=0 N 20 is o7 It is shown in loc. cit. that in any t-category &, the
intersection € := 2= N 229 called the heart of 9, is an abelian subcategory of
2, stable by extensions, in which short exact sequences come from exact triangles
by forgetting the map of degree 1 (a condition called admissibility in loc. cit.).
Moreover, as in the case of Z(&), the inclusion 2=" C 2 (resp. 2=" C P) admits
aright (resp. left) adjoint t<, (resp. t>,), similar to the canonical truncation functors
on D(&/); given any X in 2, there exists a unique (up to a unique isomorphism)
exact triangle 7<0X — X — 71X — with 70X € 2= and 11X € 27!,
finally the functor H® := 170 (= 7507<0) : 2 — % is a cohomological
functor: exact triangles K — L — M — give rise to long exact sequences
o> H'K - H'L > HM — H*'K — ... where H K := HY(K[i]).

The question of reconstructing & (or rather its full subcategory 2°) from % is
tackled in (loc. cit., 3.1). Let 2 be a full triangulated subcategory of DT (&) for
&7/ an abelian category having enough injectives, ¢ the heart of a t-structure on &,
and 2" the full subcategory of & union of the 21?1 := 9=t U 9=% Then there
is defined a realization functor real : DP(€¢) — 2°, which is an equivalence if
an only if an effaceability condition for certain Ext groups is satisfied. See [22] for
geometric examples where this is the case. The definition of real is not purely in
terms of the t-structure on 2, it uses the companion filtered derived categories Z F,
9" F. The realization functor also appears in work of Beilinson [21] and M. Saito
[222] in mixed Hodge theory.

Let 2; (i = 1,2) be a triangulated category equipped with a t-structure, with
heart %;, and let T : 91 — 25 be an exact functor. Then T is said to be left exact
(resp. right exact, resp. exact) if T(@lzo) C @220 (resp. T(@fo) c 759, resp. T is
both left and right exact). In this case, the functor

PT .= H'T : 64 - % (135)

is left exact (resp. right exact, resp. exact) (loc. cit., 1.3.17).

The Riemann-Hilbert correspondence [139, 140, 191], briefly mentioned at
the end of Sect.3.1 “Higher Dimension: The Riemann—Hilbert Correspondence”,
provides an example of a non-standard t-structure on a derived category. Let X be a
smooth scheme over C, purely of dimension d, let Zx denote its sheaf of differential
operators. The (shifted) de Rham complex functor DRx : M + 5. (M*")[d]
defines an equivalence of triangulated categories

DRy : Db, (2x) = Db (x™, C), (136)

where D% (Z2x) C DP(Zx) (resp. D2(X™,C) C D’(X™, C)) is the full
subcategory consisting of objects whose cohomology sheaves are regular holonomic
(resp. algebraically constructible). The standard t-structure on the left hand side is
transformed by DRy into a t-structure 7x on the right hand side, which is not the
standard one if d > 0. Its heart consists of the so-called perverse sheaves on X. The
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problem of interpreting it (and more generally the truncation functors) intrinsically,
i.e., independently of the equivalence (136), was one of the motivations for the
introduction of the above formalism.

For d = 1, if Y is a finite closed subset of X, and U = X — Y the open
complement, denote by D;’((X , U)f, C) (resp le(U an_"(C)) the full subcategory
of Df (X2, C) (resp. Df (U™, C)) consisting of complexes whose cohomology
sheaves are lisse on U?". Then the t-structure induced by 7y on le (X, )™, C)
appears as glued from the standard t-structure on Df. (Y, C) and the shifted t-
structure (D="', D==1) on Df(Ua“, C). More generally, it is shown in ([D53,
1982], 2.1.4) that, given a suitable stratification . of X", the t-structured induced
by tx on the full subcategory D?(Xa“, C) consisting of complexes whose coho-
mology sheaves are lisse along the strata can be obtained by successive gluing from
shifted standard t-structures on the corresponding derived categories of the strata.

Here is a model for this gluing process. Let (X, ) be aringed space, i : ¥ — X
a closed subspace, j : U = X — Y <> X the open complement. It is proved in (loc.
cit., 1.4) that, given t-structures on D (Y, &) and Dt (U, 0), the pair (D=0, D=0)
of full subcategories of D = D (X, ) defined by K € D= if and only if i*K €
D=0y, 0) and j*K € D=O(U, 0), K € D= if and only if i'K € DZ%(Y, 0)%6
and j*K € D=(U, 0), is a t-structure on D, which is said to be obtained by gluing
from those on D' (Y, ) and D (U, €)). When the t-structures on D (Y, &) and
DT (U, O) are the standard ones, the resulting t-structure on D is the standard one.
The proof uses only the usual formal properties of the functors iy, j. and their
adjoints on both sides. It can therefore be transposed into an abstract framework,
in which the spaces X, Y, U have disappeared. The result is the following gluing
lemma (loc. cit., 1.4.10), which is the key technical tool for the constructions in loc.
cit.:

Theorem 33 Let I, Dy, Dy be triangulated categories, iy : Dy — D, jx : Dy —
9 be exact functors having adjoints (i*,i'), (ji, j*) satisfying the formal properties
(loc. cit., (1.4.3.1) up to (1.4.3.5)). Suppose that Dy and Dy are equipped with
t-structures. Then

(7= .= (K € 7|i*K € 75°, j*K € 9"},

77" =K e2|i'K € 77, j"K € 23°))

is a t-structure on 9 (said to be obtained by gluing from those on 9y and Dy ).

In the next section, we discuss applications given in loc. cit. to complexes with
constructible cohomology in the étale setting. It should be mentioned, however, that
in the past 15 years t-structures on derived categories of complexes of &-modules
with bounded, coherent cohomology sheaves on noetherian schemes have played an
important role in birational geometry (Bondal, Bridgeland, Orlov, and many others).

26Here ;' stands for Ri'.
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Perverse Sheaves in the Etale Setting

Theorem 33 is applied to the construction of t-structures on:

(i) derived categories of sheaves of &-modules on ringed spaces (X, &) equipped
with a stratification . and a perversity function p : ¥ — Z (loc. cit.,
2.1); this covers the case of the t-structure tx appearing in (136), and in the
situations considered by Goresky and MacPherson, where & is constant of
value R, this leads to a description of the p-perverse cohomology groups of
X with value in R as cohomology groups of X with values in a certain complex
JiwR, intermediate extension of the constant sheaf Ry on a suitable open subset
j:U <= X;

(i1) in the étale setting, categories of the form Df (X, A) for X separated and of
finite type over a field k and A a ring such as Z/¢"Z, Z;, Qq, E; (a finite
extension of Qg), or Q,, for a prime number ¢ prime to the characteristic
exponent of k (loc. cit., 2.2, 4).

Let me briefly describe the constructions in (ii).
A perversity function is a function p : 2Z — Z, such that both p and the dual

perversity function p* defined by p*(2n) = — p(2n)—2n are non increasing, i.e., for
any integers n < m, one has 0 < p(2n) — p(2m) < 2m — 2n. The middle perversity
p1,2 is the self-dual function p1,2(2n) = —n. Let p be a perversity function.

For X/k and A as above, define the full subcategories Df” (X, A) and
DZP (X, A) of DE(X, A) by

(K € DZ"(X, A)) & (Vx € X, HYi*K =0 for ¢ > p(2dim(x))) (137)
(K € D77(X, A)) & (Vx € X, HIiL K = 0 for ¢ < p(2dim(x))).

Here dim(x) means the dimension of the closure {x} of the point x, iy : x =
Speck(x) — X the canonical map, and i )'C =] *i! for the factorization of i, into

x 5 x) Ax (with i is short for Ri'). The main result (loc. cit., 2.2.11,2.2.12) is:
Theorem 34 The pair (DCSP(X, A), DCZP (X, A)) is a t-structure on Df (X, A).

For p the constant function of value O, this is the standard t-structure. The most
interesting one is that relative to pys.

The p-perverse A-sheaves on X are by definition the objects of the heart
Per(X, A) of this t-structure. These sheaves are in fact complexes, but, in a sense,
they behave like sheaves, as morphisms and objects can be glued on open coverings
of X (loc. cit., 2.2.19).

The proof of Theorem 34 is indirect. One reduces to proving its analogue for A =
F¢. Then one writes Df (X, A) as a filtering union of subcategories DZ,’ g(X , A)
relative to a pair of a suitable stratification .’ on X and the choice .Z of a finite set of
isomorphism classes of lisse irreducible sheaves of A-modules on each stratum. On
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each such category D?, v (X,A) the desired t-structure is defined inductively by
gluing, using Theorem 33. A different, more direct proof (working in other algebro-
geometric contexts as well) is given by Gabber in [98].

For an immersion, or more generally, a quasi-finite morphism f : X — Y
between schemes separated and of finite type over k, the intermediate extension
functor

Sfix 2 Per(X, A) — Per(Y, A) (138)
is defined by
fiK :=Im( iK — P f,K),

with respect to the canonical factorization fiK — P K — P f,K — fK (with
the notation of (135), and the abbreviation of Rf; into f).

From now on, assume p = p1,2, A = Q,. We will write Per(—) for Per(—, A),
and Df(—) for Df(—, A). We fix an algebraic closure k of k. Fora : X — Speck
separated and of finite type, the dualizing functor D = R #om(—, a'A) exchanges
D:P(X) and DZ”(X), and, in particular, induces a self-duality of Per(X).

Artin’s affine Lefschetz theorem ([4], XIV) can be reformulated by saying that,
for an affine k-morphism f : X — Y (with X, Y separated of finite type over k),
the functor Rf; is right t-exact. The main result of geometric nature on perverse
sheaves is the following theorem, which follows from this re-interpretation:

Theorem 35 For X/k separated and of finite type, the abelian category Per(X) is
noetherian and artinian. Every simple object is of the form j,.Z[dim(V)], for an
irreducible subscheme j : V — X such that Vk,red is smooth, and an irreducible

lisse Qg-sheaf £ on'V.

For X equidimensional of dimension d, a remarkable perverse sheaf (simple if
X is irreducible) is the intersection complex

1Cx = ju(Qqld]), (139)

where j : V < X is a dense open immersion, with V, __, smooth. The cohomology

groups H' (X «» I Cx[—d]) are the analogues of the intersection cohomology groups
constructed by Goresky and MacPherson [102-104].

The Purity and Decomposition Theorems

We keep the conventions at the end of Sect.5.8 “Perverse Sheaves in the Etale
Setting”. We assume k = F, for g a power of a prime p.

For Xo/k separated and of finite type, the t-structure relative to pi2 on
Df. (Xo9) = Df. (X0, Q) induces a t-structure on the full subcategory Dfn (Xo)
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consisting of mixed complexes (94), and any subquotient of a mixed perverse
sheaf is mixed. A central result is the so-called purity theorem for the intermediate
extension, first proved by Gabber:

Theorem 36

(1) If Fo € Per(Xo) is mixed of weights < w (resp. > w), any subquotient of Fg
is mixed of weights < w (resp. > w).

(i) If j : Up — X is an affine embedding, and F¢ € Per(Up) is mixed of weights
< w (resp. > w), then ji..% is mixed of weights < w (resp. > w). In particular,
if Fo is pure of weight w, then so is ji.%.

Assertion (ii) follows from (i) by Artin’s affine Lefschetz theorem. The proof of
(i) given in loc. cit. is different from Gabber’s original proof. It relies on a criterion
(loc. cit., 5.2.1) for a perverse sheaf %, to be mixed of weights > w involving
H O(U , Z) on a variable affine scheme Uy étale over X, namely that, for all such
Uy, H O(U , F) be of weight > w (the removing of the index 0 denoting as usual the
pull-back over k).

A corollary of (ii) is that, if X is proper and equidimensional of dimen-
sion d, then IH' (X) (139) is pure of weight i. Gabber proved later [97] that
det(1 — Fr, IH (X)) belongs to Z[¢] and is independent of ¢, which generalizes
(Theorem 22, Corollary 3).

We have seen in (Sect. 5.6 “First Applications”, The weight filtration) that, in
([D46, 1980], 3.4.1), as a consequence of Theorem 22, Deligne proved that, if %
is a mixed lisse sheaf on Xy, then %y admits a unique finite increasing filtration
W such that grl.W Fo is lisse and punctually pure of weight i. A better statement
holds for perverse sheaves, with “punctually pure” replaced by “pure”: Theorem 36
implies:

Theorem 37 Any perverse mixed sheaf %y on Xo admits a unique finite increasing
filtration W (in the category Per(Xy)), again called the weight filtration, such that,
Sfor all i, grlwfo is pure (as a complex) of weight i. Any morphism %y — % in
Per(Xy) is strictly compatible with the weight filtrations.

In particular, any simple mixed perverse sheaf is pure. Moreover, any pure
perverse sheaf % is geometrically semisimple: F on X is a direct sum of simple
perverse sheaves of the form j,..Z[d], for a connected smooth subscheme j : U —
X of dimension d and an irreducible lisse Q,-sheaf .Z on U.

By definition, an object Ko of D,bn (Xp) is of weights < w if an only if, for all
i, H Ky is of weights < w + i (cf. (94)). Surprisingly, the same holds with HK,
replaced by P H Ko (= P H*(Ko[i])). As DPH'Kg = PH ' DKy, where D is the
dualizing functor on Xy, the assertion with < w replaced by > w holds, too, while
it is not the case with the usual H'’s. In particular, K is pure of weight w if and
only if, for all i, » H K¢ is pure of weight w + i. This leads to the other major result
in the theory, the so-called decomposition theorem (loc. cit., 5.4.5):
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Theorem 38 Let K € DZ (Xo) be a pure complex. Then, in D(lf(X), K = Kol X
has a decomposition

K = @iz’ H (K)[—i]. (140)

This theorem has the following applications. Let fy : X9 — Yo be proper, then,
as recalled at the end of Sect. 5.6 “Mixed Sheaves, Statement of the Main Theorem”,
Rfo« sends D%, to D2, (resp. D2, to D%,), and in particular, transforms pure
complexes into pure complexes. For example, if X is smooth of pure dimension d,
then R fj.Q, is pure of weight 0, hence we have a decomposition

RfQp = @icz? R f.Qul—i], (141)

with 7 R! £,,Q, pure of weight i. Analyzing the simple components of the (semisim-
ple) pure perverse sheaves 7 R’ f,Q, is, in general, a nontrivial task. In the case of a
Hitchin fibration, the determination of their supports was at the core of Ngo’s proof
of the fundamental lemma ([201], 7.2.1).

Theorem 38 implies generalizations of the local invariant cycle theorem (Theo-
rem 30) and a global variant, and of the hard Lefschetz theorem (Theorem 29) (see
(loc. cit., 5.4.7,5.4.8,5.4.10).

Consequences Over C

The results in Sect. 5.8 “Perverse Sheaves in the Etale Setting” produce harmonics in
Hodge theory: by the usual spreading out arguments, one gets from them analogues
of the last theorems (decomposition, hard Lefschetz, etc.) for certain classes of
objects of Df (X, C) (X/C separated and of finite type), called of geometric
origin (loc. cit., 6). A remarkable application is the following result ([D34, 1975],
Théoreme 2), ([D53, 1982], 6.2.3)), which shows the discreteness of the weight
filtration of Hodge theory, as mentioned after Theorem 15:

Theorem 39 Let f : X — S be a separated morphism of schemes of finite type
over C, and let n € N. Assume that R" f,Q is locally constant and that, for
each closed point s € S, the restriction map r : (R" f,Q)s — H"(X;,Q) is
an isomorphism. Then, there exists an increasing filtration of R" f.Q by locally
constant subsheaves W; R" f,.Q such that, for each i, r induces an isomorphism

(Wi R" ,Q)s — WiH"(X,, Q) forallsinS.

The assumption of the theorem is satisfied, for example, if f is the restriction
to the complement of a relative normal crossings divisor in a proper and smooth
scheme over S.

The formalism of mixed complexes and perverse sheaves over finite fields
served as a model for M. Saito’s theory of mixed Hodge modules [222] (cf.
Sect. 4.2 “Mixed Hodge Theory” and Sect. 4.5 “Link with Mixed Hodge Structures
and Regulators™), and T. Mochizuki’s theory of mixed twistor Z-modules [194].
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5.9 Recent Results

In [D114, 2012], [D115, 2013], and [80] Deligne gives applications of Lafforgue’s
main theorem in [159] to various questions concerning £-adic sheaves.

A Finiteness Theorem

In ([Weil II], 1.2.10) Deligne made a number of conjectures on £-adic sheaves.
Namely, given Xo/F, of finite type, normal and geometrically irreducible, and a
lisse, irreducible Q,-sheaf .%( of rank r on X whose determinant is of finite order,
he conjectured the following:

(1) F is pure of weight zero.
(ii) There exists a number field E contained in Q, such that, for all x € | Xy, the
polynomial det(1 — Fyt, %) has coefficients in E.
(iii) For any finite place A of E not dividing p, the inverse roots of det(1 — Fy ¢, %)
in E, are A-adic units.
(iv) For all places A of E dividing p, and any inverse root & of det(1 — Fyt, %),
the absolute value of the valuation v(«) satisfies the inequality (where N, =

ftk (x))
lv(@)/v(Nx)| = r/2.

(v) Up to enlarging E, for any finite place A of E not dividing p, there exists a
lisse Ej-sheaf 356 compatible with %, i.e., having the same eigenvalues of
Frobenius.

(vi) For A dividing p, crystalline companions are expected.

In [159], for X¢ a curve, L. Lafforgue proved (i), (ii), (iii), (v), and an
asymptotically weaker version (iv") of (iv), namely |v(a)/v(Ny))| < (r — 1)2/ r.
He also showed how to reduce the general case of (i), (iii) and (iv) to the curve
case, but there was a gap in his Bertini argument, which, for (i) and (iii), was filled
in by Deligne in [D114, 2012] (see also Drinfeld ([83], Th. 2.15) and Esnault-
Kerz’s ([89], Prop. 8.1) for alternate arguments and more precise results) . By
([901, B1) one gets (iv') for Xg /F4 smooth; the general case follows, using ([264],
2.5). The estimate (iv) on curves was proved by V. Lafforgue ([160], Cor. 2.2).
In fact, V. Lafforgue proves a common generalization of (iv) and (iv'), namely
@iv"): |v(a)/v(Ny))| < (r — 1)/2, which extends to the general case by the same
method.?” In [D114, 2012], Deligne proves (ii) unconditionally. L. Lafforgue’s
results, especially (v) (for X( a curve), play an essential role in the proof. See [89]
for a variant of the exposition. Using (ii), Drinfeld [83] proved (v) for X smooth

2TDrinfeld and Kedlaya [84] recently showed that, moreover, for X /F4 smooth, the slopes of the
minimal Newton polygon have gaps < 1, which result also extends to the general case ([265], 2.7).
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(the general case is still open). See [265] for generalizations of these results to Artin
stacks. For X a curve, conjecture (vi) was proved by T. Abe [10]. For X smooth
of higher dimension conjecture (vi) is still open, but variants are discussed in [11]
and [151].

Counting Lisse £-Adic Sheaves

In [D115, 2013] and [80] Deligne revisits results of Drinfeld [82]. Given a smooth
projective curve Xo/F,, a reduced closed subset Sy of Xo, and an integer n > 1,
let E(Z) be the set of isomorphism classes of lisse irreducible Q,-sheaves .# of
rank n on X — § (where as usual, X = X ®F, F,S=39 ®F, F), with prescribed
ramification & at the points of S (given by a family of isomorphism classes of
rank n sheaves on the local fields of the strict localizations of X at the points of
S, which is isomorphic to itself by Fr*, see ([80], 2.1)). The problem at stake is the
following ([80], 2.3 (i)). Count the cardinality of the fixed point set E (%) Voof E(%)
under the permutation V = Fr* given by pull-back by the Frobenius endomorphism
Fr = Fx, ®F, F of X. One can view E(%)" as the set of classes that come from
lisse Weil sheaves on X — So ([D115,2013], 1.3, 1.6) (or the set of classes, modulo
torsion by a rank one Weil sheaf on Spec Fy, of lisse Weil sheaves Foon Xg — 8o
which become irreducible on X — S), and have the prescribed ramification . More
generally, one can consider, for any integer m > 1, the set

T = T (Xo, So, n,m, X)

of such isomorphism classes which are fixed under V™, whose cardinality we denote
by T = T (Xo, So, n, m, Z). The mere finiteness of this set is not obvious (it is a
consequence of Lafforgue’s main theorem). For n = 1 and So = #, class field
theory identifies it with the set of characters of the finite group Pic())(0 (Fym). For
n = 2, and So = @, Drinfeld [82], using an automorphic interpretation of 7 and
Arthur—Selberg trace formula for GL(2), found that T, as a function of m, is of the
form )" a; B for suitable g-Weil numbers ;.

In [D115, 2013] a similar formula is established in arbitrary rank », under the
restriction that Sy has at least two points, and Z is given by principal unipotent
sheaves, i.e., the inertia at each s acts through Z, with one unipotent Jordan block.
The proof relies on the automorphic interpretation of .7 given by Lafforgue [159]
and a compact case of the trace formula. In [80] Deligne gives an overview of what is
known on the general problem mentioned at the beginning of this section, especially
the question of finding a geometric interpretation for the formulas obtained for 7.

See [90] for an alternate exposition of some of these results and questions.
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6 Modular and Automorphic Forms

6.1 Construction of L-Adic Representations

Deligne’s proof of the Ramanujan—Petersson conjecture for modular forms relies on
his construction of associated £-adic representations (Sect. 5.6 “First Applications”).
For a historical sketch of the ideas leading to this construction, involving work
of Eichler, Igusa, Kuga, Sato, Shimura, see Serre ([240], Une interprétation des
congruences relatives a la fonction T de Ramanujan, § 6).

The main result is the following ([D28, 1974], 6.1), where the notation is the
same as in Theorem 26:

Theorem 40 Let f =", anq" be a modular form of type (k + 2, €) on I'/(N),
with k > 0, which is cuspidal and primitive. Then, for any prime number €, there
exists a lisse irreducible Qq-sheaf F s of rank 2 on Spec(Z[1/N£]), punctually
pure of weight k + 1, such that for any prime p not dividing N, one has

det(1 — Fpt, 3‘}‘1) =1- apt + 8(17)pk+1t2,

where F), is a geometric Frobenius at p.

In other words, there exists a (continuous) representation oy, : Gal(Q/Q) —

GL2(Qy) satisfying
Tr(pre(pp) = ap, det(pre(py)) = e(p)p*t!

for all p not dividing N¢, where ¢, = Fp’1 % and a, = ap + ap, where a, is
a p-Weil number of weight k + 1. Actually, by the modular interpretation of the
space of cusp forms of weight k 4+ 2 under I'1 (N), there exists a number field K
containing all the a,,’s and £(p)’s ([D28, 19741, 2.7), and the Q,-sheaf .% 1, comes
by extension of scalars from an K -sheaf .7 f.».» where A is a place above £, i.e., py¢

comes from py : Gal(Q/Q) — GL2(Ky).
The desired sheaf .7, is defined as a suitable direct summand of the lisse sheaf

NWe = R'a.(j:Sym'R' £.Qp) (142)
on Spec(Z[1/NZ¢]), where

a: Mn — Spec(Z[1/NL])

28Note that for o € Gal(F,/F,), the isomorphism [o0] : SpecF, — SpecF, deduced by

transportation of structure is given by [o]*x = o~ 'x.
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is the restriction to Spec(Z[1/N£]) of the Deligne-Mumford stack .#Zx[1/N]
classifying generalized elliptic curves over Spec(Z[1/n]) with a full level N
structure (Theorem 6),

j:///f,f—) MN

the inclusion of the open substack consisting of elliptic curves, and f : E — 4 18
is the universal elliptic curve. The construction is sketched in [D6, 1969] (and
is complete for N = 1, k = 10, which gives the Ramanujan conjecture). The
Shimura isomorphism expressing the stalk at C of IICVWZH (H a suitable subgroup
of GL2(Z/NZ)) as a direct sum of a space of cusp forms of weight k£ and of
its conjugate ([D6, 1969], 2.10), and its ¢-adic counterpart, the Eichler—Shimura
congruence formula, describing the reduction mod a prime p not dividing N £ of the
Hecke operator T, on ’I‘VWg |SpecF ), as a sum of a Frobenius operator and its twisted
dual ([D6, 1969], 4.9) (see also Theorem 7), play a key role.

The definition of li‘ng and its application to the construction of the desired
representations was proposed by Serre in a letter to Verdier dated Feb. 11, 1967 ([8],
pp- 909-911) (as a first approximation Serre worked with the compactly supported
cohomology group R'a,ji instead of the interior one). A copy of this letter was
later sent to Deligne, who solved the problem. However, Deligne hasn’t yet written
up the details of his construction of p 7,¢. The reader may consult [230], where Scholl
constructs a motive M (f) over Q with coefficients in K giving rise to the family of
pr.2’s. See also [224].

6.2 The Weil-Deligne Group

Let R be a henselian discrete valuation ring, with fraction field K and finite residue
field F; of characteristic p. Let K be a separable closure of K, R the integral closure
of R in K, and k the residue field of R (which is an algebraic closure of F,). Let
W(K/K) C Gal(K/K) be the Weil group, inverse image of the subgroup W (k/k)
of Gal(k/k) generated by the geometric Frobenius F : x > x!/7, so that we have
an exact sequence

0— I — WK/K) L Wk/k)(=1Z) — 0,

where [ is the inertia subgroup, and W (k/k) is identified with Z by F — 1. Let £
be a prime number # p, E; a finite extension of Qg, and p : W(K/K) — GL(V)
a continuous representation, where V is a finite dimensional E -vector space. As in
the discussion following Lemma 1, by Grothendieck’s local monodromy theorem,
there exists an open subgroup /; of the inertia group I C W(n/n) and a nilpotent
morphism N : V(1) — V, such that p(g) = exp(N.t¢(g)) for all g € I;, where
tg o I — Z¢(1) is the £-primary component of the tame character. The morphism
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N € End(V)(—1) is unique, hence Galois equivariant: for g € W(K /K), one has
p(@Np()~! =g 4N (143)

(as g acts on Zy(—1) by a +— ¢%€®gq). In particular, if Fisa lifting of F in
W (K /K), one has

Np(F) = gp(F)N. (144)
In ([D25, 1973], 8.3, 8.4), Deligne constructs an algebraic group
'"W(K/K) (145)

such that isomorphism classes of continuous representations p as above correspond
bijectively to isomorphism classes of algebraic representations of "W (K /K) (over
E)). This group is now called the Weil-Deligne group (of K). It is defined
as the semidirect product of the (discrete) group W(K/K) by G, (over Q),
W(K/K) acting on G, by gxg~' = ¢92®yx  as suggested by (143).2° If E is
a field of characteristic zero, an (algebraic) representation of ‘W (K /K) in a finite
dimensional E-vector space W is a pair (o', N') consisting of a homomorphism
o'+ W(K/K) — GL(W) and a nilpotent endomorphism N’ of W satisfying the
relation p’(g)N'p'(g)~' = ¢~9€® N’. Starting with a continuous homomorphism
p: W(K/K) — GL(V) as above, and choosing an isomorphism 7 : Q. (1) = Q
(of Q¢-vector spaces) and a lift F of F as above, the pair (o, N’) associated with p
is defined by taking N’ = N (using t) and o/ (F'o) = p(f"cr)exp(—tg(a)N); the
isomorphism class of p” does not depend on the choices.

The interpretation of p in terms of p’ is purely algebraic, in particular, does not
depend of the topology of E. This change of viewpoint had useful consequences.

(a) It enabled to define the notion of F-semisimplification (of a representation p)
([D26, 1973), 8.6) (in particular, p is F-semisimple if and only if ,o(f ) is
semisimple (this doesn’t depend on the choice of F )), and that of a strictly
compatible system of A-adic representations of W(K /K) ([D26, 1973), 8.8),
and consequently that of a strictly compatible system of A-adic representations
of the Weil group of a global field k. For such a system, and k the function field
of a smooth irreducible curve over F,, Deligne proved a product formula for the
global constant of the family (see Sect. 6.3).

(b) The Weil-Deligne group appears in the formulation of the Deligne—Langlands
conjecture (see Sect. 10), and, more generally, in the local Langlands correspon-
dence. For a local field K as above, and an integer n > 1, this correspondence,
for GL,, is a bijection w + p; between the set of isomorphism classes

29A variant of this construction was later considered by Langlands, with G, replaced by SL,,
[164].
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of smooth irreducible (complex) representations 7 of GL,(K) and the set
of isomorphism classes of continuous F-semisimple n-dimensional (complex)
representations p, of the Weil-Deligne group 'W(K/K), characterized by
the property of preserving L-functions and e-factors of pairs and extending
the Artin correspondence for n = 1. In a seminal letter to Piatetski-Shapiro
[65], Deligne sketches how to construct such a correspondence, for K = Q,,
p # 2, by looking at the action of GL2(Q,) x H* x W(Q,,/Qp) on the group
of ¢-adic vanishing cycles R 'y (Qy) of the modular curve of p-level (cf.
Sect. 2.3 “Reduction mod p”) at a supersingular point E of the special fibre over
F, (here H = End(E)). The correspondence was then established in general by
Laumon-Rapoport—Stuhler [172] for K of equal characteristic, and by Harris
and Taylor [111], and, independently, Henniart [ 116], in the mixed characteristic
case (a simplified proof was recently found by Scholze [232]).

6.3 Local Constants of L-Functions
Construction of Local Constants

Deligne shows in ([D26, 1973], 4.1) that there exists a rule associating with each
local field K as in Sect.6.2, K a separable closure of K, dx a Haar measure on
K, ¢ a nontrivial additive character of K, p : W(K/K) — GL(V) a continuous
homomorphism, where V is a finite dimensional complex vector space, a number

e(V,v¥,dx) € C*, (146)

(called a local constant) satisfying a number of functoriality and normalization
properties which characterize this rule uniquely. The functoriality properties consist
of mutiplicativity in short exact sequences, homogeneity in ¢ (replacing ¥ by ayr
replaces £ by a¥™")¢), and compatibility with finite separable induction (see loc.
cit. for the precise formulation). The normalization is that for dim(V) = 1, i.e., p
defined by a quasi-character y : W(K/K) — C*, one has

e(V, ¥, dx) =¢e(x, ¥, dx), (147)

where the right hand side is the constant appearing in Tate’s local functional
equation (see (loc. cit., 3.3.1)). In particular, e(x, ¥,dx) = 1 if x is unramified
(and [ dx =1, ¢ |R = 1),and e(x, ¥, dx) = [is x ()¢ (x)dx if x is ramified
(essentially a Gauss sum in the tame case). These constants for V and its dual are
related by a simple functional equation.

If now k is a global field, and W a finite dimensional (continuous) complex
representation of the Weil group of k, the (Weil) L-function of W satisfies a
functional equation where the global constant ¢(W) is equal to a product of local
constants (W, ¥, dxy) (loc. cit. 5.11.3). Thanks to the formal properties of the
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local constants, this formula is reduced to the case where W is of dimension 1, i.e.,
to the functional equation for Hecke L-functions.

These results had been obtained earlier by Langlands [162]. His construction of
the local constants was achieved by a purely local method and some details remained
unpublished.>? Deligne’s proof, which is much simpler, uses a global argument,
based on a formula expressing the behavior of the local constant under torsion of W
by a very ramified character of K*.

The Case of Function Fields

Let now k be the function field of a geometrically irreducible smooth projective
curve Xo/Fg, k a separable closure of k, E; a finite extension of Qg, with £ # p
(p = char(F,)), and p : Gal(k/k) — GL(W) a finite dimensional (continuous)
representation of Gal(k/k) over Ej, which is almost everywhere unramified. This
representation is the stalk .%o, at the geometric point 7 = Spec k of a lisse E;-sheaf
Z of rank r = dim(W) on an open Zariski subset jo : Up <> Xo. The L-function
L(W,1t) (t = q—°)is Grothendieck’s L-function (an element of E) (¢))

defined by the product

LW, 1) := ]_[ det(1 — Fyr9ee® j 7)1

velXol

indexed by the closed points of Xy (= places of k), where (j, %), = wh, 1,
denoting an inertia group at v over v (cf. (73)). Grothendieck’s L-functions L(Gy, t)
for Go in D”(X,, Q,) satisfy a functional equation of the form

L(Go, 1) = det(—Ft, R[(X, G)) "' L(D(G), 1™ 1),

whose proof, by reduction to the case of finite coefficients, relies on a trace
formula for Frobenius applied to (derived) symmetric powers of RI"(X, G), which
itself makes a crucial use of Deligne’s symmetric Kiinneth formula (13). Here, as
D(jo«%0) = joxDFo (91), as observed by Deligne in ([D26, 1973], 10.8), the
functional equation of L(W, t) takes the simple form

LW, 1) =e(W,)L(WY (1), Y (=e(W,)L(WY, g 't 1)),

30See Langlands’s comments on his website, on Langlands’s Notes on Artin L-functions.
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where
(W, 1) = e(W)t XxXF)
e(W) = det(—F, H*(X, j.. 7))

(with the notation of Sect. 5.1 for (X, %), and x (X, .#) = Y (-~ 1)idim H (X, F)).
The case of Weil L-functions discussed above suggested to Deligne a formula for
&(W) as a product of local constants, namely,

eW)y =[] eWy, v, dxy), (148)

ve|Xol

where dx = ®dx, is a decomposition of the Tamagawa measure on Ay giving mass
1 to Ax/k, with total mass of &, (the completed local ring of X at v) equal to
1 for almost all v, and  a nontrivial additive character of Ay /k, inducing v, on
ky = Frac(0),). The conjectural formula (148), implicit in [D26, 1973], was stated
in [74], where Deligne gave it the equivalent geometric form (loc. cit, II 2.3, IV
2.1.3)

s(W) = g =99V TT s(Wy, Yo, (dx)ov), (149)

ve|Xol

where g is the genus of X, and (dx)o, denotes the Haar measure on k, of total
mass 1.

In [D26, 1973] Deligne proved (148) in two cases: (a) % has finite geometric
global monodromy, i.e., the restriction of p to m1(U,n) = Ker(m1(Up,n) —
Gal(F/F,)) has finite image, (more generally, for any Weil representation on a
global field) (ii) p belongs to an infinite family (p))arc1, of strictly compatible
representations p; : Gal(k/k) — GL(Vy), where L is an infinite set of finite
places A # p of a number field E, V) a finite dimensional vector space over the
completion of E at A, and strict compatibility means compatibility of the associated
Weil-Deligne representations (or, which suffices, of their F-semisimplifications) at
each place of X, as mentioned in (a) after (145).

In a long letter to Serre [D30, 1974], Deligne described a strategy to prove (148),
based on his symmetric Kiinneth formula (13) and the known relations between
symmetric powers of a curve and its Jacobian, and solved the problem in the rank
one case. Working at a finite level, with a finite local ring of coefficients A, of
residue characteristic £, the problem is to determine the graded invertible A-module
det(RI.(U, %)) up to a unique isomorphism. Suppose that x.(U, %) = —N, with
N > 1. Then, using (13) and some general nonsense on the category of graded
invertible modules, viewed as a category of stable projective modules, one gets the
following formula, which is the starting point of the theory:

)N+l

det RI-(U, %) = (det RI-(Sym™ (U), I'N (%)) ! (150)



Pierre Deligne: A Poet of Arithmetic Geometry 109

In the case: Uy = Xy, % lisse of rank 1, so that N = 2¢g — 2, where g is the genus
of X, the right hand side of (150) can be easily analyzed through the Leray spectral
sequence of the canonical morphism

7 Sym*32(X) — J?872 (151)

(where J 2872 is the component of degree 2g—2 of Picy ), whose fibers are projective
spaces, and is smooth outside the canonical class. In fact, by this method, and
techniques of geometric class field, Deligne treated more generally the case of
any lisse % of rank one on Uy, with arbitrary ramification along Xo — Uy (and
obtained (148)).

Elaborating on this, in [74] Deligne proved (148) for .%( tamely ramified of any
rank, and in a subsequent seminar, planned to generalize this to the case where j..%
is arbitrarily ramified (using as another ingredient his theory of nearby cycles over
general bases Sect. 7.4). However, the details were not written up. One reason is that
in [171] Laumon gave a proof of (149) in the general case, by a different method,
using Deligne’s £-adic Fourier transform, and his £-adic analogue of the stationary
phase principle (134). This product formula was later a key ingredient in the
proof by Lafforgue of the Langlands correspondence for GL,, over function fields
[159]. Note that, in turn, Lafforgue’s theorem, combined with the local Langlands
correspondence (cf. (b) after (145)), shows that an irreducible lisse Q,-sheaf .7y on
Uy with finite determinant is a member of an infinite strictly compatible system of
such sheaves.

Additional Results

Deligne made two additional contributions to the study of the local constants.

(a) In [D37, 1976], he considers the local constant e(V ® ws, ¥, dx) (where w;
is the quasi-character x > ||x||* of K* = W(K/K)®), for a real virtual
representation V of Gal(K /K), of dimension 0 and determinant 1. This local
constant depends neither on ¥ nor dx, which can therefore be omitted from the
notation. He gives a formula for ¢(V ® w1,2), namely

e(V ® w1 )2) = expmicl(wy(V))), (152)

where cl(w;(V)) is the image in (Q/Z)> = %1 of the second Whitney class
of V, wa(V) € HZ(G, Z/27) (G a finite quotient of Gal(K/K) through
which V factorizes), by the composite of the natural map from H?(G, Z/2Z) to
H2(Gal(K/K), K™), and the map inv : H*(Gal(K /K), K*) — Q/Z of local
class field theory. By the reciprocity law, this theorem implies earlier results of
Frohlich and Queyrut [95].
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(b) In the proof of the existence of a theory of local constants, Deligne used, as
a crucial ingredient, a formula expressing the behavior of the local constant
under torsion of W by a very ramified character of K*. In a joint paper with
Henniart [D48, 1981], he generalizes this to the torsion of W by a representation
of W(K /K) of arbitrary dimension.

6.4 Abelian L-Functions and Hilbert—-Blumenthal Moduli
Spaces

In [63], following a suggestion of Serre, Deligne described how congruences among
values at negative integers of abelian L-functions for totally real fields would
follow from a theory of p-adic Hilbert modular forms. Such a theory would rely
on the construction over Z of certain Hilbert-Blumenthal moduli schemes, having
irreducible geometric fibers in characteristic p. He proposed this construction to
Rapoport as a problem for his thesis. Rapoport solved it in [214]. Deligne and Ribet
exploited this in [D45, 1980]. The crux of their article is an irreducibility theorem
(loc. cit., 4.6) of the above mentioned type, whose proof—in addition to the results
of [214]—uses a description of ordinary abelian varieties over finite fields given
much earlier by Deligne [D7, 1969]. As a corollary they obtain a g-expansion
principle for Hilbert modular forms on Iho(N), giving rise to integrality results
for the values at negative integers of the corresponding L-functions, Kummer-type
congruences, and the construction of p-adic L-functions.

However, it was later discovered that a key result in [214] used by Deligne and
Ribet in [D45, 1980] was wrong: the compactification .# constructed by Rapoport
for the moduli space .# for g-dimensional abelian varieties with multiplication by
the ring of integers of a totally real field of degree g over Q and level structure " (n),
n > 3, could not be proper and smooth over Z[u,][1/n], as asserted, because at the
primes p dividing the discriminant A of K the corresponding ¢-adic representation
of Gal(Q/Q) is ramified (p prime to £ and n) (as was already observed for g = 2 in
[110]). In [D79, 1994] Deligne and Pappas fill in the gap by modifying the moduli
problem: the new moduli problem contains the old one as an open subscheme with
dense fibers, and can be compactified into a scheme proper over Z[u,][1/n], whose
fibers over the primes p dividing A are singular (in fact, they are shown to be local
complete intersections, smooth in codimension 1, in particular, normal). With this
modification, the desired irreducibility property can be proved, and the main results
of [D45, 1980] are restored.
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7 Nearby Cycles and Euler Numbers

7.1 The Picard-Lefschetz Formula

In SGA 7 (= [6]) Grothendieck introduced and studied the nearby and vanishing
cycles functors R¥ and R®, both in the complex analytic setup for Betti coho-
mology, and in the algebraic setup, for étale cohomology. He used them to give a
proof of Milnor’s conjecture on the quasi-unipotency of the monodromy of a Milnor
fiber at an isolated critical point of a holomorphic function on a smooth complex
analytic space (see Sect.7.2), and, more generally, of the monodromy theorem,>!
in equal characteristic zero (and conditionally otherwise’?). Deligne gave a brief
account of this in (loc. cit., I), and developed the formalism in more detail in ([7] (=
[D19, 1972]), X111, XIV). In particular, he proved a comparison theorem ([7], X1V,
2.8) between Betti and étale nearby cycles, similar to Artin’s comparison theorem
between étale and Betti higher direct images by a morphism of C-schemes separated
and of finite type.

A central result in the theory is the Picard—Lefschetz formula, which describes
the variation morphism for isolated ordinary quadratic singularities. Unable to
make sense of the topological arguments of Lefschetz [174], Grothendieck left it
to Deligne to write a proof and translate the result into étale cohomology. This was
the object of Deligne’s exposé ([7], XV). See (loc. cit., 3.2.1, 3.3.5) for a precise
statement of the formula in the étale cohomology setup. The datum is a flat, finite
type morphism X — S, of relative dimension n, with (S, s, ) a henselian trait, such
that the special fibre X is smooth except for an ordinary quadratic singularity at a
single closed point. For n even, the proof is algebraic. But for n odd, Deligne used
a deformation argument to reduce, by means of the comparison theorem mentioned
above, to the classical formula over C, of which he gave a transcendental proof in
([7], XIV).33 Grothendieck used the Picard—Lefschetz formula in relative dimension
1 in the proof of the semistable reduction theorem for abelian varieties ([6], IX
12.5). In arbitrary dimension, the Picard—Lefschetz formula was the basis for the
cohomological study of Lefschetz pencils, done by Katz in ([7], XVII, XVIID),
which in turn played a critical role in [Weil 1], as we have seen (Sect. 5.5).

A p-adic theory of vanishing cycles is still lacking. In the mixed characteristic
(0, p) case, analogues of £-adic vanishing or nearby cycles, with Q, replaced by
Q,, were considered and studied by Bloch—Kato [37], and many others afterwards.
They play an important role in p-adic Hodge theory. However, they are far from
giving rise to the expected theory, as in the case of good reduction they are already

31'This theorem says that, if (S, s, ) is a henselian trait and X /7 is separated and of finite type, 1 a
geometric point over 7, and n an integer invertible on S, an open subgroup /; of the inertia group
I acts unipotently on H*(X,,, Z/nZ) (resp. H (X, Z/nZ)).

32 Grothendieck gave an unconditional proof for H*(X n» L/nZ) by another argument, of arithmetic
nature, see (loc. cit., I).

33 A purely algebraic proof was found later [126].
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highly nontrivial invariants. In [D57, 1984], Deligne proves the following theorem
(a generalization of a result of Furstenberg):

Theorem 41 Let k be a field and g =Y anx™ a formal series in N indeterminates
X=(x1, - ,xy)(m=(ng,---,nyn)). Consider the series

IN(@) =) an..at" €K[[1]].

n

If g is algebraic over k(x1, - -- , xn) and k is of characteristic p > 0, then In(g) is
algebraic over k(t).

The relation between Theorem 41 and the sought for theory of p-adic vanishing
cycles comes from the following integral formula for Iy (g) when k = C and g is
convergent:

IN(g)=/ gdzi---dzn/dt, (153)
Z(1)

where Z(¢) is the “vanishing cycle” at O for the morphism AN —
Al (x1,-+,xN) > x1---xy, defined by Z(t) = {(x1,--- ,xy)|x1 - xy =
t,|x1] = ri,---,|xy| = ry} with [][r; = |7|. The case N = 2 is the Picard—

Lefschetz situation in relative dimension 1. The proof of Theorem 41 is by induction
on N, and, for N = 2, uses a form of Grothendieck duality for coherent sheaves on a
surface. Deligne expresses the hope that a suitable theory of p-adic vanishing cycles
would yield a direct proof in the general case, and, for g with integer coefficients,
an estimate in O ( pM ) for the degree over F,(¢) of the reduction mod p of Iy (g).

7.2 The Milnor Number

Let f : (C"*1,0) — (C,0) be a germ of holomorphic function, with £(0) = 0,
smooth outside 0. Milnor showed in [192] that if B is a small closed ball around
0 € C"! then, fort € C sufficiently close to 0, Vy := B N f_l(t) is a
manifold with boundary having the homotopy type of a bouquet of r n-dimensional
spheres, these manifolds V¢ (later called Milnor fibers) forming a locally trivial
fibration over a sufficiently small punctured disc centered at 0. In particular, if H* =
Coker H*(pt) — H*, we have H9(Vy,Z) = 0 for g # n,and H"(Vy,Z) = 7.
Moreover, Milnor gave a differential interpretation of the integer r, namely,

r = dim¢Cl[xo, - - - , xu11/(0f/9x0, - -, 3f/3xn). (154)
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In Grothendieck’s notation, HY (Vy,Z) = RiIDs(Z)py. If f comes from an
algebraic map ffrom an étale neighborhood of {0} in A’grl to an étale neighbor-
hood of {0} in A}, then, by the comparison theorem, Ri® (L)) @ Z/HZL =
R1® #(Z/lZ)(py, where the right hand side is taken for the étale topology, so
that (154) has a purely algebraic meaning. This suggested to Deligne the following
algebraic analogue.

Let (S, s, ) be a strictly local trait, with algebraically closed residue field k =
k(s), let n be a geometric point over 7, I the inertia group. Let f : X — Sbea
flat, finite type morphism, of relative dimension n, with X regular, x a closed point
of X, and assume that f|X — {x} — S is smooth. Then f is a locally complete
intersection morphism, and the cotangent complex L, g is just §2 )1( /s The sheaf

.@}(/S = gxtl(.Q)l(/S, Ox) is a coherent module supported on x. Deligne defined
the Milnor number of f at x as the length of the Ox -module which is its stalk
at x:

1 (f.x) =12(Zx/s.)- (155)

This generalizes the right hand side of (154). He then conjectured the following
formula, generalizing (154):

(—1)"dimtot(RP ¢ (Z/LZ)) = u(f, x). (156)
Here

dimtot(R® ¢ (Z/LZ),) = Z(—l)" dimtot(R' & ¢ (Z/(Z),), (157)

1

where, for a finite dimensional F,-representation V of the inertia group I,
dimtot(V) := dim(V) + sw(V), sw(V) denoting the Swan conductor of V34 In
fact, it was later observed that, under the above assumptions, Ri®d f(Z/XL)y =0
for i # n, so that the left hand side of (156) is equal to dimtot(R" @ ¢(Z/{Z),). In
([D19, 1972], XVI), Deligne proved (157) for n = 0 or S of equal characteristic.
The case n = 1 was treated by Orgogozo [209]. The general case is still open.
Variants in equal characteristic and with coefficients have recently been established
by T. Saito, in the case of surfaces in [225], and in arbitrary dimension in [227].

7.3 Wild Ramification and Euler—Poincaré Characteristics

Let X be a projective smooth curve over an algebraically closed field k of
characteristic p, and £ a prime number # p. If % is a constructible Fy-sheaf

34«dimtot” stands for “dimension totale”.
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on X, the Grothendieck-Ogg—Shafarevich formula ([5], X) expresses the Euler—
Poincaré characteristic x (X, %) = Y (—1)'dim H' (X, %) in terms of the generic
rank r (%) of .% and local invariants a, (%) at the points of non smoothness of .%:

XX, F) = x(X)r(F) = Y a(F), (158)
xeX (k)

where x (X) = x (X, F¢) = x(X, Q) and a, (F) = r(F) —dim(F;) +sw(.F, ) is
the fotal drop of rank, n, denoting a geometric generic point of the strict localization
of X at x.

In a series of letters, to Katz [67] and to me [68—72], Deligne began investigating
generalizations of (158) to higher dimensions. Here are the main points. See [129]
for more details.

Local Behavior

It follows from (158) that if .%#] and .%; are constructible Fy-sheaves on X having
the same local behavior at each point, then they have the same Euler—Poincaré
characteristic. In [70], using pencils, Deligne showed that, more generally, if X/k
is proper and smooth (of any dimension), and .%;, .%, are constructible F; (or Fy)
sheaves on X whose images in the corresponding Grothendieck group are locally
equal, then x (X, %) = x (X, %,). A little later, by a different method, inspired by
his work with Lusztig [D35, 1976] (see Sect. 8.1 “A Fixed Point Formula”), Deligne
proved a strong refinement, namely, that if .%] and .%, have the same rank and wild
ramification at infinity along the strata of a suitable stratification of X where they
are lisse, then x (X, . Z1) = x(X, %) still holds [123]. In particular, if # = ¥,
for j : U — X the complement of a divisor, and ¢ lisse of rank r on U, and ramely
ramified along X — U, then x.(U,¥) = rx.(U).>

It was recently shown by T. Saito and Yatagawa [226] that the equality
x (X, #1) = x(X, %) holds more generally for .%; a constructible Fy,-sheaf, with
£y and £ different from p, and possibly unequal, provided that .%; and .%, “have
the same wild monodromy” (a (weaker) variant of the condition described above3°).
In fact, under this assumption, .%| and .%; have the same characteristic cycle (in the
sense of [227]).

35The same holds for x> a8 xc(U,9) = x(U,¥) by Laumon [168].

36For surfaces, this variant is re-interpreted in [141] as an equality of conductors for the restriction
to every curve.
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Jump of Swan Conductor

A natural way of attacking the problem (of generalizing (158)) was by the usual
strategy of fibration into curves, hence a preliminary question was to understand
the behavior of the Swan conductor swy, (%) of a sheaf .%; on a curve X;, when
(X, Z1, x¢) moves in a family over a parameter space S. Deligne proved the
following result [69, 167], analogue of the result on irregularities in his letter to
Katz in [D107, 2007] (cf. Sect. 3.4):

Theorem 42 Let f : X — S be a smooth relative curve, with S excellent
noetherian, j : U — X the complement of a closed subscheme Y, finite and flat
over S. Let £ be a prime invertible on S, and ¥ a lisse F¢-sheaf on U, of constant
rank r. Then the function

p:S—=N, s o) = Z(wa(j!y|xs)+")

xeYy

(where s is a geometric point over s) is constructible and lower semicontinuous. If
it is locally constant, f is universally locally acyclic with respect to j).F.

When S is a strictly local trait, with closed (resp. generic) point s (resp.
n), case to which the problem can be reduced by a global to local method,
cf. Sect. 1.4 “Finiteness”, and Y consists of a single point x, Deligne gave a formula
for the jump of the Swan conductor:

9(s) — p(n) = —dim(R' @ s (j1.F).). (159)

This theorem was recently revisited by T. Saito, who gave a simplified proof [227].

Surfaces

Let X/k be a proper and smooth surface (k algebraically closed of characteristic
p # Lasabove), D C X adivisor, j : U =X — D < X, and .% a lisse F-sheaf
of rank » on U. In [70], under some restriction on the ramification of .%, Deligne
wrote a formula for x (X, ji.%) of the form

x (X, 1 F) =rx(X) —8(X, F), (160)

where the error term §(X,.%) is a sum of terms depending on the generic wild
ramification of % along the components of D, and also at a finite number of
exceptional closed points of D. The restrictive hypothesis is that .# has no fierce
ramification, i.e., at each maximal point of D, the normalization of X in a finite
extension trivializing .# does not make appear any purely inseparable extension of
the residue field. The proof of (160) uses a method of pencils. The details were
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written up by Laumon in his thesis (Compléments a “Caractéristique d’Euler—
Poincaré de faisceaux constructibles sur une surface”, Orsay, 1983), see [169] for
an overview. In [71] Deligne investigates the fierce case, and studies Artin—Schreier
examples in detail.

With these letters Deligne initiated a new line of research to which several
mathematicians have brought important contributions (especially K. Kato and T.
Saito) and is still active today. In [225] T. Saito treated the general fierce case on a
surface. In [79], Deligne sketched a theory of singular support, characteristic cycle,
and Euler—Poincaré formulas a la Brylinski-Dubson—Kashiwara, that Beilinson [29]
and T. Saito [227] recently developed in full generality. See [129] for a brief report.
Further progress in the direction of the ultimate goal, i.e., a Grothendieck—Riemann—
Roch type formula for £-adic sheaves, was made by T. Saito in [228].

7.4 Nearby Cycles Over General Bases

In the wake of his proof of the product formula conjecture (148) in the tame case
Deligne introduced in [170] a new geometric and cohomological tool, enabling him
to study nearby cycles in families. It had been known in the late 1970s that Milnor
fibrations didn’t generalize well to bases of dimension >1 (see [220]). A fortiori,
it looked doubtful that one could construct a reasonable theory of nearby cycles
in étale cohomology over bases of arbitrary dimension. This is nevertheless what
Deligne did.

Given morphisms of topoi f : X — S, g : ¥ — S (the case of interest is
when f and g are the morphisms of étale topoi of schemes), Deligne constructs

a topos X ;s Y (the oriented product of f and g), together with 1-morphisms

p1: X ;S Y - X, pp: X ;5 Y — Y, and a 2-morphism 7 : gp» — fp1,
which is universal for these properties (see [170], ([131], XI)). In the case g = Idg

and f comes from a morphism of schemes (still denoted f), X ;5 S is called the
vanishing topos of f. The pair of projections (pr; = Idyx, f : X — §) defines a

morphism ¥y : X — X ;s S such that p1 ¥y = Idx, po¥r = f, whose derived
functor

RY : DY(X,Z/nZ) — DT (X §S S,Z/nZ) (161)

generalizes the usual functor of nearby cycles when § is a henselian trait. The
derived category cokernel R® s of the canonical morphism pj — R¥; generalizes
the vanishing cycles functor. When f is a morphism of finite type between
noetherian schemes, there is a good notion of constructible sheaf of Z/nZ-modules

on X ;S S, and, consequently, of the derived category Df X ;5, Z/nZ),
consisting of complexes with bounded, constructible cohomology. Assume now
that # is invertible on S. Deligne proved that, for K € Df (X,Z/nZ), R¥Y¢K is
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in Df (X ; s S, Z/nZ) and base change compatible provided that the locus of local
acyclicity of (K, f) is quasi-finite over S. He conjectured that, with no assumption
on the locus of local acyclicity of (K, f), this property would hold after a suitable
modification of S (depending on (K, f)). That was proven by Orgogozo [210]. For

f=Idsand g : Y — S, the topos S ;5 Y, called the co-vanishing topos, a variant
of a topos introduced by Faltings in p-adic Hodge theory, plays a role in the p-adic
Simpson correspondence, studied by Abbes—Gros-Tsuji [9].

8 Reductive Groups

8.1 Deligne—Lusztig

Representation theory of finite groups of Lie type has a long history (see, e.g.,
[56, 177,238]). Let k be an algebraic closure of the finite field F,; of characteristic p,
Go/F4 a (connected) reductive group, G/ k deduced from G by base change (with
the notational convention of Sect.5.1). Let F be the Frobenius k-endomorphism
of G. The fixed point scheme GF is the finite group Go(F,). In [D35, 1976]
Deligne and Lusztig describe a cohomological procedure to construct irreducible
representations of G. In fact, for any maximal F-stable torus T C G and
character 6 of T, they construct a (virtual) representation R? of GF, which is
irreducible if 0 is sufficiently general, and cuspidal if 7/Z(G) is anisotropic. In
particular, they prove Macdonald’s conjecture. Further results, pertaining to duality,
are discussed in ([D51, 1982], [D54, 1983]). Their method made a breakthrough,
and was very influential. An especially rich development is Lusztig’s theory of
character sheaves, already alluded to at the end of Sect. 5.7 “Laumon’s Contribution
and Applications”, which provides a complete solution to the classification of
irreducible representations of finite groups of Lie type, in the spirit of the geometric
Langlands correspondence.

In what follows, we only give a brief account of some of Deligne—Lusztig’s main
results, essentially extracted from Serre’s Bourbaki report [238].

Deligne-Lusztig Varieties

Let T = Tp ® k be as above, and let W be the Weyl group (inverse limit, under
conjugation, of N(T’)/T’ for T’ a maximal torus). Let X be the (projective)
variety of k-Borel subgroups of G, which, for B € X, is identified with G/B by
gB +— gBg~'. Let G act on X x X by diagonal conjugation: g(By, By)g~' =
(gBlg’l, ngg’l). By the Bruhat decomposition, for any (B1, By) € X x X, there
exists g € G, B € X, and aunique w € W such that (By, B) = g(B, wa’l)g’l.

w
We then say that By, By are in relative position w (written By — By). Thus, W
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parametrizes the orbits of G on X x X. Let O (w) denote the orbit relative to w, i.e.,
w

O(w) := {(B1, B2)|B1 — B3}. It is a smooth scheme of dimension dim(X) + /(w),
where [(w) is the length of w. The Frobenius endomorphism F of G acts on X by
B+ FB.37 For w € W, Deligne-Lusztig define the locally closed subscheme

X(w) :={B € X|(B, FB) € X(w)}, (162)

i.e., the (transverse) intersection of O (w) with the graph of Frobenius. The X (w)
are smooth subschemes of X of dimension /(w), and they form a stratification of
X. For w = e, X(e) is the finite set of B’s such that B = FB, i.e., (Go/Bo)(Fy)
if B = By ®r, k is one of them. If G = GLj,, X is the variety of complete flags
D= (D; C--- C Dy_1)in A7, and for w € W = S, the circular permutation
(1,---,n), X(w) is identified by D + D with the set of lines in A}/ not contained
in any F-rational hyperplane (D is then the flag D1 C D1 + FD; C D1 + FD; +
F2DyC---).

The representations RQT mentioned above are obtained from certain G-
equivariant T -torsors on the Deligne—Lusztig varieties X (w), whose definition
depends on auxiliary choices. Namely, let U be a unipotent subgroup of G such
that B = T.U is a Borel subgroup (so that U is the unipotent radical of B). Let w
be the element of W such that B € X (w). Let £ : G — G be the Lang isogeny,
g — g~ ' Fg, whose kernel is G¥. Define

Xy =% Y(FU) CG. (163)

This is a GF-torsor on FU. It also has a compatible action of T7¥: G¥ x TF acts on
Xy by (g, t)x = gxt. From the projection G — X one deduces an isomorphism

X(w) > Xy/TF.(UNFU), (164)

which makes Zy := Xy /(U N FU) a GF-equivariant T -torsor on X (w). Let
£ be a prime # p, and Q, an algebraic closure of Q. If I" is a finite group, we
denote by R(I", Q) (or R(I")) the Grothendieck group of finite dimensional Q,-
representations of I". A homomorphism 6 : TF — Qz defines a G -equivariant
lisse rank 1 Q,-sheaf .%y on Zyy /T (or X (w) via (164)). The representation RQT is
the virtual representation of G

RY = Z(—l)"Hj(ZU/TF,%), (165)

an element of R(GF). If 7 : Zy — Zy/TF is the projection, we have a G-
equivariant decomposition 7,Q, = @,.,- FLQ) F, hence H*(Zy, Q) decomposes

37More precisely, F~'(B@), for F : G — G'@ the relative Frobenius.
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into
H(Zu, Qp) = ®gpr_q H (Zu/T", F), (166)
and
Y () H (Zy, Q) =) _ RS (167)

A miracle—whose proof is at the core of [D35, 1976]—is that R? does not depend
on the choice of U (which justifies the notation). The map 6 +— R? extends to a
Q-linear induction homomorphism

Rr: R(TT) — R(GF), p— RS (168)

When one can choose U such that U = FU, so that B = FB, hence w = 1,
which is the case, for example, when Ty is split, then Zy = GF.U/U = GF/UT
is finite (and Zy/TF = GF/BF = (G/B)F). Then H*(Zy, Q) = H*(Zy, Q)),
and Ry is the usual procedure, consisting in restricting 6 to BF via the projection
BF — TF and inducing it, in the classical sense, to GF. New representations occur
for w # 1. For G = SL;, and Ty a nonsplit torus, then one can show that Zy is
isomorphic to the affine curve of equation xy? — x?y = 1, with its linear action of
GF . Drinfeld had studied this example, and showed that cuspidal representations of
G' occurred as summands of the form R in Y (=)' H'(Zy, Q;) (167). This was
the starting point of Deligne—Lusztig’s theory.

A Fixed Point Formula

The main tool in the calculation of the characters of the representations R? is a
Lefschetz fixed point formula for certain finite group actions. The main result is the
following ([D35, 1976], 3.2):

Theorem 43 Let k be an algebraically closed field of characteristic exponent p, £
a prime number # p, and X[k be a scheme separated and of finite type, endowed
with an automorphism g of finite order. Write g = su, where s (resp. u) is a power
of g, and s (resp. u) is of order m (resp. p"), with (p, m) = 1. Then:

(1) Tr(g*, H}(X, Qy)) is in Z and independent of £.
(1) Tr(g*, H: (X, Qe)) = Tr(u*, HI (X", Q).
Here Tr(—, HY) := Y (= 1)'Tr(—, H}).
The key case, to which one is easily reduced, is when k is an algebraic closure of
Fy, X = Xo ® k, with Xo/F, quasi-projective, and g is defined on X¢. The proof

of (i) relies on two elementary observations (which since then have been applied to
many similar situations): (a) It suffices to show that forn > 1, Tr(F" g, H} (X, Q¢))
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is in Z and independent of ¢ (b) For each n > 1, there exists a (quasi-projective)
Z,/F4n and an isomorphism Z, ® k S5 X by which Fz, ®F k = F"g. Assertion
(ii) is reduced to the following theorem, whose proof combines (i) with techniques
of perfect complexes and Brauer theory initiated by Grothendieck and Verdier:

Theorem 44 Let X/ k and £ be as in Theorem 43, and let G be a finite group acting
freely on X. Then RI' (X, Zy) is a perfect complex of Z;[Gl-modules, and for any
g € G whose order is not a power of p, Tr(g, H}(X, Q¢)) = 0.

This last theorem is at the origin of Deligne’s results on x (X, .%#) mentioned in
Sect. 7.3 “Local Behavior”. The topic has been recently revisited by Serre et al. (see
[130]).

Properties of the Rg

They are obtained by a calculation of the corresponding characters, using Theo-
rem 43, which emphasizes the importance of the knowledge of them on the set
% (GT) of unipotent elements u € G¥, i.e., those of order a power of p, (when
Ty is split, and B = TU is an F-stable Borel, then % (GF) is just UF (F,)). This
knowledge is encoded in the so-called Green function

Or: % (G - Q (169)

defined by Or(u) = RlT (u). A simple formula expresses the character of R? in
terms of Q7 and 6 ([D35, 1976], th. 4.2), but the determination of Q7 is rather
involved. It is given the by Green polynomials (in the case of GL,), and (for
sufficiently big p) by the Springer—Kazhdan formula. However, we have R?(l) =
Or(1),and Qr(1) is known in all cases:

RS.(1)(= dim(R$)) = 0r (1) = ere|GF || TF |7, (170)

where, for a finite set S, |S| (resp. |S|,) denotes its cardinality (resp. the prime to
p factor of its cardinality), e (resp. e7) is (—1)”, p denoting the F,-rank of G¢
(resp. To).

A central resultin [D35, 1976] is an orthogonality relation between the characters
of the R?’s. In order to formulate it, recall that if " is a finite group, and C an
algebraically closed field of characteristic zero (here we will take C = Q,), there is
a pairing on C-valued central functions on I" given by

1
(a.byr= > a(@bg™",

||
gel’

with respect to which characters of irreducible representations form an orthonormal
basis. Deligne—Lusztig’s orthogonality relation is the following formula:
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Theorem 45 Let T, T' be maximal tori of G defined over ¥, and let 0 (resp. 6')
be an (irreducible) character of T (resp. T'F). Then

(RS, RO gr = N 6,6, 171)

where N(0,0) is the number of isomorphisms T — T’ induced by conjugation by
an element g of G transforming 0 into 0, i.e., such that 6(gtg=") = 6’ (1) for all
teTk.

This theorem has several important consequences:

. R? and R?, are orthogonal if and only if (T,6) and (T’,0’) are not GF-
conjugate.

e If N(6,0) = 1, in which case one says that 6 is general, then R? is irreducible.

* Assume that no proper parabolic subgroup of G defined over F,, contains T (this
is the case if 7 modulo the center of G is anisotropic, i.e., of Fy-rank zero). Then
R? is cuspidal (discrete series in another terminology), i.e., its restriction to the
unipotent radical of any proper parabolic subgroup of G does not contain the unit
representation.

In addition, Deligne—Lusztig give a criterion for disjointness for a pair (RZ., R?,)
in terms of geometric conjugacy ([D35,1976], 6.3), and prove:

* Every irreducible representation of G is a constituent of at least one represen-
tation R? ([D35,1976],7.7).

They also calculate the values of R? on semisimple elements of G’ thus obtaining
the results predicted by Macdonald. In addition, they prove a remarkable relation
(loc. cit. 7.3) between R? and the Steinberg representation St of G¥', namely:

RY.St = egerInd%, 9), (172)

representations being identified with their characters; (172) applied to g = 1
gives (170).

Duality

Alvis [12] and Curtis [57] discovered and studied a duality operation on characters
of groups of type G¥', exchanging the trivial character 1 and that of the Steinberg
representation St. In [D51, 1982] and [D54, 1983], Deligne and Lusztig construct
an explicit lift of this operation to a map Dg : R(GF) — R(GT). They prove that
with respect to D¢, virtual representations of the form R% are self-dual up to sign,
thus answering positively a question of Alvis (loc. cit.). More precisely, they prove
that

DG (RY) = eger Ry, (173)
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with the notation of (170). The proof uses a generalization (due to Lusztig) of
the induction (168), where the pair (7, B) is replaced by a pair (L, P), L a Levi
subgroup of a parabolic subgroup P.

8.2 Central Extensions

Local symbols and central extensions have been a recurrent theme in
Deligne’s work. We have already mentioned his universal coefficients theorem
(Sect. 1.4 “Picard Stacks and Geometric Class Field Theory”), and its analytic vari-
ants (Sect. 4.5 “Link with the Tame Symbol”), which give rise to the construction
of certain central extensions on compact Riemann surfaces with boundary. In 1977-
1978 Deligne ran a seminar at the IHES in which, given an absolutely simple, simply
connected algebraic group G over a field &, such that G, as a scheme over k, is a
rational variety, he constructed a canonical extension of G (k) by K> (k) generalizing
that constructed by Matsumoto for G split [189]. The seminar was not written up,
but two related papers arose from it.

(a) In [D84, 1996], for G/k as above, but without the additional assumption of
rationality, and given an integer n invertible in k, Deligne constructs a central
extension

0 — H(k,Z/nZ?2)) — G(k) — G(k) — 0, (174)

which is defined up to a unique isomorphism, and is functorial in both k
and G (where H 2(k, —) means H 2(Spec k, —) for the étale topology, i.e.,
H?(Gal(k/k), —) for k a separable closure of k). For G split, it is deduced
from Matsumoto’s extension by pushing out via the Tate symbol

Ko(k) — H?(k,Z/nZ(2)), (175)

defined by {x, y} + dx.dy, for x, y in k*, and d : k* — H'(k,Z/nZ(1))
the boundary of the Kummer sequence. However, Deligne’s construction does
not require G to be split, and for G split does not use Matsumoto’s extension.
The key ingredient of his construction is that, for k = k, H*(BG, Z/nl(2)) =
Z./nZ, which he deduces from known results for k = C. It follows that, for k
arbitrary, the relative (étale) cohomology group H*(BG mod Be, Z/nZ(2)) is
canonically isomorphic to Z/nZ, with a canonical generator cg associated with
a certain quadratic form Q on the cocharacter group of a maximal torus of G.
This generator has an image in H?*(BG k), H?(k, Z./n’Z(2)), which defines the
extension (174).

As a by-product of his construction, for k£ a global field, Deligne defines an
extension of metaplectic type, namely a central extension of the adelic group
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G (Ax) by the group (k) of roots of unity in k, canonically trivialized along
G(k):

G (k)

ST

0 —— (k) — G(Ag) G(Ax) 0

(b) Shortly after Deligne completed this work, Brylinski independently found that
the restrictive hypothesis of rationality in Deligne’s construction in his seminar
was superfluous. The upshot was the joint paper [D98, 2001], in which, for
any (connected) reductive group G over a field k, the authors classify central
extensions of G by the sheaf K; on the big Zariski site of Speck. If G is
simple and simply connected, the group of isomorphism classes of such central
extensions is Z, and 1 € Z defines a canonical central extension

0 — K»(k) — G(k) > G(k) — 0, (177)

which, for G split is the one constructed by Matsumoto. For G = SL,,, and
k infinite, G is the Steinberg group St,, and (177) is the universal central
extension constructed by Milnor. Deligne’s extension (174) associated with cg
is shown to be obtained from (177) by push-out by the Tate symbol (175).
We refer the reader to the introduction of [D98, 2001] for the statement
of the classification theorem, whose formulation would require too many
preliminaries.

8.3 Braid Groups

Braid groups and the geometry and topology of related buildings or hyperplane
arrangements have been a frequent topic in Deligne’s work. I will discuss only two
contributions.

In [D22, 1972], Deligne proves the following theorem:

Theorem 46 Let V be a finite dimensional real vector space, # a finite set of
linear hyperplanes of V, and Y = V¢ — Upyec gy Mc, where Vo = V ®r C,
Mc = M ®g C. Assume that the connected components of V. — Upye 4y M are
open simplicial cones. Then Y is a K (m, 1).

First examples: (a) V = R, .# consisting of the single element {0}, ¥ = C* =
K(Z,1); (b) V = R?> = C, .# consisting of the m lines ReX™/" m > 2,0 <
k<m,Y =C*x PYC) — up), a K(r,1) with m = Z x F,,_1. In example
(b), the dihedral group D, (with 2m elements) acts freely on Y, and 71 (Y /Dy,) is
the generalized braid group associated with the Coxeter group D,,. More generally,
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let W be a finite subgroup of GL(V) such that V¥ = {0}, and assume that W
is generated by orthogonal reflections for a W-invariant euclidian structure on V.
Then the set .# of hyperplanes M such that the orthogonal reflection through M
belongs to W satisfies the condition of Theorem 46, W acts freely on Yy = V¢ —
UpesMc, and Xw = Yw /W isa K (7, 1) with r the generalized braid group Gw
associated with W (defined by the generators g; (1 < i < n = dim(V)) subject to
the sole relations g;gjgi - -- = g;gig; - - - where the number of factors on each side
is m;j, (m;;) denoting the Coxeter matrix of W). This result had been conjectured
by Brieskorn [43], and proved but for a small number of cases. Deligne’s proof
of Theorem 46, however, is direct, and does not proceed by reduction to the case
of a Coxeter complex. It does not involve any braid group, though some of the
arguments were inspired by Garside’s work on the word problem [99]. It consists in
the construction of a certain building I associated with the data (V, .#), having the
homotopy type of a bouquet of spheres, and a contractible covering Y of Y defined
in terms of I.

In [D86, 1997], Deligne used the constructions of [D22, 1972] and its key
contractibility result 2.9 to prove the following homotopical uniqueness theorem
in positive braid monoids. Let B, be the monoid (without unit) of strictly positive
braids on n strands, n > 2, presented by generators g; (1 <i < n — 1), subject to
the relations g;gi 118 = gi+18i&i+1 and g;g; = g;jg for j > i + 2. The canonical
homomorphism from B, to the symmetric group S, sends g; to the transposition
si = (i,i +1). Lett : S, — {e} — B, be the set-theoretic section characterized
by t(s;) = gi, T(st) = t(s)r(¢) if [(st) = I(s) + [(¢). Then the elements t(w) for
w € S, — {e} and the previous relations make another presentation of B, (loc. cit.,
1.4.4). For b € B}, let E(b) the set of ways of writing b as a product of t(w)’s (see
(loc. cit., 1.5) for a formal definition). Then E(b) has a natural order relation, and
the main result (loc. cit., Th. 1.7) is:

Theorem 47 The geometric realization of E (b) is contractible.

The theorem holds, in fact, more generally, for positive braid monoids associated
with finite Coxeter groups. Deligne deduces from it a convenient description, by
generators and relations, of an action of such a positive braid monoid on a monoidal
category. He applies this to give refinements of Bondal-Kapranov’s theory of
exceptional systems [42], and Broué—Michel’s theory of correspondences on flag
manifolds [45].

8.4 Reductive Groups Over Local Fields

Aside from his letter to Piatetski-Shapiro [65] discussed above (Sect.6.2 (b)),
Deligne’s work on this topic is essentially contained in the monograph [D58, 1984].
In addition to writing up Bernstein’s exposé on the Bernstein center, Deligne made
two contributions:
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(a)

(b)

In [D59, 1984] (joint with D. Kazhdan and M.-F. Vigneras), the Jacquet—
Langlands correspondence [135] is generalized to higher ranks. Given an
integer m > 1, a non archimedian local field F, and an F-central division
algebra D of dimension d?, the main theorem constructs®® a bijection between
isomorphism classes of square-integrable representations of GL(n, F) and
GL(m, D), where n = md, preserving (up to sign) characters, L-functions,
e-factors. The Jacquet-Langlands case was n = d = 2, and the case m = 1 had
been treated by Rogawski [216]. The proof uses a global argument, and a form
of the Selberg trace formula.

In [D60, 1984], Deligne transposed to the Galois side a principle of Kazhdan
that the theory of representations of a local field of positive characteristic should
be a limit of the corresponding theories for local fields having the same residue
characteristic and absolute ramification index tending to infinity. Let F' be a
complete discrete valuation field, with perfect residue field k of characteristic
p > 0, ring of integers ¢, and maximal ideal m. Elaborating on ideas of
Krasner, Deligne shows that the category ext(F)° of finite separable extensions
E of F of ramification < e (in the upper numbering notation)* depends only
on the truncated discrete valuation ring ¢/m¢ and the pair D consisting of the
invertible & /m¢-module m/m¢*! and the canonical map m/m¢+! — & /me.
Thus, if F’ is a second complete discrete valuation field, with residue field &,
ring of integers &”, and maximal ideal m’, for any integer ¢ > 1, the datum
of an isomorphism (& /m¢, D) S (0'/(m)¢, D) defines an equivalence from
ext(F)¢ to ext(F’)¢, and, in particular, an isomorphism

Gal(F/F)/Gal(F/F)¢ > Gal(F'/F")/Gal(F'/F')°, (178)

unique, in fact, up to an inner automorphism, where F (resp. F”) is a separable
closure of F (resp. F'). The isomorphism (178) preserves Herbrand’s functions,
and, when k is finite (resp. algebraically closed), is compatible with the
isomorphisms of class field theory (resp. geometric class field theory). As the
truncations of the ring of integers of a local field of characteristic zero can
be killed by p, one can thus “approximate” a local field of characteristic p
by ramified local fields of characteristic zero. For example, if F' = F,((x)),
F' = Qp[t]/(t° — p) (e > 0), one defines an isomorphism « : (&'//m®, D) =
(0'/(m')¢, D’) by sending x to the uniformizing parameter 7 defined by the
class of ¢ (and one can make the correspondence ext(F)¢ and ext(F’)¢ explicit,
by lifting coefficients of Eisenstein polynomials via o).

At about the same time, and independently, Fontaine and Wintenberger [263],

with motivations coming from Sen’s theory and the theory of Fontaine’s rings, gave

38 At least, for F of characteristic zero: the case of positive characteristic was treated later by
Badulescu [17].

391.

e., such that Gal(E/F)¢ = 1, where E| is the Galois closure of E.
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another illustration of the same philosophy: given a local field K (of any charac-
teristic) with perfect residue field k of characteristic p > 0, and a “big” algebraic
separable extension L of K (for example, a totally ramified Galois extension with
Galois group a positive dimensional p-adic Lie group), they construct a local field
Xk (L) of characteristic p with residue field isomorphic to that of L (called the field
of norms), in such a way that M — X (M) is an equivalence from the category of
algebraic separable extensions of L to that of X (L). This construction played an
important role in p-adic Hodge theory, and far reaching generalizations have been
recently developed by Scholze, in his theory of perfectoid spaces [231].

A few years later, the objects (&/m°, D) inspired to Deligne a theory of
generalized Cartier divisors, called “divisors”, that he sketched in [77]. A “divisor”
D on a scheme X is the datum of an invertible sheaf .# and an Ox-linear map
u: L — Ox (D corresponds to an effective Cartier divisor when the image by u of
any local basis of .Z is a nonzero divisor). Together with a similar notion devised
by Faltings, and the classical theory of de Rham complexes with log poles, it is at
the origin of the theory of logarithmic structures (Fontaine—Illusie, Kato et al.), see
[129] for historical remarks on this.

9 Motives and Periods

9.1 Tensor Categories
The Tannakian Formalism

In his second talk on motives at the IHES in 1967, Grothendieck introduced what
he later called a Tannakian category: given a field k, a k-linear abelian category <7
equipped with a tensor product ® together with data of associativity, commutativity
and unity satisfying certain constraints, each object X having a dual XV (satisfying
certain obvious axioms), and such that there exists a fiber functor w from & to the
category of vector spaces over an extension K of k.*C When one can take K = k, in
which case one says that <7 is neutral, </ turns out to be equivalent to the category
of representations of an affine k-group scheme G, the automorphism group of w
(which plays the role of a fundamental group 771 (27, w)); in general, representations
of G have to be replaced by representations of a certain groupoid. Admitting the
standard conjectures, Grothendieck applied this formalism to k = Q and ¢ the Q-
linear abelian category of (pure) motives M over a field F, up to isogeny; here fiber
functors come from £-adic realizations, or Betti realizations for F of characteristic

40 e., a k-linear, exact functor, with an isomorphism @ (X) @ w(Y) S (X ® Y) compatible with
the associativity and commutativity data; such a functor necessarily has values in the category of
finite dimensional K -vector spaces.
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zero, and give rise to the so-called motivic Galois groups. He left it to Saavedra to
write up the details of the theory in his thesis, which appeared in [218, 219].

However, in the course of writing a report on Saavedra’s work in ([D52, 1982],
II), Deligne and Milne discovered an error in the proof of the main result in the non-
neutral case ([219], Introduction, th. 3), and conjectured a corrected statement, with
the added hypothesis that the endomorphism ring End(1) of the unit object 1 of &7
is k (loc. cit., 3.15). This conjecture remained open for a few years, and was finally
positively solved by Deligne in [D71, 1990]. The main result is the following (loc.
cit., 1.12):

Theorem 48 Let k be a field, and <7 be a Tannakian category over k, such that
End(1) = k. Let K be an extension of k and w a fiber functor of </ over S = Spec K.
Let of ut,f9 (w) be the k-groupoid whose object of objects is S and object of arrows
G, where, for a k-scheme T, G(T) is the set of triples (a : T — S,b: T — S,u:

b*w — a*w), with the obvious composition law. Then:

(1) G is represented by a scheme faithfully flat over S xi S, and w gives an
equivalence between o/ and the category of representations of G, by which
w corresponds to the forgetful functor.

(i) Two fiber functors w1, wr over S are locally isomorphic for the fppf topology.

In fact, (ii) follows from (i), and in loc. cit. there is a more general statement
where S can be replaced by a nonempty k-scheme,*! and (i) has a natural converse.
It also follows from (i) that, if 7 has a ®-generator, it admits a fiber functor over a
finite extension of k.

The interest of Theorem 48 is that, with this correction, the results of Saavedra’s
thesis—which had many applications—are validated. The proof uses a theorem
of Barr—Beck on pairs of adjoint functors (a generalization of fpqc descent), and
(for k not perfect) a theorem of representability of quotients by a groupoid action,
essentially due to Artin. It also introduces new ingredients and ideas: (i) construction
of the tensor product of abelian categories satisfying certain finiteness conditions
([D71, 1990], 5) (ii) a geometric language in a k-tensor category </*%: notions
of o/ -affine scheme, S-affine scheme (for S an affine <7-scheme), S-affine group
scheme, etc., leading, in particular, to the definition of a fundamental group of <.
This language plays an important role in [D69, 1989], written almost at the same
time.

41 A fiber functor is then defined as an exact k-linear functor w from < to the category of quasi-
coherent &s-modules, with a compatible isomorphism o (X) ® 5, @ (Y) S w(X ®Y);itis shown
that it has values in the category of locally free &s-modules.

41.e., a category having the data and satisfying the axioms of a Tannakian k-linear category, with
End(1) = k, but without the requirement of existence of a fiber functor.
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Further Results

* Super representations At the end of [D71, 1990], Deligne briefly discusses the
case of the (tensor) category of finite dimensional super vector spaces over k. He
comes back to this in [D100, 2002], where, assuming k algebraically closed, he
characterizes k-tensor categories of ®-finite generation which are equivalent to
a category of finite dimensional super representations of an affine super group
scheme over k by the fact that any object is annihilated by a suitable Schur
functor, a condition satisfied for example if 7 has only finitely many simple
objects (in the non super case, exterior powers suffice). Here the dimension of an
object V of .7 is that of w (V) over K, for a fiber functor w on .7 with values on
K -vector spaces, K an extension of k.

e The symmetric group S; The Tannakian formalism can be viewed as a techique
of construction of groups (or group-like objects), which is reminiscent of that
of the construction of schemes (or algebraic spaces, or algebraic stacks) by
representing functors. Mumford-Tate groups, differential Galois groups (dis-
cussed at the end of [D71, 1990]), and, most importantly, motivic Galois groups
(see, e.g., Sect.9.2 “Mixed Tate Motives”, (b) below) are classical examples.
In [D106, 2007], an article with an intriguing title, Deligne gives an exotic
illustration of this philosophy. Fix a field k of characteristic zero. For ¢t € k,
Deligne defines a category denoted Rep(S;), playing the role of the category
of k-linear representations of a symmetric group S; on ¢ letters. The category
Rep(S;) is k-linear (Hom’s have a k-linear structure, and the composition is k-
bilinear), pseudo-abelian (= additive and karoubian: idempotents are projections
on direct summands), and is endowed with a k-bilinear tensor product satisfying
the usual compatibilities with the ACU data (associativity, commutativity, and
unity), which is rigid,*? with End(1) = k. Moreover, if ¢ is not in N, Rep(S;) is
abelian and semisimple (in particular, is a tensor category).

The category Rep(S;) is deduced by linear extension via Z[T] — k, T +— f,
from a universal Z[T ]-linear category Rep(S7), whose definition is reminiscent
of Grothendieck’s definition of Chow motives: one starts with the category %
having for objects the finite sets U, and morphisms from U to V the free Z[T ]-
module generated by gluing data U C C O V (and a certain combinatorial
formula for the composition of morphisms, see (loc. cit., 2.12); then Rep(St)
is defined as the additive, pseudo-abelian envelope of €. If ¢ € k is an integer
n > 0, and Rep(S,, k) denotes the category of k-linear representations of the
symmetric group S,, on n letters, Deligne constructs a functor

Rep(S;) — Rep(Sy, k),

sending the finite set U to the permutation representation of S, on the set of
injections from U to {1, --- , n}. This functor induces an equivalence from the

431.e., dual objects exist and satisfy the same axioms as in a tensor category.
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quotient of Rep(S;) by the ideal of negligible morphisms.** For ¢ not an integer,
irreducible objects of Rep(S;) are classified, and their dimensions calculated.
Similar results for orthogonal and general linear groups are discussed (essentially
due to Wenzl [262] in the orthogonal case). In the case of general linear groups,
the dimension formulas for the irreducible objects of the analogous category
Rep(GL(t)) involve polynomials described in Deligne’s work on the exceptional
series [D82, 1996] (see Sect. 10).

e Characteristic p > 0 Quite recently, Deligne studied Tannakian categories
over a field k of characteristic p > 0 [D116, 2014]. He proved that, given
a finite family (V;);e; of semisimple objects in such a category .7 such that
> (dim(V;) — 1) < p, then ®;¢;V; is semisimple. This generalizes a result of
Serre, for .7 the category of representations of a smooth affine group scheme
over k.

9.2 Periods

Deligne promoted the idea®> that, rather than sticking to Grothendieck’s conjectural
construction of an abelian category of motives, one should instead exploit what is
sometimes called the philosophy of motives, i.e., the rich expected compatibilities
between cohomological realizations of algebraic varieties. We have already men-
tioned aspects of this in his theory of absolute Hodge cycles (Sect. 4.4) and his proof
of the Weil conjecture for K3 surfaces (Sect.5.3). Very roughly, his work consists
of two (closely related) main contributions.

Values of L-Functions at Critical Integers

In [D43, 1979], Deligne defines the notion of critical integers n for a pure motive
M over Q with coefficients in a number field E, and gives a conjectural formula
for the value of the L-function of M at such integers in terms of certain explicit
periods, up to multiplication by (unknown) elements of E*. Motive in loc. cit. is
taken in a loose sense: M appears through its realizations ¢ (M), .7 being an £-
adic (Hy), Betti (Hp), or de Rham (H,g) realization. For E = Q, a typical example
is furnished by a proper smooth scheme X/Q, and M = H'(X)(m), for m € Z,
whose realizations are Hy(M) = H'(X ® Q, Q¢(m)) (with its Galois action),
Hp(M) = H' (X(C), 2mi)"Q) (with its Hodge structure), Hyr (M) = HéR(X/Q)
(with the shifted Hodge filtration F(m), cf.(47)). Another typical example is the
motive M (f) (over Q, with coefficients in K) associated by Scholl to a cusp form
f (see the end of Sect. 6.1).

“e., f: X — Y such that Tr(fu) = Oforallu : ¥ — X.
4Developed in [D76, 1994], but used by him and other authors much earlier.
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The L-function of a motive M over Q is the function of s € C defined by the
Euler product

L(M,s) =l—[Lp(M, 5), (179)
where p runs through all places of Q, including oo, and
Ly(M,s) =det(l — Fpt, Hg(M)IP);:Ip,S (180)

for p finite, £ # p, I, denoting the inertia subgroup of a decomposition group
at p of Gal(Q/Q) acting on Hy¢(M) and F), € Gal(Q/Q) a geometric Frobenius,
and L (M, s) is a product of I'-factors depending on the Hodge decomposition
of Hp(M) ® C, together with its involution Fs, defined by complex conjugation.
One assumes that (180) has coefficients in Q and is independent of £ (this is the
case, by the Weil conjecture, if M = H'(X)(m) as above, if X has good reduction
at p, but unknown otherwise). Whatever the notion of motive which is adopted,
the Dirichlet series defined by (179) converges for Z(s) sufficiently large, and one
assumes that it admits an analytic continuation to C, and*® satisfies a (conjectural)
functional equation of the form A(M,s) = ¢(M,s)A(MY,1 — s), where M" is
the dual motive (of realizations the duals of the realizations of M), and the constant
e(M, s) is (up to a power of v/—1) a product of local constants of the form (146),
i.e., the product of a constant by an exponential function.

Deligne defines n € Z to be crifical for M if neither Lo (M, s) nor Loo(MY, 1 —
s) haveapoleats = n. As Loo(M(n),s) = Loo(M, s +n), n is critical for M if an
only if O is critical for M (n), which turns out to mean that the Hodge numbers 17?
of M(n), for p # g are nonzero only for (p < 0, > 0) or (p > 0,9 < 0), and
Fy actson HP? by 1 if p < 0, and —1 if p > 0. For example, for M = Spec Q,
so that L(M, s) = ¢(s), n is critical if and only if n is even > 0 or odd < 0.

For a motive M, the periods of M are the numbers (w, c¢), for € Hir(M)
and ¢ € Hg(M)Y (for M = H(X) as above, w € HéR(X), and ¢ defined by
y € H;(X,Q), this is fy ). Suppose 0 is critical for M. Deligne then calls M
critical, and defines a period ¢ (M) in the following way. Let H; (M) denote the Q-
subspace of Hp (M) fixed by Fs. As Ois critical, and F, exchanges H?'? and H?'?
for p # g, its dimension d (M) is equal to that of the Q-vector space H jR (M) :=

(Hgr(M)/FP. Consider the inverse of the period isomorphism (a special, simple
case of (48)):

I:Hp(M)®C > Hyp(M)® C. (181)

46 Assuming that the local F-semisimplified representations of the local decomposition groups are
compatible, cf. (Sect. 6.2, (a)).
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It induces a composite isomorphism
I Hf(M)®C — Hp(M)® C > Hig(M) ® C — H,(M)®C,  (182)
which is defined over R. Then Deligne defines ¢ (M) as the determinant
ct (M) = det(™), (183)

calculated in rational bases of H;(M ), HJR(M). This is an element of R*, well
defined up to multiplication by an element of Q*. Deligne conjectures (loc. cit.,
1.8):

L(M,0)=cT(M) (184)

in R*/Q*. A similar (more general) conjecture is formulated for motives over a
number field k with coefficients in a number field E (loc. cit., 2.8, 2.9). Deligne
shows that the conjecture is compatible with the functional equation of the L
function and the Birch and Swinnerton-Dyer conjecture. He proves it for Artin
motives (as a consequence of results of Siegel), and motives M (f) attached to
modular forms (from classical results on Eichler integrals), though he makes no
attempt to define M (f) as a Grothendieck motive—which was later tackled by
Scholl.

In (loc. cit., 8), Deligne examines avatars of his conjecture for motives M over a
number field k with coefficients in a number field E, and of rank 1, i.e., such that
the rational Betti realization Hp (M) is of dimension 1 over E. He first conjectures
the general shape of these motives. Namely:

Conjecture 4

(1) For any algebraic Hecke character x of k with values in E, there is associated
with x a motive M (x) over k, with coefficients in E, and of rank 1, such
that for any finite place A of E, the A-adic realization H; (M (x)) (an Ej-
vector space of dimension 1) has its Galois action given by x, i.e., for any
closed point x of Spec(&}) where both A and the conductor of x are invertible,
Tr(Fx, Hy(M(x))) = x(x) (where F, is a geometric Frobenius). The motive
M () is characterized up to isomorphism by this property.

(i1)) Every motive over k with coefficients in £ and of rank 1 is of this form.

Deligne also gives an explicit (conjectural) formula for the Hodge filtration of
the de Rham realization of M (x). The primitive part of the middle dimension
cohomology of a Fermat hypersurface gives rise to such motives of rank 1.
Unraveling the period conjecture (loc. cit., 2.8, 2.9) in this case led him to formulate,
with Gross, a formula relating, for certain subHodge structures (of the cohomology
of a smooth, projective variety over Q) with multiplication by a finite abelian
extension of Q, the periods with products of values of the I" function ([105], p. 205).
A weak form of this conjecture was proved by Maillot and Roessler [188]. These
results were recently revisited and improved by Fresan [94].
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The conjectural formula (184) (and its generalization just mentioned) raised
the questions of formulating analogues for the leading terms of L-functions at
not necessarily critical integers, and eventually led Beilinson to his celebrated
conjectures [20]. Soulé reported on this at the Bourbaki seminar [241]. Shortly
before the oral exposé, Deligne wrote him a letter [76], in which he explained how
to rephrase Beilinson’s conjectures using extension groups of (conjectural) mixed
motives, instead of K -theoretic invariants. Scholl [229] showed how to give a unified
formulation in this setup of both Beilinson’s conjectures and Deligne’s conjec-
ture (184) (and its generalization by Bloch [36] and Beilinson [23]). An alternative
approach was to use Bloch’s higher Chow groups instead of extensions of mixed
motives, as described in [81]. On the other hand, the Q* indeterminacy in (184)
attracted great attention, leading to the motivic Tamagawa number conjectures of
Bloch and Kato [38], involving Fontaine’s theory of p-adic period rings. As for the
Beilinson’s conjectures, they were reformulated by Fontaine and Perrin-Riou in the
language of mixed motives, see Fontaine’s Bourbaki report [93], and Flach’s survey
[92] for an overview of further conjectures and results in connection with Iwasawa
theory and Stark’s conjecture.

Mixed Tate Motives

The search for the definition of a suitable category of mixed motives, forming an
analogue of the category of mixed Hodge structures, initiated by Deligne in his
letter to Soulé mentioned above, generated a huge amount of work during the past
30 years. A definition using absolute Hodge classes as correspondences was studied
by Jannsen [136], and, independently, and in a less precise but more flexible form,
by Deligne in [D69, 1989], which brought new inputs and ideas.

This long monograph has two main parts. The first one (discussed in (a)) presents
the general setup needed to study the motivic fundamental groups considered in the
second one (discussed in (b)). Due to the contributions of several people, some of
its imprecise definitions have now been made rigorous and related conjectures have
been proven. We will give a brief update in (c).

(a) Mixed motives: definitions and conjectures Deligne “defines” and works
with mixed motives not just over Spec(Q), but over more general bases S, like
Spec(k) for k a number field, or a Zariski open subset of the spectrum of its ring of
integers, or a smooth scheme over Z, and also takes into account integral structures.
Over Q, as in [136], the starting point is the notion of a system of realizations
(Mp, MyRr, M¢, Mcyis, p) and comparison isomorphisms between them, satisfying
a number of compatibilities, similar to the systems of realizations (Hp(M), ---)
considered above, except that these realizations are not necessarily pure, but mixed,
i.e., equipped with a weight filtration, making a mixed Hodge structure on the Betti
side, and satisfying the expected conjectural properties with respect to the action
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of Frobenius on the ¢-adic side.*’ Deligne shows that systems of realizations form
a Tannakian category, and “defines” the category of (mixed) motives over Q as the
full subcategory generated by sum, tensor product, dual, and subquotient from the
systems of geometric origin (he also “defines”, in the same vein, the generalizations
mentioned above). The quotation marks come from the fact that no definition is
given (or even suggested) for “of geometric origin”. Despite (and often, because
of) this imprecision, the notion turned out to provide a useful guideline, suggesting
conjectures, certain consequences of them being amenable to a proof. In this respect,
basic examples of “lisse” motives over Spec(Z) with “integer coefficients” (or
“integral structure”) are the Tate motives Z(n) = Z(1)®" (sometimes denoted Q(n),
the integral structure being omitted from the notation). Deligne studies torsors under
Tate motives, i.e., extensions of Z by Z(n), and, more generally, iterated extensions
of Tate motives, examples of which appear in motivic fundamental groups and their
Lie algebras. In particular, for each n > 2, he (unconditionally) constructs a system
of (lisse) realizations of a canonical torsor under Z(n)

Pi, € H'(Spec(Z), Z(n)), (185)

which plays a crucial role in his study of the fundamental group of P! — {0, 1, co}.
Its Betti realization is —(n — 1)!¢(n) + (2mwi)"Z. He shows that it is of torsion for
n even, of order the denominator of é;“(l — n) (a property related to Kummer’s
congruences on Bernoulli numbers).

Beilinson’s conjectural formalism in ([23], 5) suggested to Deligne the following
conjectures, which, despite their imprecise form, turned out to have both striking
and verifiable consequences:

Conjecture 5

(1) Let k be a number field, S an open subset of the spectrum of the ring of integers
of k. Then, forany n > 1,

Ext'(Q(0), Q(n)) = K2,-1(5) ® Q, (186)

where the left hand side is taken in the abelian category of lisse motives over S.
(i) In the abelian category of lisse motives over Spec(Z), we have

dimg Ext' (Q(0), Q(n)) = 1 (187)

for n odd > 3, with the extension defined by P; , (185) as a generator, and

Ext' (Q(0), Q(n)) =0 (188)

otherwise.

4TThe crystalline data and axioms in loc. cit. are in a rudimentary form, reflecting the status of the
p-adic comparison theorems at the time; Deligne made a caveat on this.
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By the known structure of K;(Z) these conjectures are compatible for k = Q.
They could not really be tackled, because of their formulation, involving Deligne’s
“definition” of mixed motives. However, Deligne introduced a smaller category than
that of all lisse motives over Spec(Z), namely the full subcategory 7~ whose objects
M are successive extensions of Tate motives Q(n), i.e., (because of the structure of
Z.(n)qR) such that, for alln € Z, gr‘LVZHHM = 0 and gr%nM is a sum of copies of
Q(n), where W is the weight filtration. This category is a Tannakian category, and
although not being more precisely defined than the previous one, it was later given
a rigorous construction, see (c). As any Tannakian category, it has a fundamental
group G = 7(7) (defined in [D71, 1990], see the end of Sect.9.1, using the
language of algebraic geometry in Tannakian categories). This is an affine .7 -group
scheme,*8 which is an extension

0—-U—->G—->G,—0, (189)

where U is the pro-unipotent radical. The natural grading of Mg for M in T
makes its de Rham realization G4r a semidirect product G, - Ugg. From (187)
Deligne deduces that the Lie algebra of Uyg is the completion of a graded Lie
algebra Lieg, Usjgr = @¢Lie U 5 r» generated by one element for each odd degree
k > 3, and he conjectures that it is a free Lie algebra.

(b) Motivic fundamental group of P! — {0, 1, oo} Given a scheme X separated
and of finite type over Q (or, more generally, a number field k), it is tempting to try
to define a motivic fundamental group 71 (X), at least in terms of a compatible
system of realizations. However, there are obvious obstacles: (i) the classical
fundamental group 71 (X (C), b) is in general too noncommutative to be encoded
in cohomological data: the seemingly closest approximations of it amenable to
such an encoding are its nilpotent quotients (studied from a Hodge theoretic or
£-adic viewpoint by Deligne-Morgan—Sullivan, cf. Sect. 5.6 “First Applications”,
Q¢-homotopy type); (ii) how to make sense of a “motivic” choice of base-points
and loops.

Let X be a proper, smooth, geometrically irreducible scheme over Q, and let
X = X — D the complement of a divisor with normal crossings. Assuming that
H'(X, 0) = 0, and that we are given a base-point x € X (Q), Deligne constructs a
pro-system of compatible realizations

X, Nmor = (T1(X, X) oD N =1 (190)
For example, the Betti realization of 7 (X, x)\M) is 7y := 71 (X(C), x)[Malzun,

with the integral structure given by the congruence subgroup image of
71(X(C), x)'™ in 7 (Q). Here, for a nilpotent group I, I'*2U" denotes its

481 e., the datum, for every fiber functor w on a scheme S, an affine group scheme G, on S,
functorial in w, and compatible with base change S’ — S.
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unipotent algebraic envelope over Q, where for a group A, AV is the largest
torsion free quotient of AN), with AN := A/Z"1(A), A = Z(A) D Z*(A) D

- the descending central series. Representations of the de Rham realization
correspond to vector bundles on X with an integrable connection which is regular
(cf.Sect.3.1 “Higher Dimension: The Riemann—Hilbert Correspondence”) and
nilpotent along D, i.e., has nilpotent residues along the branches of D.

When X is a curve, and D consists of Q-rational points, Deligne explains how
to give a motivic meaning to the local monodromy around the points of D. Starting
with the observation that a “simple loop” around y € D(C) is only “well defined”
when its base point b is “close” to y, he introduces a notion, which since then has
turned out to be quite fruitful and popular, namely that of tangential base point: the
local monodromy at a point y € D(Q) is a morphism (in the Tannakian category of
realizations) from Z(1) to 7 := proj limy, 71 (X, b)gl\(]))t, where b is a tangential point
at y (the datum of a non zero tangent vector). For X = PJ, Deligne shows that each

m1(X, x);i]))t is an iterated extension of (systems of realizations of) Tate motives and
7 a pro-unipotent group scheme in this Tannakian category. He finally shows that,
for D = {0, 1, oo}, the torsors defining these successive extensions are precisely the
P1 s (185).

The construction of the Pj’s (k > 2) involves the classical polylogarithm
function

Lix@) =Y ;k. (191)

n>1

These functions have a long history (see Oesterlé’s Bourbaki report [205]). Their
relation with higher regulators and K -groups, discovered by Bloch [35], and their
relations with mixed Tate motives and values of zeta (or multizeta) functions at inte-
gers have since then been the focus of an extremely active line of research, in which
many arithmeticians have participated (Beilinson, Bloch, Deligne, Goncharov,
Ihara, Levine, Soulé, Zagier, to mention only a few names). An important conjecture
in this domain, due to Zagier, was re-interpreted by Beilinson and Deligne [D78,
1994] in motivic terms. A weak form of this conjecture was established in an
unpublished joint work by Beilinson and Deligne (Motivic polylogarithm and
Zagier’s conjecture, 1992). A detailed exposition is given by Huber-Wildeshaus
[118, 119]. This weak Zagier conjecture was independently proved (by a different
method) by de Jeu [59].

(c) Update Thanks to the work of Levine and Voevodsky, the problem of giving
a rigorous definition of the Tannakian category 7 of (lisse) mixed Tate motives
over Z (or an open subset of the ring of integers of a number field) could be
solved. Deligne and Goncharov explain how in [D102, 2005]. First, let k be a
field of characteristic zero. Let DM(k) be the triangulated category of motives
constructed by Voevodsky (that Levine has shown to be equivalent to that which
he constructed independently), and DM(k)( the category deduced by tensorisation
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with Q. It contains Tate objects Z(n) and admits operations of tensor product and
taking a dual. Let DMT(k)q be the triangulated subcategory of DM(k)q generated
by the Q(n)’s. Suppose now that k is a number field. The vanishing conjecture of
Beilinson-Soulé, which is known in this case (from Borel’s work on the K-theory
of number fields), can be reformulated as

Hom’(Q, Q(i)) =0 (192)

fori > O and j < 0 (Hom taken in DM(k)q). It follows (cf. Sect. 5.8 “t-Structures™)
that DM T (k) admits a t-structure, whose heart is an abelian category

MT (k) (193)

consisting of iterated extensions of Q(n)’s, called the category of mixed Tate motives
over k (this part is due to Levine [175]). It is shown in [D102, 2005] that it is
Tannakian, and it has the realizations*” and enjoys the properties stated in [D69,
1989]. In particular, the analogue of (186) is true, namely

Ext' (Q(0), Q(n)) = K2, -1 (k) ® Q, (194)

where the left hand side is taken in the category MT (k). Moreover,

Ext*(Q(0), Q(n)) = 0. (195)

The category MT(Z) of (lisse) mixed Tate motives over Z (resp. that of mixed
motives over an open subset of Spec(k)) was defined in [D102, 2005] as a certain
Tannakian subcategory of MT(Q) (resp. MT(k)). With this definition, Deligne’s
conjecture of freeness of the graded Lie algebra of the de Rham realization of the
corresponding unipotent group U could be proven (loc. cit., 2.3), as a consequence
of (195).

The mysterious relations between MT(Z) and the motivic pro-unipotent funda-
mental group (P(l2 — {0, 1, 00})mot have recently been elucidated by Brown [46]
(see also Deligne’s Bourbaki report [D113, 2012], and Brown’s Seoul ICM talk).
He proved the following conjecture of Deligne:

Conjecture 6 For X = Pé — {0, 1, o0}, MT(Z), as a Tannakian category, is
generated by 1 (X)mot, 1.€., by the affine algebra of a certain motivic 71 (X, 0)mot-
torsor of paths 71 (X; 1, 0)mer from tangential points (1 at 0) to (—1 at 1), whose
algebra is an ind-object of MT(Z), see loc. cit. for a precise statement.

As an application, he proved a conjecture of Deligne and Thara on the outer action
of Gal(Q/Q) on the pro-¢-fundamental group of X, and a conjecture of Hoffman,

49Except for the crystalline ones.
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to the effect that multizeta values

1
(o) = 30 (196)

ny o
O<ky<--<ky 1 kr

(nj > 1, n, > 2) are Q-linear combinations of numbers of the form (196) where
each n; is equal to 2 or 3. Generalizations of all this, with P! — {0, 1, oo} replaced by
X = Gy, — uy for certain values of N were studied by Deligne in [D111, 2010]. For
N = 2,3, 4, or 8, the motivic fundamental groupoid P (X, {0, oo} U uy) is mixed
Tate over k = Q(un), has good reduction outside N, and generates the Tannakian
category of mixed Tate motives over k having good reduction outside N. However,
this generation statement is no longer true for many other values of N (e.g., N
prime and > 5, as shown by Goncharov [101]). Current work of Brown on multiple
modular motives [47] could shed a new light on the problem.

For the past 30 years this topic has been at the junction of many different lines of
research in analysis, geometry and number theory, and, more recently, turned out to
have deep connections with high energy physics (Feynman diagrams and integrals),
an interaction which is fast developing today.

10 Deligne’s Conjectures

We have already discussed some of them:

¢ 1-motives (Conjecture 1)

* Motives of rank 1 and Gross—Deligne’s conjecture (Conjecture 4)

* Du Bois complex (Conjecture 2)

¢ Absolute Hodge cycles (Conjecture 3)

¢ Companions conjecture (Sect. 5.9 “A Finiteness Theorem”)

¢ Values of L functions at critical points (184)

¢ The Deligne-Milnor conjecture (156)

¢ Mixed motives (Conjecture 5: (186), (187), (188), (195), Conjecture 6
(Sect. 9.2 “Mixed Tate Motives”, (¢))

Here are a few others.

* Deligne-Grothendieck’s conjecture on discrete Riemann-Roch in charac-
teristic zero
In SGA 5 [5], Grothendieck defined and studied homology in the context of
étale cohomology: for k algebraically closed, X/k separated and of finite type,
and ¢ a prime number different from p = char(k), and A = Z/{"Z, the
homology groups of X are the groups H;(X, A) := H (X, Kx), where Kx
is the dualizing complex, i.e., Ra'A for a : X — Spec(k). At the time,
the formalism was unconditional only for p = 0. For p > 0, it depended
on a number of conjectures (resolution, purity), which Deligne managed to
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get rid of in ([D39,1977], Th. finitude). Grothendieck’s definition superseded
that of Borel-Moore, and he showed how to use it to define cycle classes on
singular varieties, and prove their compatibility with direct images by proper
morphisms (see ([D39, 1977], Cycle), and [165]). Later in the seminar, he proved
the Grothendieck—Ogg—Shafarevich formula on curves. As recalled by Sullivan
[244], in the early 1970s, a conjectural common generalization in characteristic
zero (where wild ramification phenomena disappear) was proposed to him by
Deligne (who thought of using Hironaka’s resolution, as in Hodge theory), and
then forwarded to MacPherson, who solved it in [186] (without using resolution).
As mentioned in Sect. 7.3 “Surfaces”, the generalization to characteristic p > 0
is an open problem.

¢ Local terms of the trace formula for Frobenius twisted correspondences
The computation of the local terms of the Lefschetz—Verdier formula (SGA 5
IIT) [5] is in general intractable. Inspired partly by his fixed point formula with
Lusztig (Sect. 8.1 “A Fixed Point Formula”), and partly by Drinfeld’s work on
elliptic modules, Deligne conjectured a simple formula for these local terms, over
finite fields, provided that the given correspondence is twisted by a sufficiently
high power of Frobenius. After partial results by Pink and Shpiz, the conjecture
was proven by Fujiwara [96], using a contracting property of Frobenius in the
rigid analytic setting. A simpler proof (of a slightly more general result) was
obtained later by Varshavsky [251], using again a contracting property, but in the
algebraic setting, together with an argument of deformation to the normal cone.

¢ Deligne-Langlands’s conjecture
Let K be a nonarchimedian local field, with residue field Fy, G be a simple split
adjoint group over K, and .# an Iwahori subgroup of G(K). Let % (G) be the
set of isomorphism classes of irreducible admissible complex representations of
G (K) which admit nonzero vectors invariant under .#. Let G /C be the simply
connected complex group over C with root system dual to that of G. Deligne and
Langlands conjectured that there should be a bijection between % (G) and the
set S of pairs (s, N), with s semisimple in G¥(C), N € Lie(G" (C)), such that
sNs~! = ¢~'N, modulo conjugation by elements of G (C). The set S is the
set of isomorphism classes of F-semisimple representations of the Weil-Deligne
group ' W(K /K) (145) into GV (C).

This conjecture, a particular case of the local Langlands conjecture for the
unramified principal series, was proved by Bernstein and Zelevinski for G of
type Ap, and in the general case, in a modified form due to Lusztig ([178], 1.5),
by Kazhdan—Lusztig [150].

¢ The weight-monodromy conjecture
In ([D15, 1971], 9), Deligne considers an (analytic) projective morphism f :
X — D, where D is the unit disc in C, such that its restriction to the punctured
disc D* = D — {0} is smooth. Let t € D*, and let X be the pull-back of X
to a universal cover D* of D*. Then, as X is homotopically equivalent to X;,
H "(f( ,Z) = H"(X;,Z), and, by Grothendieck’s local monodromy theorem, a
subgroup of finite index of 71 (D*) acts unipotently on H" (X, 7). Up to passing
to a finite cover of D*, one can assume that X has semistable reduction, in which
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case a generator 7' of 1 (D*) acts unipotently, hence, for any n, N := logT :
H" (3? ,Q) — H" (3? , Q) is nilpotent. Under this assumption, Deligne asserts in
loc. cit. that, for each tangent vector u to D at {0}, one can define a mixed Hodge
structure H, on H" ()? , Z) (with weight filtration W and Hodge structures on
the graded pieces independent of ) such that N induces a morphism of mixed
Hodge structures

N:H,®Q— H,®Q(-1), (197)
and, forall 7,
N':ertFi(H, ® Q) = il (Hy ® Q)(—i). (198)

His original proof was not published. In [242] Steenbrink constructed the desired
Hodge structure H, and the morphism (197), but his proof of (198) was flawed. A
correct proof was made by Deligne [75], and, independently, by M. Saito ([221],
4.2.2,4.2.5).

This suggested to Deligne the following algebraic variant, in étale coho-
mology. Let (S, s, n) be a henselian trait, s a geometric point over s, S the
corresponding strict localization, and 7 a geometric point over the generic point
nur of S¢). Let f : X — § be a proper morphism, with strict semistable
reduction: X is regular and flat over S, X is smooth, and X is a strict normal
crossings divisor in X. Let £ be a prime number invertible on S. In this situation,
the following (a) had been conjectured since the late 1960s:

(a) The inertia group I C Gal(n/n) acts tamely on the sheaves of nearby cycles
RIV(Zy).
In view of the calculation of the tame nearby cycles in SGA 7 ([7], I), (a) is
equivalent to saying that I acts trivially.
It follows from (a) that / acts unipotently on R¥ (Z,), through its tame
quotient #y : I — Zy(1), so that on R¥(Qy) the action of o in I is
given by exp(Nt;(c)), for a (unique) nilpotent operator N : R¥(Qq) —
R¥(Q¢)(—1). In the early 1980s, (a) was still open, but Gabber discovered
the commutation of R¥ with duality, which implies that R¥Qy[d] is
perverse (d denoting the relative dimension of X/S). The nilpotent operator
N therefore defines a monodromy filtration M; of R¥ Q,, which gives rise
to a Gal(n/n)-equivariant spectral sequence

Eij = H'V (X;, g RUQy) = Hi+j(Xn, Qo). (199)

It was conjectured by Deligne that:

(b) The spectral sequence (199) degenerates at E>;

(c) (Weight monodromy conjecture) The abutment filtration of (199) on
H"(X;, Q) is the monodromy filtration (of the nilpotent operator N).
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For char(k) = 0, comparison theorems reduce the problem to k = C and
Betti cohomology, where (b) and (c) follow from the results of Steenbrink and
Deligne-M. Saito mentioned above.

Assume now char(k) = p > 0. Conjecture (a) was proved by Rapoport—
Zink ([215], 2.23). Imitating Steenbrink’s method, they re-write the E-term
of (199) as a sum of cohomology groups of m-fold intersections of components
of the special fiber, with d; induced by restriction and Gysin morphisms. When
k is finite, it then follows from Deligne’s main theorem in [Weil II] that (199)
degenerates at E, and the abutment filtration M on H" (X3, Qp) is the weight
filtration W of ([D46, 1980], 1.7.5) (cf. Sect.5.6 “Ingredients of the Proof™,
Weight monodromy theorem), up to shift, i.e., 1\7Ii = W,4i, hence the name of
(c), sometimes rephrased as purity of the monodromy filtration. It is in Rapoport—
Zink’s paper that conjecture (c) is mentioned for the first time (loc. cit., 1. 3 above
2.12).

The status of (b) and (c) is as follows.

(b) was proved by reduction to k finite by Nakayama [200], and, independently,
Ito [132].
(c) was proved in the following cases:

— for k finite, X/S coming by localization from a proper, flat scheme over
a smooth curve over k, with semistable reduction at a closed point, by
Deligne’s Theorem 25;

— in the general equicharacteristic p case, by Ito [133];

— for k finite and dim(X/S) < 2, by Rapoport—Zink (loc. cit., 2.13,2.23);

— for certain three-folds X, and certain p-adically uniformized varieties
X, [132, 134];

— for X, a set-theoretic complete intersection in a projective space (or in a
smooth projective toric variety), by Scholze [231].

¢ Operads
In a letter to Stasheff et al. [78], Deligne expressed the hope that, given an
associative algebra A over a commutative ring k, the complex

C* (A, A) = ®y>0Homg_moa (A®", A)
calculating (for A projective over k) Hochschild cohomology
HH*(A) = Extj:‘@Ao(A, A)

(a graded algebra equipped with an extra structure (a Lie bracket of degree
—1), making it a so-called Gerstenhaber algebra) should be an algebra over a
suitable operad ., a chain version of the little disks operad. This hope attracted
much attention, and was made true by several mathematicians (and different
methods). For an extensive report on this, see the featured review by A. Voronov
(MR1890736) on the article by McClure and Smith [185], giving a solution to
Deligne’s conjecture.
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¢ Exceptional Lie groups

In [D82, 1996], Deligne discovered strange uniformity and symmetry phenom-
ena in a list of virtual representations of the automorphism group G of a split,
adjoint group GO over Q of one of the types A1, Az, G2, D4, F4, E¢, E7, Eg.
These representations are zero, or irreducible up to sign, and they include the
trivial representation and the adjoint representation. The symmetry properties
are relations in the Grothendieck group of representations of G, which involve
exchanging k and —(1/6) — k, where k = @ (a, ), for @ the Killing form on the
dual of the Lie algebra of a maximal torus, and « the longest root.>? Moreover, the
dimensions of these representations are rational functions in A whose numerators
and denominators are products of linear factors,>! where A = 6a, fora = k or
a = —(1/6) — k. To explain these phenomena, he conjectured the existence
of a semisimple abelian rigid>? tensor category %; over Q(t), having certain
additional data (action of a certain Lie algebra g on objects of %;), such that, in a
suitable sense, the category of representations of G would be a specialization of
6 att = a.

This conjecture is still open. Computational evidence was given by Cohen
and de Man [55]. Further uniformity properties in the behavior of the above
exceptional series — with the super group SOSp(1, 2) added — were established
by Deligne and de Man [D83, 1996]. In [D99, 2002], Deligne and Gross put these
results into a new perspective, by organizing the groups of the exceptional series
into a magic triangle, whose entry at a pair H C K is the centralizer G of H in
the automorphism group of Lie(K), a generalization of Freudenthal-Tits’s magic
square. According to Deligne,> work of Dylan Thurston suggests that the above
conjecture is false, as its analogue for some other lines of the magic triangle is.

11 Expository Articles

Work of P. A. Griffiths [D10, 1970]

Non-rational unirational varieties (Artin and Mumford) [D14, 1970]
Modular forms and representations of GL(2) [D23, 1973]

Elliptic curves (after J. Tate) [D32, 1975]

Diffeomorphisms of the circle (Herman) [D38, 1977]

Introduction to étale cohomology [D39, 1977]

Cubic Gauss sums and coverings of SL(2) (Patterson) [D41, 1979]

50k is the inverse of the dual Coxeter number 4"

3! For the adjoint representation, such formulas had been found by P. Vogel; according to Deligne,
that was the beginning of the story.

e, objects have duals, hence a dimension with value in End(1) = Q(¢).
53Private communication, June 2017.
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Fundamental group of the complement of a plane nodal curve (Fulton) [D44,
1979]

Faltings’s proof of the Mordell conjecture [D56, 1983], [D61, 1985], [D62, 1985]
Drinfeld’s modules [D67, 1987]

Grothendieck’s main ideas [D87, 1998]

Quantum fields and strings [D88, 1999], [D89, 1999], [D90, 1999], [D9I1, 1999],
[D92, 1999], [D93, 1999], [D94, 1999], [D95, 1999]

The Hodge conjecture [D104, 2006]

Voevodsky’s motivic cohomology [D110, 2009]

F. Brown’s work on multizeta values [D113, 2012]
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Citation

The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2014 to Yakov G. Sinai, Princeton University and Landau Institute for
Theoretical Physics, The Russian Academy of Sciences

for his fundamental contributions to dynamical systems, ergodic theory, and mathematical
physics

Ever since the time of Newton, differential equations have been used by math-
ematicians, scientists and engineers to explain natural phenomena and to predict
how they evolve. Many equations incorporate stochastic terms to model unknown,
seemingly random, factors acting upon that evolution. The range of modern
applications of deterministic and stochastic evolution equations encompasses such
diverse issues as planetary motion, ocean currents, physiological cycles, population
dynamics, and electrical networks, to name just a few. Some of these phenomena
can be foreseen with great accuracy, while others seem to evolve in a chaotic,
unpredictable way. Now it has become clear that order and chaos are intimately
connected: we may find chaotic behavior in deterministic systems, and conversely,
the statistical analysis of chaotic systems may lead to definite predictions.

Yakov Sinai made fundamental contributions in this broad domain, discovering
surprising connections between order and chaos and developing the use of prob-
ability and measure theory in the study of dynamical systems. His achievements
include seminal works in ergodic theory, which studies the tendency of a system to
explore all of its available states according to certain time statistics; and statistical
mechanics, which explores the behavior of systems composed of a very large
number of particles, such as molecules in a gas.

Sinai’s first remarkable contribution, inspired by Kolmogorov, was to develop
an invariant of dynamical systems. This invariant has become known as the
Kolmogorov—Sinai entropy, and it has become a central notion for studying the
complexity of a system through a measure-theoretical description of its trajectories.
It has led to very important advances in the classification of dynamical systems.

Sinai has been at the forefront of ergodic theory. He proved the first ergodicity
theorems for scattering billiards in the style of Boltzmann, work he continued with
Bunimovich and Chernov. He constructed Markov partitions for systems defined by
iterations of Anosov diffeomorphisms, which led to a series of outstanding works
showing the power of symbolic dynamics to describe various classes of mixing
systems.

With Ruelle and Bowen, Sinai discovered the notion of SRB measures: a rather
general and distinguished invariant measure for dissipative systems with chaotic
behavior. This versatile notion has been very useful in the qualitative study of some
archetypal dynamical systems as well as in the attempts to tackle real-life complex
chaotic behavior such as turbulence.

Sinai’s other pioneering works in mathematical physics include: random walks
in a random environment (Sinai’s walks), phase transitions (Pirogov—Sinai theory),
one-dimensional turbulence (the statistical shock structure of the stochastic Burgers
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equation, by E-Khanin—Mazel-Sinai), the renormalization group theory (Bleher—
Sinai), and the spectrum of discrete Schrodinger operators.

Sinai has trained and influenced a generation of leading specialists in his research
fields. Much of his research has become a standard toolbox for mathematical
physicists. His works had and continue to have a broad and profound impact on
mathematics and physics, as well as on the ever-fruitful interaction of these two
fields.
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Ya. G. Sinai

I was born on the 21st of September, 1935 in Moscow to a family of scientists.
My mother, Nadezka Kagan, was a virologist. She worked on vaccines against
encephalitis and died in November of 1938 after she became infected by the
vaccine on which she was working. My father was a professor of microbiology in
one of Moscow’s medical institutions. He participated in World War II working
as an epidimeologist from 1941 through 1945. He married again in 1940, and my
stepmother, E.N. Levkovich, was also a famous virologist. I lived under her warm
care for many years. She sometimes took me to her laboratory, which was staffed
completely by women. Therefore, for many years I believed that biology was purely
a women’s field.

I lived in a big family, headed by my grandfather, V.F. Kagan. He was a
mathematician working on the foundations of geometry. He also did a great deal of
work for the popularization of Lobachevsky geometry and the Lobachevsky proof
of the fifth Euclid postulate.

At the beginning of the Twentieth Century, our family lived in Odessa, a major
city in Ukraine. My grandfather worked in a college there, where he gave the first
lecture course on Einstein’s special relativity theory. The course was very popular
among students, some of whom later became leading physicists in the Soviet Union.

V.F. Kagan was also seriously involved in mathematics and physics education. He
served as the chief editor of the journal, “Mathesis”, which was oriented to younger

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/
978-3-319-99028-6_5) contains supplementary material, which is available to authorized users.
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students. He also conducted research during that time. (I recently saw a reference to
one of his papers from 1916, which was quoted in a current research paper.)

I have one brother, G.I. Barenblatt. He is a well-known expert in fluid dynamics
and the theory of fractures and the author of several monographs on scaling methods
in fluid dynamics. His first thesis was on turbulence and was written under the
supervision of A.N. Kolmogorov.

In the beginning of the 1920s, our family moved to Moscow. My grandfather had
become a professor in the Mathematics Department of Moscow State University
and also served as the Chair of Differential Geometry. Once, when I was about 15
years old, my grandfather decided to teach me mathematics and gave me a lecture
on quaternions. He then asked me to write a composition on them. I assume my
results were unsuccessful because his attempts were never repeated.

During my school year I participated in several Oympiads, always without
success. (This might be useful for high school students who sometimes exaggerate
the role of Olympiads.)

Due to my grandfather’s strong support, I entered Moscow State University in
1952. (The gold medal I received after my graduation from high school apparently
was not enough!) The first lecture course that I attended made a strong impression
on me. It was on classical mechanics and was taught by N.G. Chetaev, a famous
expert in this field. My first junior thesis was written under his supervision. Another
popular professor there was E.B. Dynkin, who organized a working seminar for first
year students. It was attended by many people, including I. Girsanov and L. Seregin,
who both later became famous probabilists.

E.B. Dynkin gave me the first serious problem, which I worked on for the next
couple of years. Once it was solved, it became my first publication.

In 1957, A.N. Kolmogorov announced that he was giving a lecture course on
dynamical systems. In the beginning, he explained von Neumanns theory of systems
with pure point spectrum using a purely probabilistic approach. I later found a
similar approach in a book written for engineers by Fortet and Blanc-Lapierre.
The whole theory looked extremely beautiful. People believed at the time that the
theory of dynamical systems with continuous spectrum would be some extension of
von Neumann’s theory of systems with pure point spectrum. However, Kolmogorov
surprised us one day by showing the definition of the entropy of dynamical systems.
Using modern language, one can say that he proposed the definition of entropy
of Bernoulli shifts and proved that Bernoulli shifts with different value of entropy
were metrically non-isomorphic. This was a great breakthrough. In a text that
Kolmogorov later submitted for publication, though, he introduced a new class
of dynamical systems which he called quasi-regular and provided a definition of
entropy for this class. (I shall not discuss his motivations.) Shortly after that,
V.A. Rokhlin proposed an example that showed that the entropy proposed by
Kolmogorov was not a metric invariant. Now it is easy to construct similar examples.
At that time, I was working on the definition of entropy which could be applied to
arbitrary dynamical systems. The text by B.M. Gurevich in this book explains many
details. Various publications of entropy can be found in the papers by Bunimovich,
Szasa, Simanyi, and Pesin, which are also in this book.
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I married my wife, Elena Vul, in 1956. She was also a mathematics student
in the same year with me at Moscow State University. Her father, B.M. Vul, was
a remarkable physicist who worked on semiconductors. We spoke many times of
various scientific problems.

Ya. G. Sinai with his friends in Tel-Aviv. (Photo: private)

Over the years I have been very fortunate to have scientific contact with
outstanding mathematicians in Moscow like .M. Gelfand, B.A. Rokhlin, V.I.
Arnold, S.P. Novikov, R.L. Dobrushin, R.A. Minols, V.E. Zakharov, F.A. Berezin,
D.V. Anosov, and others.

In 1973 I received an invitation to become a member of the Landau Institute
of Theoretical Physics. The Director of the Institute was I.M. Khalatnikov, a
former student of L.D. Landau. He attracted many physicists, mathematicians, and
mathematical physicists. The general atmosphere in the Institute was very friendly.
Every paper that was done by people in the Institute would be discussed in the form
of a Colloquium talk so that it could be understood by others.

At the current time, the IPPI (or the Institute of Information Transmission) plays
a big role in mathematical physics in Moscow. Its Director, A.P. Kuleshov, supports
the research of many mathematicians and physicists. It is quite common for Russian
mathematicians who are working in the West to give talks at the Institute during their
visits to Moscow. My seminar on problems of dynamical systems and statistical
physics continues to meet there during my stays there.

Over the past 50 years, [ have had many students and I am proud of all of them.
They have played an important role in my life.
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Prof. Sinai together with his students during the celebration of his 80th birthday party, 2015.
(Photo: private)

Today I am a professor in the Princeton University Mathematics Department.
I have many colleagues with whom I share warm scientific and personal contacts
there as well as at the Institute for Advanced Study.

Prof. Sinai in his office in Fine Hall, 2015. (Photo: private)
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I would like to thank L. Bunimovich, B. Gurevich, K. Khanin, D. Li, Ya. Pesin,
N. Simanyi, and D. Szasz for their excellent texts that were prepared specifically for
this edition.

Prof. Sinai near his house in Princeton, 2005. (Photo: private)

Haakon, The Crown Prince of Norway giving the Abel Prize to Prof. Sinai, 2014. (Scanpix)
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on Mathematical Fluid Dynamics ke

Carlo Boldrighini and Dong Li

Abstract We review some of the most remarkable results obtained by Ya.G. Sinai
and collaborators on the difficult problems arising in the theory of the Navier—
Stokes equations and related models. The survey is not exhaustive, and it omits
important results, such as those related to “Burgers turbulence”. Our main focus in
on acquainting the reader with the application of the powerful methods of dynamical
systems and statistical mechanics to this field, which is the main original feature of
Sinai’s contribution.

1 Introduction

One of the fundamental unsolved problems in mathematical fluid dynamics is
whether smooth solutions to the three-dimensional incompressible Navier—Stokes
System (NSS) can develop singularities in finite time. Sinai has a remarkable
intuition that the formation of finite time singularities is possible for the 3D
Navier-Stokes system: NSS without external forcing can be regarded a reasonable
approximation to the dynamics of a dry air in a big desert, and in deserts
such phenomena as tornados are possible due to purely kinematic mechanisms.
Mathematically speaking, the most notable difficulties of NSS are its non-locality
and super-criticality. The system is nonlocal due to the incompressibility constraint
and supercritical with respect to the basic energy conservation law. Super-criticality
can also be derived through a scaling analysis on the life-span of solutions.
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Over the years, Sinai and his collaborators have developed several original and
powerful methods to tackle many difficult wellposedness and regularity questions
in hydrodynamics. Unlike the usual practitioners of PDEs, his approach to these
problems is highly original, and his incredible technical power and remarkable
insight from dynamical systems has led to substantial progress on the understanding
of NSS at fine scales, which is the key to the global regularity conjecture.

The list of results surveyed below is certainly not exhaustive and only represents
a small fraction of his many important works. For example, we do not discuss
Dinaburg—Sinai’s Fourier space model of the NSS and Euler systems (see [15, 16]
and see also Friedlander—Pavlovic [22] for further developments), and we do not
include a detailed survey on Sinai’s ground-breaking work on Burgers turbulence,
stochastic hydrodynamics and further developments. Nevertheless, we hope that
what we report reflects his unique dynamical system perspective on mathematical
fluid dynamics. The topics selected here include: a geometric trapping method for
wellposedness and regularity of solutions to NSS [35], power series and diagrams
[36-38], complex solutions and renormalization group for the three-dimensional
NSS [32], bifurcation of solutions for two-dimensional NSS [33, 34] and stochastic
dynamics of two-dimensional NSS [18].

2 A Geometric Trapping Method for NSS

Consider the d-dimensional incompressible Navier—Stokes system on the periodic
torus T¢ = R4 /74,

u—+ w-Vyu=—-Vp+vAu, (t,x)e(0,00)x T,

V-u=0, (D
uli=0 = uo.
Here u = u(t,x) = (u1(t,x),...,uq(t,x)) represents the velocity of the fluid

and p = p(t, x) denotes the pressure. When v = 0 the system (1) becomes the
incompressible Euler equation. The first equation in (1) is just the usual Newton’s
law: the left-hand side describes the acceleration of the fluid in Eulerian frame,
whereas the right-hand side represents the force. The second equation in (1) is
the usual incompressibility (divergence-free) condition. It can also be regarded
a constraint through which the pressure gradient term emerges as a Lagrange
multiplier. To reduce the complexity of the system one can use the vorticity
formulation. In two dimensions, define w = V4 . u = —0y,U1 + Oy u2. Then
the equation governing w takes the form

oow~+ (u-Vyw =vAw, 2)
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where, under suitable regularity assumptions, # is connected to w by the Biot—Savart
law:

w= A"ty = (—A—lanw, A_laxlw) .

It is evident from the vorticity form that for smooth solutions the L”-norm [Jw]|, is
preserved in time for all 1 < p < oo in 2D. On the other hand, in three dimensions,
one can introduce the vorticity vector w = V x u for which the vorticity equation
takes the form:

ow—+ U -Vyw=(w-Vyu+vAw, 3
with
u=—-A"'V x w.

Compared with two dimensions, the vorticity stretching term (w - Vu) is the main
obstruction to global wellposedness in three dimensions. In the whole plane R? case,
the first existence and uniqueness results for weak solutions of (1) were obtained
in Leray’s thesis in 1933. For the three-dimensional whole space case Leray [30]
proved the existence of weak solutions. Hopf in [23] then obtained the existence of
weak solutions in arbitrary open subsets §2 of R”, n > 2. Ladyzenskaya [26] in
1962 proved existence and uniqueness of solutions for two-dimensional domains.
Since then many other strong methods were developed in [10, 39, 40, 42], providing
deep insights into the fine behavior of solutions to (1).

In [35], Mattingly and Sinai developed a novel geometric trapping method for
proving existence, uniqueness and regularity of solutions to the Navier—Stokes sys-
tem. To describe this method, consider the two-dimensional vorticity equation (2).
Expand the vorticity w in Fourier series:

wx, 1) = Y w0, x = (x1,x2)
keZ?

where wy denote the Fourier coefficients. Since w is real-valued, we have w_; =
wy. One can then write a coupled ODE-system for the modes wy (¢) as

d . k-ly 21012
twk+2m Z wy, Wi, = 4 vlk| wx, “)

)
2
d l1+h=k 12|

where [k| = \/k% R = (0, @) L — (@ 0y,
A more general version of (2) is the case where the Laplacian is replaced by the
fractional Laplacian |V|* with & > 0. Correspondingly, (4) can be generalized as:

L

d , k
Wk + 27 > wyw = —4xv|k|%wy. (5)

b
2
d l+=k I12]
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Without loss of generality one can assume wy = 0 since the mean value of w is
preserved by the dynamics.
The results obtained in [35] can be formulated as follows.

Theorem 1 ([35]) Let @ > 1 in (5). Suppose for some constant 0 < D < 00,
1l <r <o

lw(0)] < D Yk e 72\ {0}.

k|

Then one can find a finite constant D} > 0, depending only on (Dy, v), such that
any solution to (5) with these initial conditions satisfies

/

Dl 2
@] = s VkEZP\(0)

forallt > 0.

A few remarks are now in order. First, the main theorems stated in [35] are more
general and include the case with external forcing under suitable decay assumptions
on the Fourier modes which are uniform in time. By using some refined estimates,
Mattingly and Sinai also proved that the solutions become real analytic for t > 0
(i.e., lwe(r)| < const-e~ <Otk for s > f, > 0). Statements close to these were
also proved in [17, 21, 24], but the methods are quite different and more function
analytic in nature.

In the three-dimensional setting, one can introduce

u(x,t) = Z uk(t)ezmk'x,

keZ3

w(x,t) = Z wi (1)eXHkx

keZ?
By using (3), we obtain
d :
dr wg(t) = —2mi Z [(Mll ~h)wy, — (wy ~12)u12] — 4n2v|k|2wk
L +h=k

= 2mi Z [(Mll -k)wg, — (wy, ~k)u12] — 4712v|k|2wk,
i+l =k

where the second equality follows from the incompressibility condition. Similar
to the two-dimensional case, one can replace the Laplacian with the fractional
Laplacian |V|%, and obtain

d :
it wr(t) = —2mi Z [(ul1 ~k)wy, — (wy ~k)u12] — 4%y k| wy. (6)
L +lh=k
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For this nonlocal system, the following theorem was proved in [35].

Theorem 2 ([35]) Consider (6) with a > g If the initial data {wy(0)} are such
that for some 0 < D < oo, r > ;,

lwi (0)] < Vk e Z*\ {0},

D
k|’
then there exists a constant D' depending only on (D, r, ), such that for any t > 0,

/

lwi (2)] < Yk e Z>\ {0}.

lk|"
Remark One should note that « = 2 corresponds to the usual Navier—Stokes case.
Analogous statements can also be proved for that situation, provided the constant D
is sufficiently small, which will become a typical small data global wellposedness
result for 3D NSS. For large data global wellposedness, one can lower the constant
a > 2.5toa = 2.5 or even with some logarithmic damping of the symbol. All
of these difficulties are ultimately connected with the lack of globally coercive
quantities stronger than energy.

We now focus on the two-dimensional case and describe in more detail the
geometric trapping method of Mattingly and Sinai. Roughly speaking, the idea is
to consider a finite Galerkin system of coupled ODEs for the Fourier coefficients.
One can write a finite approximation of (5) abstractly as

i wi(t) = Br(w, w) — 472 v|k|% wy.

By using the basic enstrophy inequality

Y lw@?* <&, V>0,
k

one can trap the low modes, i.e., for any Ko > 0, there exists D (Kp), such that

Dy

e VI =Ko

lwi ()] <

One then defines a trapping region for all modes as

D
Q= {(wk) L wil < |k|1r, VO;&keZz}
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It is evident that the low modes {|k| < Ky} are already in the trapping region, and
the boundary of the trapping region is given by

| |

! , Y0k eZ? and equality holds for some k = k*} .

r

By choosing Dj large, £2 contains the initial data in its interior. Then one endeavors
to show that the dynamics will always trap the sequence of Fourier modes inside 2.
Geometrically speaking, it amounts to showing that the vector field on the boundary
082 always points into the interior of §2. More precisely one checks that for Ky
sufficiently large, if there are |k*| > Ko, with wg+ = “{D*“, (the case wyx = — |lg‘|, is
similar), then

t 0.
PR - <

By using the enstrophy estimate together with the trapping estimate, one can
estimate the nonlinear term as

D,
| Bi(w, w)(r)] < const-y/& - et -log |k*|.
Thus
d Dy « 9 1
i wi (1) . < const /& - -1 -log |k*| — 4 v|k*|r_a <0, (7

if Ko is chosen sufficiently large.

This concludes the trapping argument. One should note from (7) that the
restriction « > 1 is purely technical, and due to the fact that only enstrophy
conservation and L7°-type breakthrough scenario enter the argument. By using
more time integrability, one can obtain analyticity also for « = 1 (for global
wellposedness we do not need any constraint on « since 2D Euler is globally
wellposed by using [|w||Le).

One can also rephrase in typical PDE language the trapping argument of
Mattingly and Sinai, as a sort of maximum principle in Fourier space. It is a beautiful
geometric dynamical system proof, which has since been generalized and developed
to many other situations (cf. [2, 4, 11-14] and the references therein).

3 Power Series and Diagrams

In the seminal works [36-38], Sinai developed a power series and diagram
representation for the Navier—Stokes system. These works can be viewed as a
precursor to the renormalization group approach developed later. Consider the
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three-dimensional Navier—Stokes system (1), with viscosity v = 1 and on the whole
space R3. After the Fourier transform

vk, 1) = / u(x, e ** gy,
R3

it becomes a nonlinear non-local equation:

vk, 1) = e "1y (k, 0) + i /

t
IR [ o = K9] Pk )k ds.
0 R

®)

The incompressibility condition enforces v(k, t) L k for any k # 0. The operator
Py is the orthogonal projection to the subspace orthogonal to k. In this way the
pressure does not appear and we consider the space of functions {v(k): v(k) L k}
as the main phase space of the dynamical system defined by (1).

Classical (strong) solutions to (8) on the time interval [0, #p] are functions
v(k, 1), 0 <t < tg, such that the integrals

t
/ e—(z—s)lklzf vk — k', 8)| - [v(k', s)| dk'ds,
0 R3

are bounded for any 0 < ¢ < 7y and the left-hand side is equal to the right-hand
side. A more convenient (easily checkable), but stronger condition, is to require the
integrals

/ vtk =K', )| - [vk’, )| dk’
R3

to be uniformly bounded in s. The latter definition was adopted in [38].
Sinai considered (8) in the space of functions which can have singularities near
k = 0 or k = oo. The following space @ («, w) was introduced in [38].

Definition 4 {v(k), k € R3} € @ («, w) if for some constants 0 < C, D < o0,

e Ikl <L

(k)| <
|k1|) if |k| > 1.

The cut-off “1” for |k| can be replaced by any positive number. The parameters
« and w satisfy the inequalities @ > 2, w < 3. One can endow the space @ (o, w)
with a norm by taking the infimum of all possible C + D.

In [38], Sinai proved a short-time local existence theorem in the space @ («, w),
o > 2, w < 3. Namely, for any initial data (in the Fourier space) v(k, 0) € @ («, w),
there exists 7p > O sufficiently small, such that (8) admits a unique solution on
[0, To] in the space @ (¢, w). One should note that in this theorem, v(k, 0) is allowed
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to be an arbitrary complex (C3-valued) vector function. When v(k, 0) = v(—k, 0)
for any k € Z3, the corresponding velocity u(x, 0) is a R*-valued vector function.

In the space @(2,2) one can prove a small data global wellposedness result.
Namely, let v(k, 0) = Cl(kkl’zo), with sup; |C(k, 0)| < Cp and Cy is sufficiently small.
Then there exists a unique solution v(k, #) of (8) defined for all # > 0.

One can see the references [8, 28, 38] for short proofs of this theorem. Recently,
Lei and Lin [29] discovered a remarkable fact, that for Eq. (1) with v > 0 and on
RR3 one can have global wellposedness as long as sup, |C(k, 0)| < Cv, where C is
an absolute constant.

In [36], Sinai considered the space @ («, @) with « = 24€ and € > 0 sufficiently

small. Denote v(k,0) = C‘g{k,;o) where C(k, 0) is continuous everywhere outside
k=0,and |C(k, 0)|| L = SUPro |C(k, 0)] = 1. Introduce a one-parameter family
of initial conditions v (k,0) = Afk(llfx’o), where A is a complex-valued parameter.

For given A, the time of existence for the local solution will depend on A. More
precisely, the following theorem was proven in [36].

Theorem 5 ([36]) There exists a constant oo = Ao(o) > O depending only on o
such that if |A| = |AT 2| < Ao, then there exists a unique local solution in the space
@ (e, ) on the time interval [0, T.

To prove this theorem Sinai used the method of iterations. In terms of the

unknown Cx(k,t) = |k|%va(k,t), one can define the iterations C/&")(k, t) via the
formula

c (k, 1)

— Ae "PiCk, 0)

t (n—=1) ’ (n=1) s
+ ilkla/ e_‘k‘z(l_‘v) (k, CA (k—K', S))PkCA k', s) dkds. n> 1,
0

3 lk — k|« [k"]
with
Ok, 1) = Ae 1 C(k, 0).

By splitting into low and high frequencies, Sinai showed that if [A| < Ap(x) K
1, then ||C(")||oo < 2A for all n > 1, and the sequence of iterations (C™) is a
contraction. From the point of view of dynamical systems, the scalar X is a ruling
parameter in the current situation. In the same paper, Sinai then went on to construct
a power series for the solution Cy4 (k, t), namely:

1 D€
Catk, 1) = AC(k, 0)e ™ 13 AP/ eI (k. 5) ds, 9)

p=1 0
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where

2hi(k.s) = ilk|® / (k. C(k =K', 0) PC (K, 0)e K P=slk?
s2hy(k,s) =1

dk’
R k= i ’

s€ho(k, s)

5 k, hi(k — K, 51) PeC (K, 0) - e~ 6Dk =sIKP g
0 R3

|k_k/|0[|k/|0[
N / 4 / <k,C(k—k',o»thl(k’,sz)e*x'k*k"Z*(Hﬂ'k"zdk/]
S S )
0 297 s Ik — k| - [Kk/]e
and
pe
52 hpk,s)

s p-1 kohy 1 (k— Kk, P.C(K. 0 —(x—sl)|k—k’\2—s\k’\2dk/
:ilkl"‘~[/ Slzédﬁ'/ (ky hp—1( s1)) PrC(K', 0)e
0 R3

|k _ klla . |k/|ot
+/f€v;15d? / (k, C(k — k', 0)) Ph p_y (K, sp)e s KK P=(s=s) K g/
0 2 T k- k'le - [k'|e
s pre S poe
+ Z / 52 ds1/ 5,% dso
p1.p2=1 0 0
pitp2=p—1

/ (ks Iy (k=K' 1) Py (K sz)e-@—ﬂ>'k-k"z—“-m'k"zdk']
X .
®3 ke — K'Je - k|

Now use the ansatz i, (k, 5) = 52 [k|%gp (k+/s, s) and make the change of variables:
s1 = 581, 52 = 553, ky/s = k, K'/s = K. Then h,(k, s) = s2|k|*g,(k, s). The
system of recurrent relations governing the functions g, (k, s) then takes the form:

_ (k. C(*JF 0 Pre( b 0 R -IRE g
gitk,s) = i/ L. . ,
3 |k_k/|01,|k/|ut
22k, )
1 (k. g1((k = B30, - 50) - RC(E 0)em (=S k=R PR g
J— ~E g7 S
= / s7dsy / -
0 B k|
1 (]E’ C(];Jl;/, 0))Pigl(]2/\/§2’ ng)e_li—];/‘2_(1—52)‘1;/|2d£/
~E g~ S
+/ SzdSQ/ - . )
0 R |k —k'|¢
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and for p >3

gpk,s)

(k. g1 (k= K051, 550) RO B L 0= IR PP gy
/ 5 dslf
3 |k/|(1

S

k C(k k ,0) P 8- l(k \/Sz SS2)€ \k k|2_(1 Yz)\k |2dk/
S ds/
/ 2 2 3 |k_k/|a

=

plf 1’26
. / dn/ dvzf (k. gy (G — 51,5 - 51)-

p1,p2=1
pi+p2=p—1

~ N 2 2 -,
Praps (K52, s5y) - e~ 1SR P20 ] (10)

It follows from these recurrent relations that each g, (;, s) depends on the initial
conditions C (k, 0) via the sum of not more than b? 4 p-dimensional integrals where
b is some constant. The main assumption is that C(k, 0) is compactly supported in
{Ik| < Ro}, where Ry is a positive constant.

By using a sophisticated inductive analysis together with some combinatorics,
Sinai proved the following theorem.

Theorem 6 ([36]) The functions g, (k. s) satisfy the inequality:

%2

18, F. ) < Cp f(RDe 71,

where f(x) = min{x, )16} for x > 0, and Cp, < blbg for some constants 0 <
b1, by < oo depending only on «.

It follows that if Ar2 < by ! then the series (9) converges for every 0 # k € R,

In [37], Sinai analyzed in more detail the recurrent system (10) and introduced
diagrams, corresponding to each multi-dimensional integral in the series. Each
diagram is determined by a scheme, and any scheme is a sequence of partitions
of the set starting from [1,2,..., p + 1] = A©®. By using a deep analogy with
statistical mechanics, Sinai then estimated several classes of diagrams and showed
that the partition functions of short diagrams decay exponentially. In [37], one
can find a systematic approach to study and estimate short diagrams for large p.
This approach has a striking resemblance of the renormalization group method in
statistical mechanics.
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4 Complex Valued Solutions and Renormalization Group

Consider the Navier—Stokes system (1) on R? with viscosity v = 1. By using the
Fourier transform

Tk, 1) =/ u(x, e ** gy,
]R3

one obtains an equivalent non-local nonlinear system

Tk, 1) = e ¥k, 0) + i f

t
e~ =9Ik / (V(k — K, 5), k) POk, s)dk'ds,
0 R3

(1)
where Py is the solenoidal projection operator

(v, k)

k’
k|2

Pv=7—

and (-, -) denotes the scalar product
(a,by=a-b, ifa, beC.
Introduce the change of variable
vk, 1) = —iv(k,1).

Then in terms of v(k, t), the integral equation (11) now takes the form

vk, t) = eilklztv(k, 0) +/

t
=9Ik / (v(k =K', ), k) Po (K, )dK'ds.
0 R3

12)

This non-local integral equation is the main object of study. In general, R3-valued
solutions to (12) will correspond to complex solutions u(x, ¢) in (1). If one restricts
to the class of v(k, 0) such that v(k, 0) = —uv(k, 0) for all k € Z3, then v(k, 1) will
also be odd in k and such solutions correspond to R3-valued real (and physical) fluid
flows.

In [32], a Renormalization Group type method was developed to show that there
exists a class of R3-valued initial data v(k, 0) which are compactly supported such
that the corresponding solution to (12) blows up in finite time. The velocity field
u(x, 0) corresponding to v(k, 0) is, however, C3-valued. As such, these solutions do
not obey energy conservation and correspond to non-physical flows. Nevertheless
the behavior of these solutions in some sense resemble the forward cascade of
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Fourier modes and they are a show-case of some important fine structures of the
Navier—Stokes system.

‘We now review in more detail the results of [32].

Consider a one-parameter family of initial data in the form v (k, 0) = Avg(k),
where vo (k) will be a fixed profile and A is a positive parameter. The corresponding
solution to (12) can then be represented as a power series

t o0
vA(k,t)er*"k'Zvo(k)Jrf eIk a=s) > APk, ) | ds. (13)
0
p=2

Set gV (k, 5) = e~ vy (k). Substituting (13) into (12), we then obtain
§ (k) = /R {votk — K, k) Pevo e g
and for p > 2
gV (k,s) = /OS ds /R3(vo(k — K k) Prg PO, sp)e SR P =GR g

N
L R R N Y Y
0 R3

N N
. fodslfo dsy (g PV (k — k', s1). k)
4

p1+p2=
p1,p2>1

X PrgPD (K, 53)e~S—sDK=KP=(s=s2)K'1? g7 (14)

The initial data vy will be assumed to have support localized in a sphere around
some K© = (0,0, ko), ko > 1. The radius of the sphere is much smaller than k.
By a deep analogy with probability theory, the support of the functions g is then
expected to be localized about the point pK 0 — (0, 0, pko) with a fattened size
/P for large p. From these considerations, one can then introduce the change of
variable and ansatz:

k = pK(O) +/pY, h(P)(Y’ s) = g(P)(pK(O) + J/pY. s),
where the new variable Y typically takes values O(1). In all integrals over s, s

in (14), make another change of variables s; = s(1 — ié ), j = 1, 2. Instead of the
j
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integration over k', we introduce Y’ such that k" = pyko++/pkoY’. Denote y = 1;)1 .
Then we obtain from (14) the recurrent relation

1 Y’
KO, =p Y / Py hr)( 5)-
b 2 2 2] + b
prrp=p P1P2 /R o Vi-y
P1,p2>./P
on Y=Y Y
X (hPV( ,8),e3 + Y - (1+o0(1)),
N4 VP
where ez = (0, 0, 1). In coordinates one can write
) ) » FP(Y,s)
hp (Y7 S) = h1 (Y7 S),/’l2 (Ya S)’ . (15)
Jp

For large p the incompressibility condition (hP)(Y,s), k) = 0 enforces
VP, 5) + Vb () + O, 5) = 007112,

It follows that F?) = O(1) and the vector h‘P)(Y, s) is almost orthogonal to the
k3-axis for large p.
Make the ansatz

3
KO, 5) = pAG)” [TeP ) (HO) +87 . 9), (16)
j=1
where A(s) is a positive function, g(3)(Y) = (271)73/284”2/2 is the standard
Gaussian density, and the remainder term §7) tends to zero as p — 0. The vector
function

H(Y) = (Hi(Y1, Y2), Hy(Y1, 12),0)

will correspond to the fixed point of the renormalization group. The fact that it is
two-dimensional and depends only on (Y7, Y2), can be traced back to (15), which is
a consequence of the divergence-free condition.

As we take the limit p — o0, the discrete sum over p; in the recurrent relation
becomes an integral over y = ’;}‘ . The fixed point equation for the renormalization
group then takes the form

1
g1’ (NHY) = /0 dy fR 8P =Yg (L (Hiy. v Y) (D)

Y/
xH( )dY’,
NAE
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where, by abuse of notation, H(Y) = (Hi(Y1,Y2), H2(Y1, Y2)), g(()z)(Y) =
7y12+y22

L o™ 2 , and

2no

Y -V Y -V
LH:y,Y,Y)=—(— 3/2< ,H( )>
(H;y ) (I=y) Sy Sy

+J/1/2(1—y)< Y’ ,H( Y’ )>
Vi—y Vi—-y

In Eq. (17), the Y3-variable was integrated out since it is just the usual convolu-
tion. By using the theory of Hermite polynomials, one can classify the solutions to
the functional equation (17). Amongst all such solutions, a particular simple one is

HO1), Y2) = C(11, Ya),

where the pre-factor C > 0 can be determined from the equation. One can then
linearize around this fixed point and study the spectrum of the linearized operator.
As it turns out, there are 6 unstable directions and 4 neutral directions. The
following theorem was proven in [32].

Theorem 7 ([32]) For K© = (0,0, ko) and ko large enough, there exists a 10-
parameter family of initial data and a time interval [s—, s ] such that the ansatz (16)
holds for H=H© and s € [s_, sy].

As observed in [5, 6], the recurrent relations and the fixed point equation remain
unchanged if 2" is replaced by (—1)?h‘P). This consideration then leads to two
types of solutions, with type I corresponding to the solution described before and
type II corresponding to (—1)?h(P). Note that if the initial data vy leads to a type I
solution with the fixed point H(?, then —vy leads to a type II solution with the same
fixed point.

In [5], it was shown that the solutions corresponding to type I and type IT will
have energy and enstrophy diverging as

(@)

1 2 3 C
E@) = ) /R3 |I/l(x,t)|2dx = ( ;[) /R} lv(k, l‘)|2dk ~ . _Et),ga’

()

C
_ 2 3 2 T s
S(t) = /R3 [Vu(x, t)|“dx = 2m) /R3 |k|“ vk, t)|~ dk ( — 1yput2’

where t is the blowup time, o = I, II denotes the type of function, 1 = 1, B = ;

and Cg‘), C_(qa) are constants depending on the initial data.

Numerical simulations of the complex-valued singular solutions reveal very
interesting features [5, 6] some of which are similar to those of related real-valued
energy-preserving solutions.
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5 Bifurcations of Solutions to Two-Dimensional
Navier—Stokes Systems

The usual bifurcation theory in dynamical systems deals with one-parameter
families of smooth maps or vector fields. In that situation fixed points or periodic
orbits become functions of this parameter. Bifurcations appear when their linearized
spectrum changes its structure. The classical approach is to use versal deformations,
i.e., special families such that arbitrary families can be represented as some
projections of versal deformations [3]. In such kind of approach the positions of
the bifurcating orbits and their dependence on the parameter are known. In [33, 34]
a new approach is developed to study deformations produced by solutions of a
PDE system and construct bifurcations using properties of the dynamical flow.
The construction is nonlinear and does not rely on any knowledge of special fixed
points. As a model case, one can study the bifurcation of critical points for a stream
function driven by a two-dimensional incompressible viscous flow. Unlike the usual
scenario the profile of the function can display quite disparate patterns at different
time intervals due to the nonlocal nature of the dynamics.

Consider the Cauchy problem for the two-dimensional Navier—Stokes System
written for the stream function ¢ = ¥ (¢, x, y):

oy _1{0y Ay oy AV _
az"‘A (ax' oy oy 8x>_Aw’ (18)

Yt x +2m,y) =yt x,y+2m) = Y(t, x,y), Y (x,y) € T2,

where T2 is the two-dimensional periodic torus with period 1 in each directions.
The velocity u of the fluid is given by u = V1y = (=0dy¥r, 0x¥). For general
initial data the global wellposedness and regularity of solutions to (1) is well-known
by using Mattingly—Sinai’s geometric trapping method or energy type estimates.
The main problem is to study the dynamics of critical points of the stream function
Y. In [33] it was proposed that if the critical points of the stream function (i.e.,
stagnation points of the velocity field) are points of maxima or minima, then these
points are called viscous vortices because near these points the velocity u is tangent
to the level sets of ¥ which is a closed curve. The nonlocal operator A~! in front
of the nonlinear term in (18) is of prime importance (i.e., used in an essential way)
in the construction of the bifurcation. On the other hand, such construction does not
seem to carry over directly to the vorticity formulation. This is deeply connected
with the fact that vorticity only obeys a transport equation and during such processes
the local maxima or minima of the vorticity function are simply transported.

The following theorem establishes in some sense the splitting (bifurcation) of
vortices. It was first proved in [33] under a symmetry assumption and then in [34]
for the general case.

Theorem 8 ([33, 34] Existence of bifurcations) There exists an open set < in
the space of stream functions such that the following holds true: For each stream
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function g € 4, there is an open neighborhood U of the origin, two moments
of time 0 < t; < tp such that the corresponding stream function v = (¢, x,y)
solves (18) with initial data o and has critical points which bifurcate from 1 to 2
on [0, t1], and 2 to 3 on (t1, t2] in the neighborhood U.

Although the Navier—Stokes equation is not time-reversible, by using a different
construction one can reverse the above scenario and also show the merging of
vortices (see [33, 34] for more details). The bifurcation method devised in [33, 34] is
quite robust and has been generalized to a number of other situations (cf. [31, 43]).
In general the behavior of the critical points is not well studied in multi-dimensional
situations. For parabolic equations, one can show that the number of critical points
decreases as a function of time (see [1]), and estimate the size of critical points
(see [9]).

6 Stochastic Hydrodynamics

Stochastic fluid mechanics is an important tool in the study of real fluid flows, and a
huge physical literature is devoted to it. The traditional approach deals with space or
time averages of some relevant physical quantities. For a deeper insight one needs
information on the typical behavior of the solutions, such as can come from the
knowledge of the invariant measures and their space-time properties.

A brilliant contribution of Sinai and collaborators in this sense is given by the
paper [18], which deals with the two-dimensional Navier—Stokes equations on the
2D torus T? with random forcing on a finite set of modes:

qu+ @ -Vyu+Vp—vAu= 2 W(x, 1), (t,x)e€(0,00) xT?
V-u=0.

19)

kJ_
Wen= D, o oa@. kel am=i, .

0#|k|<N

Here the {wy}’s are standard i.i.d. complex Wiener processes such that w_ () =
wi(t) and o_x = oy, |ox| > 0. Letu(x) = Zk urer(x) with ug = 0, be the Fourier
expansion, and consider the space > = D ke lux|? < oo}. Projecting on > we
get a system of Ito stochastic equations

du(x,t) +vA2u(x,t)dt = B(u,u)dt +dW(x,t) (20)
where, denoting by P the projection on the subspace of the divergence-free

functions, we write A2u = —P Au, B(u,v) = —P(u - V)v. Equation (20) defines
a Markovian stochastic semi-flow (pgf,, s < t,on L2, for all w € £2, the canonical
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space generated by {dwy(r)}. A measure p on L2 is said to be invariant if for any
bounded continuous function F on L and ¢ > 0 we have

/F(u)u(du)=/ EF (gp ,w)i(du) (2D
L2 L2

were E denotes expectation with respect to the measure [P on 2.

The existence of stationary measures was established by compactnessin [19, 41].
Uniqueness was proved, under restrictive assumptions, when all modes are forced,
as in the papers by Kuksin and Shirikyan [25] and by Bricmont, Kupiainen and
Lefevere [7]. The main result of E, Mattingly and Sinai is the following theorem.

Theorem 9 ([18]) There is an absolute constant € such that ifN2 > %fg, where
&y = Z|k|§N lug|* then Eq. (20) has a unique stationary measure on 2.

Some comment is here in order. Following the seminal work of Ladyzhenskaya
[27] we know that the 2-dimensional Navier—Stokes equations in a bounded domain,
with no forcing, or with a bounded finite-dimensional force, has a finite-dimensional
attractor, of dimension depending on the Reynolds number [20]. There is a finite
number of “determining” modes, and for large times the other modes are determined
by the past history of the determining ones. The main theorem of [18] states that
uniqueness of the stationary measure holds under the condition that all determining
modes are forced, and is a natural extension of the above results.

A main step in the proof is a representation of the high modes as functionals
of the time-history of the low modes. Let IL% = span{ex: |[k| < N}, IL,% =
span{ex: |k| > N} define the subspaces of low and high modes, and denote by
Py, Py, the corresponding projectors in L2. Setting £(¢t) = Peu, h(t) = Ppu, Eq.(20)
becomes

Ao = [—wﬁe + PyB(L, E)] dt

+ [P¢B(£,h) + P¢B(h, ) + P¢B(h,h)]dt +dW(t), (22)

dh(t)

h [—vAzh + PyB(h, h)] 4 PuB(C,h) + PuB(h, £) + P,B(L, £).  (23)

If £(¢) is assigned, Eq. (23) can be solved for £, and let @, ;(¢, hp) be the solution
of (23) at time ¢ with initial condition kg at time s and fixed £.

By stationarity, one can represent the initial data as coming from a distant past.
Let C((—00, 0], IL?) be the path space of the past and ¥“u € C((—o0, t],1.?) the
evolution of u € C((—o0, 0], L?) induced by the semi-group: (¥;”u)(s) = u(s) for
s < 0and (Y;”u)(s) = ¢o,su(0) for s € [0, 7].

There is an obvious measure 1, on C((—00, 0], LL?), induced by the product
measure [Px (1 on £2 X L2. Defining the shift on the trajectories as (6;v) (s) = v(s+1),
the operator 6,1 maps C((—o0, 0], L?) into itself. If w is stationary, then u, is
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also stationary in the sense that for any bounded function F (z) on C((—o0, 0], Lz)
we have

f Fdppu) = E f F@pu)d iy ().
C((—00,0],L2) C((—00,0],L2)

Moreover, it is clear that if u and v are two stationary measures for the stochastic
flow (20), then ), = v), implies u = v.

The proof further shows that there is a subset U C C((—o0,0], L2) of
full measure consisting of functions v: (—00,0] — H where HH = {u €
L2: Yok k*|ux|> < oo}, and moreover the energy has the correct average in time
and the fluctuations are typical.

The reconstruction of the high modes as a function of the past stretching to —oco
is given by the following lemma.

Lemma 10 ([18]) There is some absolute constant € such that if N> > %fg then
the following holds

(i) If there are two solutions ui(t) = (@),h1(@)), ur(®) = (@), h2(t))
corresponding to some (maybe different) realization of the forcing and such
thatuy,ur € U, then hy = hy.

(ii) Given a solution u(t) = (£(t), h(t)) € U, any ho € L% andt < 0, the limit
limzy— —oo Psy.¢ (£, ho) = h* exists and h* = h.

The lemma implies that there is a map @; giving the high modes at time ¢
in terms of the past trajectory of the low modes L' = {£(s): s € (—o0,t]} €
C((—o0, 11, L?): h(r) = &, (L"). Equation (22) then becomes

der) = [—vAZE + PB(L,€) + GL@), D, (L’))] dt +dW (1) (24)

where G(¢, h) = PyB({, h)+ P¢B(h, £)+ P¢B(h, h). Equation (20) is thus reduced
to a dynamics of the low modes: it is a finite-dimensional process with memory
extending back to —oo, which is not Markovian, but rather Gibbsian.

In the final part of the proof one shows that the memory is not so strong as
to violate ergodicity. A crucial fact is that for a set of full measure of “nice” past
histories of the low modes L € C((—o0, t], JL%) and for any ¢ > 0, the conditional
distribution of £(¢) € L, has a component equivalent to the Lebesgue measure.
This fact is shown to imply that the assumption that the corresponding stationary
measures on the path space of the past p,;,i = 1,2 are different, leads to a
contradiction.

We remark that Kuksin and Shirikyan [25] who deal with a forcing given by a
bounded kicked noise acting on all modes, did also introduce a Gibbs construction
in their proof of uniqueness.
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Leonid Bunimovich

Light is what a newborn baby sees first. It is no wonder that people were always
interested in light propagation. Fundamental laws were discovered through the
centuries. However, it was Ya. G. Sinai who first laid the foundation for the study of
global properties of light propagation in media which contain reflectors (scatterers,
mirrors, etc) and obtained fundamental results in this area.

It is a great and rare event when Mathematics discovers new laws of Nature.
Indeed, it is commonly assumed that mathematicians just prove results which
physicists already knew. The area of chaotic billiards, pioneered by Sinai, studies
propagation of the rays of light in domains with reflecting boundaries. It turned
out that physicists had at best a vague and sometimes wrong understanding of
these processes. One should mention though that the analogy between the unstable
dynamics of geodesic flows on surfaces of negative curvature and the unstable
dynamics of the Boltzmann gas of elastically colliding hard spheres was noted by
soviet physicist N. S. Krylov [11]. More than once while the theory of chaotic
billiards was developing, did the physics community find rigorous mathematical
results on billiards unbelievable. Only after performing experimental studies, both
numerically and in a laboratory, did physicists accept these results and start to use
them both in their theoretical and experimental research. Mathematical studies of
billiards allowed the advancement of geometric optics, acoustics and classical and
quantum mechanics. Impressive breakthroughs were made in Statistical Mechanics
where the most classical and fundamental models, such as Boltzmann and Lorentz
gases, are billiards with specially shaped reflecting boundaries.
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1 Mathematical Billiards

In the theory of dynamical systems billiards form arguably the most visual example
and demonstrate a great variety of dynamical and statistical behavior. It is no
wonder that nowadays billiards have become one of the favorite training grounds
for exploring new advances in chaos theory.

All that was started in 1970 with the absolutely remarkable paper of Sinai [16]. It
was a truly groundbreaking piece of work. Virtually all the advances in the theory of
chaotic billiards can be traced to this paper. Sinai was far ahead of the community.
At that time I was his graduate student and decided to start working on billiards.
Some of the more senior mathematicians tried to talk me out of that. Having the
best intentions, they were trying to prevent me from making a serious mistake. Their
argument was that billiard dynamics is a very murky area where only Yasha (Sinai)
understands something.

Indeed, until recently the community of mathematical billiards players was very
small, mostly because of how difficult the area is to enter. Newcomers have to read
a lot of papers that contain quite a few new ideas and employ rather sophisticated
techniques. The situation changed rather recently after publication of the book by
Chernov and Markarian [6] which provides an excellent introduction to the theory
of chaotic billiards.

Mathematically a billiard is a dynamical system generated by the free (fric-
tionless) motion of a point particle within some domain Q belonging to a finite
dimensional Euclidian space R? or a torus with Euclidian metric. This domain Q is
called a configuration space or just a billiard table. The boundary d Q consists of a
finite number of smooth submanifolds 0 Q;,i = 1, ..., m of codimension one called
the regular components of the boundary. The traditional assumption is that regular
components of the boundary are at least C3-smooth. This assumption ensures that
there are no trajectories that have an infinite number of reflections off the boundary
in a finite time. At each point ¢ of a regular component of the boundary there is
a normal unit vector n(g) pointing into the interior of Q. The singular part of the
boundary d Q is formed by the intersections 0Q; N0 Q;,i # j.

A regular component dQ; of the boundary is called dispersing, focusing or
neutral if K(g) > 0, K(g) < 0, or K(g) = 0, respectively, at all points g € 3Q;,
where K (g) is the operator of the second fundamental form at the pointg € 9 Q.

Billiard dynamics is generated by the uniform motion of a point particle with
unit speed within a billiard table. Upon reaching the boundary 9 Q the particle gets
reflected according to the law of elastic reflections, i.e., “the angle of incidence
equals the angle of reflection”. Hence billiard orbits in the configuration space are
broken lines. If singular part of the boundary of a billiard table is nonempty, then
billiard orbits stop (are not defined) after hitting a singular point of the boundary.
A billiard is a Hamiltonian system with an infinite potential on the boundary of
the billiard table together with the condition that collisions with the boundary are
elastic. Therefore the phase volume v gets preserved under the dynamics. A billiard
flow is defined almost everywhere on the phase space .# which is the unit tangent
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bundle over the billiard table Q. Points of .# are the unit vectors x = (g, v). Denote
by 7 the natural projection of .# onto Q. Then 8.4 = 7~ (9 Q).

In the paper [16] Sinai introduced and analyzed billiards with strictly dispersing
and smooth boundaries, i.e., regular components of the boundary of a billiard table
do not intersect. Such billiards are called Sinai billiards. A billiard flow is defined at
all points in the phase space of such billiards. A standard example of Sinai billiards
is the torus with a sphere removed. The unfolding of this system is a classical model
of Statistical Mechanics called the periodic Lorentz gas.

Because almost all billiard orbits eventually hit the boundary, these dynamical
systems have a natural global Poincaré section. Therefore one can introduce a
billiard map 7 which maps the set M = {x: w(x) € 00, (v, n(g)) > 0} into itself.
Draw the geodesic along the direction v up to its first intersection with the boundary.
A vector Tx is equal to the reflection of the tangent vector at the intersection point.
The phase space M of a billiard map is a product of the boundary of the billiard table
and the unit (d — 1)-dimensional semi-sphere. For two-dimensional Sinai billiards
M is a union of cylinders where each cylinder corresponds to a regular component
of the boundary of a billiard table. At each cylinder one considers coordinates (¢, ¢)
where £ is a coordinate (normalized length) of a point ¢ on the boundary 9 Q and
¢, —m/2 < ¢ < /2 is the angle between the velocity vector and the inner normal
n(q). Billiard map preserves the measure p which is the projection of v onto M.

Consider a smooth curve y C Q and a continuous family y of unit vectors
normal to y. Then y is a smooth curve in the phase space M. Clearly two curves
y correspond to every curve y according to choice of a field of normal vectors.
By fixing the curve y we define curvature of the curve . We will refer in what
follows to the curvature of y to avoid ambiguities. In modern terms such curves are
called wave fronts. It is always assumed that wave fronts are initially short, i.e., one
considers narrow beams of rays.

Denote by « (x) the curvature of a wave front yy at the point xg. Let # be so small
that no point of the curve yp could reach the boundary on the time interval [0, ¢].
It is easy to see that the curvature of the curve y, = T'yy at the point x, = T'xg
equals «x (x;) = «(xg)(1 + tk (xo)) L. Clearly « (x;) > 0 if k(x9) > O, that is, if ¥
is a convex curve, then y; is a convex curve too. Consider now what happens upon
reflections off the boundary. Let t(xp) > 0 be a moment of the first reflection of the
trajectory of a point x¢ from the boundary. Classical mirror formula of the geometric
optics reads as

2k(g+
xes0) = reo) + ;‘f(x)) (1)

where k(g.) is the curvature of the boundary at the point of reflection and ¢(x;) is
the angle between the reflected ray and the inner unit normal vector to the boundary
at the point of reflection.
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2 Continued Fractions

A key tool that Sinai introduced to study dynamics of billiards are continued
fractions that correspond to positive and negative infinite semi-trajectories of
billiards.

Let0 <ty <thp <--- <t, <--- be the moments of the consecutive reflections
of the forward trajectory of the point x € M off the boundary, t, — oo asn — oo.

Lett; =1 —t;_1, 0 = 0. Denote by ¢; € 9 Q the point of the boundary where the
ith reflection occurs and by A; € R the hyperplane tangent to 3 Q at the point g;.
Letv; and v;r be the velocities directly before and after the i th reflection, and define
@; by cos ¢; = —(vl.+, n(q)). Let K; be the operator of the second fundamental form
of the boundary 9 Q at the pointg, and A;” C R4, A;" C R be the hyperplanes that
contain the point ¢; and are orthogonal to v;” and vl.+, respectively. Denote by U; the
isometric operator which maps in the direction parallel to n(g;) onto the hyperplane
A C R¢, and by V; the one which maps A; parallel to v, onto A;. Let V* be the
operator adjoint to V;, and I be the identity operator.

Infinite operator-valued continued fraction introduced by Sinai [16, 17] has the
form

B'(x) =
Tl +

2

ZCosngl*KlVl + Ufl
ol

I Ui

_l’_
2cos V' KoVo + -+

In two-dimensional case each odd numbered element of the continued fraction is
equal to the length of free path between corresponding consecutive reflections off
the boundary and according to the mirror formula (1) each even numbered element
equals 2k(g;)/ cosg; where k(g;) is the curvature of dQ at the point of the ith
reflection and ¢; is the corresponding angle of incidence.

3 Hyperbolicity of Sinai Billiards

A key fact proved by Sinai [16, 17] is that the operator B*(x) defines the plane
tangent to the local stable manifold (see Pesin’s paper [13] on hyperbolicity) of
the point x. In two-dimensional case a local stable manifold (LSM) has the slope
'Zl‘; = —B%(x)cosg + k(g). One gets a continued fraction for local unstable
manifold (LUM) by considering in (2) inverse iterates of the billiard map T.
Convergence of these continued fractions for Sinai billiards was proved in [17].
In the two-dimensional case convergence immediately follows from the famous
Seidel-Stern theorem. This fact alone allows prove positivity of the Kolmogorov—

Sinai (KS) entropy (see Gurevich’s paper [9] on Ergodic Theory) for Sinai billiards
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[16]. Moreover, KS-entropy for Sinai billiards can be computed via the following
formula [6, 16]

T = / trB" (x)dp (x). 3)
M

This formula shows that KS-entropy is equal to the average expansion rate of LUMs.

The existence of local stable and unstable manifolds allows immediately prove
ergodicity for smooth hyperbolic systems by making use of the Hopf chain. Namely,
for any two points x and y in the phase space there exist (non-unique) finite
collections yl(s), yz(”), oo of LSM and LUM such that yl(s) s sy,
and if y; is a LSM, then y;41 is a LUM, or vice versa. Then ergodicity follows from
the Birkhoff ergodic theorem.

However, Sinai billiards are non-smooth dynamical systems. More precisely,
billiard flow in Sinai billiards is non-smooth but continuous, and the billiard map is
discontinuous. Discontinuities appear on such orbits that are tangent to the boundary
of the billiard table (Fig. 1). Therefore from the existence of LSM and LUM follows
only a local fact that corresponding ergodic component has positive measure. In
order to prove a global ergodicity (uniqueness of ergodic component) one needs
principally new tools.

Let So = {x € dM: (x,n(g)) = 0}. Then S = Sy U T~ 1S is a singular
set in the phase space of dispersing billiards. It is the only singular set for Sinai
billiards because the boundary is smooth. Denote by 7(x) a time that it takes for
a billiard particle to travel from the point x to the point 7x. One gets a billiard
with finite horizon if 7(x) < o0, otherwise a billiard with infinite horizon. In
Sinai billiards with finite horizon, the singular set S consists of a finite number of
smooth manifolds, while in case when the horizon is infinite, S consists of infinite
(countable) number of smooth components. An infinite number of manifolds where
a billiard map is discontinuous, is situated in neighborhoods of orbits which have
infinitely many tangent collisions with the boundary (scatterers) and at the points

Fig. 1 Formation of
discontinuities
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Fig. 2 Sinai billiard with infinite horizon

of tangency the scatterers are situated on one and the same side of the billiard orbit
(Fig.2).

In ergodic billiards the orbit of singularity set is everywhere dense in the phase
space. Therefore smooth pieces of LSM and LUM could be arbitrarily small.
Therefore a Hopf chain cannot routinely be constructed for Sinai billiards in the
same manner as it gets constructed for geodesic flows, Anosov systems, Smale’s
Axiom A systems, etc. Actually, this is a major principally new problem for proving
ergodicity for any non-uniformly hyperbolic system.

The corresponding theorem, proved by Sinai [16] and which allows us to
overcome this principal problem, is now called main theorem of the theory of
hyperbolic billiards, fundamental theorem of the theory of non-uniformly hyper-
bolic systems, or just the Main Theorem. The approach to a proof of this theorem
is very characteristic of Sinai’s scientific style, that is, first to completely clarify
the situation and then go to a proof in the most direct manner that is relevant
to the intrinsic nature of the problem. Although there are now many technical
modifications in the proof of the main theorem, they all follow Sinai’s footsteps.

If a smooth peace of LUM is moving under the action of billiard flow then
its length grows. Therefore some vectors in the image will be tangent to the
boundary of the billiard table (Fig. 1). At such points the image of LUM will have
singularities and therefore it will consist of many smooth pieces (Fig.3). These
pieces could be very short, and therefore cannot be used for construction of the
Hopf chain. Therefore, the evolution of LUMs is defined by competition of two
processes, expansion under dynamics and cutting by the singularities. At the heart
of the ergodic theory of non-uniformly hyperbolic systems lies Sinai’s principle,

Fig. 3 Image under
dynamics of a smooth local
unstable manifold
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which claims that expansion beats cutting. The Fundamental theorem is an exact
mathematical statement of this principle.

The main idea of Sinai’s fundamental theorem [16] is to construct an analog of
the Hopf chain where each link is not a single (stable or unstable) local manifold
but a set of positive measure consisting of sufficiently long local manifolds. Because
expansion due to the intrinsic instability of the dynamics is stronger than the process
of cutting by singularities, such a “thick” chain must exist.

4 Sinai’s Fundamental Theorem of the Theory of Hyperbolic
Billiards

A piecewise smooth curve y in M is called increasing (resp. decreasing) if
Z‘g > a; > 0 (resp. % < ap < 0), where aj,ap are some constants
which depend on geometry of the billiard table Q. It easily follows from (2) that
LUM (resp. LSM) are increasing (resp. decreasing) curves on the corresponding
cylinder. By a quadrilateral we mean a domain with boundary consisting of four
piecewise continuously differentiable curves and one non-intersecting pair of curves
is increasing while the other pair is decreasing. Denote by |y| the length of the
piecewise smooth curve y.

The Fundamental Theorem Let x be a point of the phase space M such that the
positive semi-trajectory Tixg,i =0,1,2,... never hits the singular set S. Then for
eacha (0 < @ < 1)and any C (0 < C < o0) there exists an € = €(xg, o, C) such
that the e-neighborhood U, of x has the following property: for any decreasing curve
o C Ue, |yo| = o there is a quadrilateral G whose left side is yp, and if Gl = {x e
G: there is a regular segment of LUM y ) (x) joining the left and right sides of
G and |y(“)(x)| > Cdp}, then M(G ) > (1 — a)u(G). Similarly one can construct
a quadrilateral G whose rlght side is yo and such that the corresponding set G!
satisfies the inequality ,u(G )>(1 - a)M(G).

Sinai’s fundamental theorem for non-uniformly hyperbolic systems allows local
ergodicity of the corresponding dynamical system to be established. Local ergod-
icity means that for almost any point of the phase space there exists an open
neighborhood that belongs to one ergodic component (mod 0). To deduce (global)
ergodicity from local ergodicity one needs to perform a careful analysis of the
singular set of the dynamical system in question. Such an analysis was performed
n [16] for Sinai billiards with finite horizon and in [3] for Sinai billiards with
infinite horizon, and for general dispersing billiards that may have singularities on
the boundary.

Thanks to Sinai’s fundamental paper on ergodic theory of hyperbolic dynamical
systems [15], we do not need to prove that ergodic hyperbolic systems are mixing
and have the K-property. Sinai proved in [15] that these properties follow from the
existence of one transversal foliation into unstable leafs. (Usually such foliations
appear as pairs of stable and unstable ones.) Thus, thanks to [15], one may just prove
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ergodicity. Later, after remarkable results by Ornstein on isomorphism of Bernoulli
systems, it was proved [7] that the Bernoulli property of hyperbolic systems also
follows from ergodicity.

A direct consequence of the proof that Sinai billiards are ergodic, is the ergodicity
of the system of two elastically colliding disks on a two-dimensional torus. This
breakthrough and very unexpected result was proved in the same paper [16].
Indeed, it was proof of the celebrated Boltzmann hypotheses for two particles while
Boltzmann claimed its validity for a gas of extremely many elastically interacting
spheres. Since that time the Boltzmann hypothesis has naturally been called the
Boltzmann—Sinai hypothesis (see papers by Szasz [18] and Simanyi [14]).

S Mechanism of Defocusing and Hyperbolic Focusing
Billiards

Development of Sinai’s ideas and techniques allowed for some absolutely unex-
pected findings. As a result the theory of billiards took the leading role in a
general theory of nonuniformly hyperbolic systems. Perhaps the most unexpected
breakthrough was the discovery of the fundamental and quite counterintuitive
mechanism of chaos in dynamical systems.

It was well known that billiards in circles, and ellipses demonstrate the most
regular possible dynamics, i.e., they are integrable systems. Therefore a common
“natural” understanding was that focusing stabilizes dynamics. This general intu-
ition was even more supported when Lazutkin proved [12] that two-dimensional
billiards in convex tables with sufficiently smooth boundaries have continuous
families of caustics which converge to the boundary 0 Q of a billiard table. (Recall
that a curve y is a caustic if tangency to one link of a billiard orbit implies all other
links are also tangent to y.) Clearly, a billiard is non-ergodic if it has at least one
caustic.

It turned out, though, that there are large classes of hyperbolic billiards in the
tables having focusing boundary components. Moreover, even billiards with convex
tables can be hyperbolic. The reason for such counterintuitive results is the existence
of another mechanism causing chaos (hyperbolicity) other than the mechanism of
dispersing. The dispersing mechanism generates hyperbolicity (chaos) in geodesic
flows in manifolds of negative curvature and in dispersing billiards. It was natural to
consider small perturbations of such systems by adding small pieces of manifolds
with non-negative curvature for geodesic flows or small focusing pieces of boundary
for billiards. Such attempts for geodesic flows were started by Hopf [10] but did
not succeed. Only after discovery of a defocusing mechanism [1, 2] were there
constructed the ergodic geodesic flows on surfaces with pieces of positive curvature
[8]. This is how billiards took a lead in studies of non-uniformly hyperbolic systems.

Suppose that a parallel beam of rays falls onto a dispersing component of the
boundary. Then this beam becomes divergent after the reflection off the boundary. In
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Fig. 4 Divergence of rays by
defocusing

dispersing billiards such beams remain divergent for all times and thus nearby orbits
permanently diverge in the phase space. This intrinsic instability in the dynamics
generates hyperbolicity for dispersing billiards.

Now let a parallel beam of rays fall on a focusing component of the boundary.
Then the situation becomes completely different because after reflection such beam
becomes convergent. Therefore the distance in phase space between nearby orbits
decreases which seems automatically to lead to stability in the dynamics. However,
the focused (convergent) beam of rays may become divergent if the time until its
next reflection off the boundary is large enough. Moreover, the length of time when
this beam was divergent may exceed the length of time when it was convergent.
Therefore between two consecutive reflections off the boundary of a billiard table
the front of a convergent (focused) beam may increase its size ensuring effective
divergence of nearby rays between consecutive reflections (Fig.4). This is a key to
the mechanism of defocusing. Another possibility is to make the focusing stronger
but keep the same minimal distance between consecutive points of reflection at
different components of the boundary.

It is obvious that the billiard in a circle is nonergodic. Indeed, this fact is
equivalent to the fact that all chords of the same length are at the same distance
from the center of the circle. Integrability of the billiard in a circle in fact follows
from the fact that in this dynamical system convergence (focusing) of orbits and
their divergence (defocusing) are completely balanced [2]. Therefore this dynamical
system is parabolic. To make it hyperbolic one needs to increase free paths t(x) on
a set of positive measure.

This has been done in [1, 2] by cutting a circle by a chord and taking the larger
part as a billiard table. It was the first example of a chaotic billiard within a convex
billiard table. Surprisingly, the most popular focusing chaotic billiard became a
degenerate example of the so called stadium which one gets by cutting a circle
into two semicircles and connecting them by two parallel straight segments [1].
Such billiards with only focusing or with focusing and neutral components are
ergodic, mixing, K - and B-systems [1, 16, 17]. Later, by making use of similar ideas,
hyperbolic geodesic flows on spheres [7] were constructed. However, correlations
for ergodic hyperbolic billiards which have focusing boundary components decay
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only power-like while in dispersing billiards correlations decay exponentially
[5, 19].

For a long time it was an open question whether or not chaotic focusing billiards
exist in dimensions >2. A reason for this question was an optical phenomenon
called astigmatism. For the mechanism of defocusing to work, a strong focusing
upon reflections off the boundary is needed. However, because of astigmatism the
strength of focusing varies over the hyperplanes containing the point of reflection
off the boundary of a billiard table. Moreover, the strength of focusing is arbitrarily
weak in some hyperplanes. It was proved, though, that the mechanism of defocusing
is universal and works in any (finite) dimension d > 2 [4]. Moreover, hyperbolic
and ergodic billiards also exist in higher dimensions. The continued fractions
introduced by Sinai are always the main tool to prove hyperbolicity. However, these
fractions contain elements with different signs if the billiard table has at least one
focusing boundary component. There are no general criteria for convergence of such
continued fractions. Therefore this part of the proof, that is trivial for dispersing
billiards, often becomes quite involved.

Nowadays billiards are favorite models for physicists. Sinai billiards, stadia, and
other chaotic billiards were built as experimental devices in physics labs all over the
world. Many questions about chaotic billiards remain unanswered and new findings
and surprises continue to come.
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Check for
updates

F. Cellarosi

Abstract In this article we will survey some of the contributions of Ya.G. Sinai to
number theory and related fields. The multifacetedness of his work demonstrates
Ya.G. Sinai’s vision of mathematics as a highly interconnected discipline, rather
than a series of compartmented fields.

Ya.G. Sinai has explored some of the deep connections of number theory with
other disciplines, such as probability theory, statistical mechanics, and the theory
of dynamical systems. In the attempt to illustrate this, we shall focus on [3, 4, 8, 13—
15, 22, 23, 59, 60, 62, 63] by Ya.G. Sinai and several coauthors.

The 1990 article by E.I. Dinaburg and Ya.G. Sinai [23] and the more recent
papers by Ya.G. Sinai and C. Ulcigrai [62, 63] have a twofold common thread: they
study the distribution of certain sequences of number-theoretical interest, and use in
their solution a powerful dynamical tool, namely the mixing property of a suitably
defined special flow. In [23] E.I. Dinaburg and Ya.G. Sinai study the statistical
properties of the solutions to the Diophantine equation |ax — by| = 1 for positive
integers a and b, with a < b. The classical approach is to find all solutions to this
equation by first considering the convergents of the continued fraction expansion of
the rational number a /b: write

1
a — ) =[k1,k2,...,ks—1aks]a
b ki + 1

F. Cellarosi (D<)
Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada
e-mail: fcellaro@mast.queensu.ca

© Springer Nature Switzerland AG 2019 207
H. Holden, R. Piene (eds.), The Abel Prize 2013-2017,
https://doi.org/10.1007/978-3-319-99028-6_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99028-6_8&domain=pdf
mailto:fcellaro@mast.queensu.ca
https://doi.org/10.1007/978-3-319-99028-6_8

208 E. Cellarosi

where ki, ..., kg are positive integers and the length of the expansion s depends
on a/b. If, for 1 < j < s, we define the j-th convergent of a/b to be
pjlqj = lki,...,k;] with gcd(pj,q;) = 1, then py/qs = a/b and the pair
(x0, ¥0) = (gs—1, Ps—1) 1s a particular solution for the equation |ax — by| = 1.
All solutions can then be written as £(xo + kb, yo — ka) for k € Z. The authors
study how the particular solution (xg, yo) behaves as the coefficients a, b of the
Diophantine equation vary. More precisely, the authors study the distribution of
the ratio gs—1/gs = gs—1/b when the coefficients a, b satisfy the inequalities
aiN <a < BN and opN < b < BN, where 0 < a1 < B1 < ap < o < 1
are fixed and N tends to infinity. We may assume that the fraction a/b is in lowest
terms, that is a and b have no common factors. It is known that, as N — oo,
the number Sy of such pairs (a, b) is jfz (B1 — a1)(Ba — ax)N2 + O(N InN).
Dinaburg and Sinai define the measure py on the Borel o-algebra of subsets of
[0,1] as uny(B) = S;ll#{(a,b) : gs—1/b € B}. This measure is the law of
the random variable g;_1/b. They prove that, as N — oo, this random variable
becomes uniformly distributed on the interval [0, 1]. More precisely, they show that
for every ¢,8 > 0 and any interval A C [0, 1] of length |A] > § there exists
No = No(e,8) > 0 such that |uny(A)/|A| — 1] < € for all N > Np. In order to
achieve this result, the clever idea of the authors is to rephrase the problem in terms
of a suitably constructed special flow over the natural extension of the Gauss map,
where the roof function is chosen to obtain In g as an ergodic sum.

It is worth discussing this idea with some details, as it was used successfully
used in other papers, such as [63] and [9]. Consider the Gauss map G : (0, 1] —
(0, 1], defined by G(x) = {1/x}, where {x} = x — [x]. The map G admits an
invariant measure ug, with density ((1 4+ x) In 2)~1 with respect to the Lebesgue
measure; moreover it acts as a shif in the continued fraction representation:
G([k1, k2, k3, ...]) = [ka, k3, ...]. Following Rokhlin [56], Dinaburg and Sinai
construct a natural extension G of the Gauss map G. We have G : O, 1]2 —
(0, 112, acting on pairs of real numb~ers as G([ko, k_1,k_p,...1, k1, ko, k3,...]) =
k1, ko, k—1, .. .1, k2, k3, ..., or G(x—, x4) = (|1 /x4 ]+x_)"", {1/x4}), which
preserves the measure p g with density ((1 + x_x4)%1n2)~! with respect to the
two dimensional Lebesgue measure. Let us consider the special flow (or suspension
flow) @; over the dynamical system ((0, 112, G, Hg)s under the roof function
F(x_,x4) = —In(m— (G(x_, x4+))), where m_ : (0, 11> — (0, 1] is the projection
m_(x—,x+) = x_. The flow {®D;};cr acts on points set of points of the form
(x_,x4,z) with (x_,x;) € (0,1> and 0 < z < F(x_,xy), modulo the
identification (x_, x4+, F(x—, x4+)) ~ (F(x—, x4+), 0), by flowing the points in the
z-direction with unit speed. The reason for choosing the particular roof function
F is that n_(G"(x_, xy4)) = lkn, kn—1, ..., k1, ko, k—1, ...] yields the continued
fraction expansion of (x_, x4 ), read backward from the n-th term. This fact implies
that the ergodic sum Z;;(l) F(G"(x—,xy)) = Y (=In(m_(G"(x_, x4))))

equals Ing, + 1n(1 +x_ Z:)
gr of the continued fraction representation of a/b. Ergodic sums are related to the
special flow {®;};cRr as follows. By definition, &;(x_, x+,z) = (G"(x—, x4), 7),

and therefore can be used to study the denominators
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where r and z’ depend on (x_, x4, z) and 7, and are determined by

r—1 r
Y PG (xx)) Szt <) F(G"™ (o xy)
n=0 n=0
r—1
d=z+t=) F(G" . xy)),
n=0

respectively, for ¢ > 0.

It is important that the chosen roof function F is integrable over ((0, 112, Hé)s
as this yield an invariant probability measure for the special flow @;. To deduce that
the measures wy converge to the uniform measure on [0, 1], Dinaburg and Sinai
show that the special flow @; is mixing.

The authors actually prove something stronger, namely that the stable and
unstable foliations are not integrable. This fact implies that the Pinkser partition
is trivial, which in turn implies that the flow has the K-property and, in particular, is
mixing.

Dinaburg and Sinai’s paper stimulated other researchers to further investigate
the distribution of solutions to diophantine equations. For instance, in 1992 A.
Fujii [34] used Kloosterman sums to improve Dinaburg and Sinai’s result and
obtain an effective equidistribution result. This improvement allows Fujii to consider
the case when the interval A shrinks as N — oo, provided |A| — 0 not too
quickly. Independently, in 1994 D. Dolgopyat [24] was able to study the joint
limiting distribution of a/b and xo/b as (a,b) € Sy and N — oo. Although
some of the results by Dolgopyat can be derived from those of Fujii [34], the
estimate of the number of pairs (a,b) € Sy such that (a/b, xo/b) € A} x Ay
and |Aq| - |A2] < N~'/2 does not follow from Fujii’s work.

The beautiful method of deriving results of number-theoretical nature from the
statistical properties of a flow has become very popular and has shed new light onto
several new problems. For instance Ya.G. Sinai and C. Ulcigrai used this method
in 2008 in [63] to study the statistical properties of the integer sequence (g,), of
denominators of the continued fraction convergents of a typical real number «.
Since the integer sequence g, = ¢, () is increasing (this follows easily from the
fact that g¢,+1 = ku+19n + gn—1), one can find the first index, say n; = nr(®),
for which g,, > L. Inspired by renewal theory, it is natural to ask how much
larger g, is relative to L. It turns out that, for random «, the ratio g,, /L has a
limiting distribution on (0, co) as L tends to infinity. Proving the mixing a suitably
constructed special flow over the natural extension of the Gauss map (as explained
above for [23]), allowed Sinai and Ulcigrai to obtain the existence of the liming
distribution. Their method, however, did not provide an explicit expression for the
distribution function of the limiting random variable. A beautiful formula was found
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in 2010 by A.V. Ustinov [68], who showed that for every 0 < #1, 1 < 1 we have

Gn; -1 L 2 . log L
ael0,1]: <, < tz} = - Lix(—nn) + 0( ,
{ L qny ¢(2) L
where | - | denotes the Lebesgue measure, and Lir(u) = Z,fozl 'I:]; is Euler’s

dilogarithm function. The ideas introduced by Dinaburg and Sinai and the technique
used by Sinai and Ulcigrai are very flexible, and can be used for other kind of
continued fraction expansions, and yield new results of Diophantine type. For
instance, a variation the method of [23] and [63] was used by F. Cellarosi in [9]
to prove a renewal-type limit theorem for continued fractions expansions with even
partial quotients (introduced by F. Schweiger in 1982 [58]). This result was needed
in the subsequent paper [10] where the limiting distribution of normalized Weyl
sums N~1/2 Z}’]LV=1 27in yag studied. Partial sums of the above sums can be
viewed as deterministic walks on the complex plane, depending upon a single real
parameter «, as done by several authors, e.g. [6, 21]. In November 2006 Ya.G. Sinai
became interested in Weyl sums—and the corresponding geometric patterns called
curlicues—after attending the a seminar in the Physics department at Princeton.
The seminar by F. Klopp, titled “On the multifractal structure of the generalized
eigenfunctions of certain sparse Schrodinger operators”, discussed a joint paper with
A.A.Fedotov [31] and featured several spiral-like curves that triggered Ya.G. Sinai’s
interest. It became clear that a limit theorem these curves, when suitably rescaled,
had to be proven. A geometric way to achieve a weak invariance principle for Weyl
sums is outlined in the paper [60] that Ya.G. Sinai dedicated to S. Novikov on his
70th birthday. The idea of [10] and [60] is to use the renormalization group method
to establish the existence of finite-dimensional limiting distribution for the partial
sums as N — o0o. As itis done in probability theory, limit theorems can be viewed as
fixed point theorems. Here the renormalization map is an extension of the continued
fraction transformation ¢ — —1/a mod 2. This renormalization approach traces
back to the work of G.H. Hardy and J.E. Littlewood [41], J.R. Wilton [70], L.J.
Mordell [52], and more recently of E.A. Coutsias and N.D. Kazarinoff [18, 19]. A
key ingredient in [10] and [60] for the proof of the existence of a fixed point (a
limiting distribution) is the mixing property of a suitably constructed special flow
over the natural extension of the above continued fraction transformation. Recent
progress on the distribution of Weyl sums is due to F. Cellarosi and J. Marklof
[12]. Among other results, it is shown in [12] that rescaled curlicues have the same
Holder regularity as typical realizations of the Brownian motion, but slightly smaller
modulus of continuity.

Another application of the method from [23] can be found in a second paper [62]
by Ya.G. Sinai and C. Ulcigrai. A classical result by G.H. Hardy and J.E. Littlewood
states that the trigonometric sum 2;7:1 sin(nme)~! is uniformly bounded if o is a
quadratic irrational, [42]. Ya.G. Sinai and C. Ulcigrai studied the distribution of a
similar sum, namely fo;ol (1 —e2mitnatx)y =1 They were able to show that if (¢, x)
is a uniformly distributed random point on the unit square, then the normalized
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sum N~ N7 N1 — @ity =1 hag a Timiting distribution on the complex plane
as N tends to infinity. This follows from a more general theorem concerning the
distribution of normalized ergodic sums of non-integrable observables over rotations
of the circle (i.e. maps Ry (x) = x + « mod 1). The class of observables considered
in [62] is characterized by symmetric logarithmic singularities of the form i for x in
a neighborhood of zero. In 2007 A.V. Kochergin [44] proved that the special flows
over rotations R, under a roof function with symmetric logarithmic singularities
are not mixing for any «. This contrasts the case of roof functions with asymmetric
logarithmic singularities, considered by K.M. Khanin and Ya.G. Sinai in 1992.
They proved [61] that the special flow over a rotation is mixing if one assumes the
following Diophantine condition on the rotation angle «: let us write the continued
fraction expansion o = [ki, k2, k3, ...] and assume that k, < c - n!*7 . where
0 < y < 1 and the constant c¢ is allowed to depend on «. It is known that
this condition holds for a set of angles with full Lebesgue measure. The result by
Khanin and Sinai answered affirmatively a question asked by V.I. Arnol’d [1] in
1991 concerning the decomposition of a generic Hamiltonian flow on the torus. A
complete understanding of the statistical properties of ergodic sum of observables
with asymmetric logarithmic singularities over interval exchange transformations
(which generalize rotations) was obtained by C. Ulcigrai [65, 66] and applied in the
remarkable paper [67] to the study of area-preserving flows on surfaces.

The results of Sinai and Ulcigrai [63] and Ustinov [68] were used in two
more papers, by J. Bourgain and Ya.G. Sinai [8] and V. Shchur, Ya.G. Sinai and
A.V. Ustinov [59]. These papers concern the classical Frobenius problem, also
known as the “coin change problem”: given n relatively prime positive integers
ai,az, ...,a,, what is the largest integer that is not representable in the form
xiai+...+xua,, with x ; nonnegative integers? This number is called the Frobenius
number F(ay, ..., a,). In 1884 J.J. Sylvester answered the question when n = 2 by
giving the formula F(aj, az) = ajay — a1 — ax. However, for n > 3, no formula
for F(ay,...,a,) is known, see [55]. Ya.G. Sinai and his coauthors approached
this problem by randomizing (a1, az, az) as follows: if we pick a triple (ay, a2, az)
with ged(ag, az,a3) = 1 and @; < N uniformly at random, it is natural to ask
whether the (suitably normalized) Frobenius number F(aj, az, az) has a limiting
distribution as N tends to infinity. It turns out that this is true, provided we consider
the normalization N=3/2F (a1, az, az). This was proven in [8] and [59], along with
partial results for n > 3. An explicit formula for the limiting distribution in this case
n = 3 was found by A.V. Ustinov [69]. A formula for the limiting distribution for
every n > 3 was obtained by J. Marklof [47] using the dynamics of a certain flow
on the space of lattices SL(n — 1, Z)\SL(n — 1, R) and an equidistribution theorem
for a multidimensional Farey sequence on closed horospheres.

In April 2010, P. Sarnak delivered a series of lectures at the Institute for Advanced
Study on ‘Mobius randomness and dynamics’. After attending Sarnak’s lectures,
Ya.G. Sinai became interested in this topic and wrote a series of papers with
coauthors F. Cellarosi [13-15], and M. Avdeeva and D. Li [3, 4]. The goal for all
these papers is to better understand the statistical properties of the famous Mobius
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function u (defined as w(n) = (=¥ if n is the product of k distinct primes, and
zero otherwise), and shed some light on two conjectures: the first by D.S. Chowla
concerning autocorrelations for w(n), and the second by P. Sarnak concerning the
correlations of p(n) with so-called deterministic sequences.

It is known, for instance, that )", _y u(n) = o(N) as N — oo is equivalent
to the Prime Number Theorem. On the other hand, the more precise statement
Yoy 1(@m) = Og(N /248y ag N — o0, which provides explicit power savings
for the sum, is equivalent to the Riemann hypothesis. S. Chowla [17] conjectured
that for every positive integer k, every hi, ha, ..., hj distinct integers, and every
€1,€,...,€ € {1, 2} not all even, we have

> U+ BORE (1 o) - (14 ) = o(N)

n<N

as N — o0, and that the same result should hold for Liouville’s function
A(n) (which gives the parity of the number of prime factors of n, counted
with multiplicity). Even the simplest non-trivial cases when k = 2, stating that
Yopenym@mpm+1) =o(N)and Y, _y A(m)A(n + 1) = o(N) as N — oo, are
still unproven. N

P. Sarnak [57] defines a sequence (a(n),>1 to be deterministic if there exists
a topological dynamical system (X, 7)—in particular X is compact—with zero
topological entropy, a point x € X, and a continuous function f : X — C such
that a(n) = f(T"(x)) for all n > 1. Sarnak’s conjecture [57] states that for every
deterministic sequence (a(n)),>1 we have

> uma(n) = o(N)

n<N

as N — oo. In other words, the sequence w(n) is orthogonal to a(n) for
every deterministic sequence a(n). Moreover, Chowla’s conjecture implies Sarnak’s
conjecture, [57]. The simplest non-trivial sequences for which Sarnak’s conjecture
holds are those obtained by rotations (X is the circle T = R/Z and T (x) = x + «
modulo 1), orthogonality in this case follows from a classical estimate by Davenport
[20]. We will mention several more recent results toward Sarnak’s conjecture later.
In [13] and [15] E. Cellarosi and Ya.G. Sinai discuss a probabilistic model for
square-free integers, using ideas from statistical mechanics. Let p; < p» < ... <
pm be the first m primes, consider the set §2,, consisting of all the square-free
integers of the form n = p}' p5* - -+ p," with v; € {0, 1}, and equip this set with the
discrete probability measure P, ({n}) = ¢, /n for a suitable constant ¢, . It is natural
to ask how a typical square-free integer in §2,, looks like as m tends to infinity. It
turns out that if we write n = pf,,"’ ("), then &, has a limiting distribution on (0, c0)
as m — o0o. The limiting random variable is infinitely divisible, has a continuous
density and is rather unusual: it is constant on the interval (0, 1] and then it decays to
zero faster than exponentially. This density is e~ p(¢), where y is Euler’s constant
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and p(¢) is the so-called Dickman-De Bruijn function. It is determined by p () = 0
fort <0, p(t) = 1for0 < ¢ < 1, and by the integral equation rp(¢) = ftt_l p(s)ds.
A consequence of limit theorem in [13] is that for every s > 0 we have

s

lim Ppln € Qw:n<pl)=e? / p(t)dt.
m—00 0

For s = 2 the limit equals e77 (3 — log4) ~ 0.90603, which means roughly that,
although the largest element of £2,, is py - -- p, = elToImlogm ap5r0ximately
90% of the mass of the probability measure IP,, is concentrated on numbers less than
p,zn, for large m.

The Dickman—De Bruijn function p had appeared before in the study of smooth
numbers (see the survey by A. Granville [38] and the references therein) and
implicitly in work of V.L. Goncharov on random permutations [37]. Another
instance is the following: let (X;);>1 be a sequence of random variables such
that P{X; = j} = } and P{X; = 0} = 1 — } Then lim, o0 P{, >} <
s} =e7V fg p(t)dt. It is also worth mentioning the nice form of the characteristic

function (inverse Fourier transform) of e = p (¢), namely ¢ (t) = exp ( fol em;*l d v) .

Another result of [13] is that in the ensemble §2,,, the number of distinct prime
divisors of n (thatis w(n) = Z?=1 v;) satisfies an Erds-Kac central limit theorem
with expectation and variance log log m. More precisely, for every a,b € R, a < b,
we have

—logl 1 b
lim By dn e, q< @ ~loglogm 1 _ / e
m—>00 J/loglogm V2r Ja

It is natural to ask whether the results of [13] can be generalized to include a
larger class of measures other than P, such as signed or complex measures. The
case of signed measures was considered by M. Avdeeva and D. Li and Ya.G. Sinai
in [3]. They slightly modify the definition of the £2,, to consist of all of all odd
square-free integers of the form n = p‘f pzz - pomwith v; € {0, 1}, where p; <
P2 < ... < pm be the first m primes larger than 2. The set £2,, is then equipped
with the measure given by P,,,({n}) = c;n(—=2)°" /n, where w(n) = 27:1 v; and
the choice for ¢, = (log m)~2% comes from the fact that P, (£2,,) = O(1). Avdeeva,
Li, Sinai show the following local limit theorem for w (n):

1 _ (1{*21(:;;1(:;;m)2

]P)m {n S Qm : a)(n) = k} = (—l)k e 4loglogm +Bm +8k,I’I11
47 loglogm

where By = 35, . p prime 108(1 + 2/p) — 2loglogm (which is uniformly
bounded in m) and &, = O(logloglogm/loglogm) uniformly in m and k. This
shows an almost Gaussian distribution for the measure of the set where w(n) = k,
except for the factor (—1)¥. If one considers the cases of even k and odd k separately,
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then one gets, foreverya,b e R,a < b,

. —2logl c (b
P {n €2, : wm)isevenanda < () oglogm < b} / e—xz/zdx,
a

J/2loglogm - 27
where C = lim,,— o0 ¢B. The analog statement when w(n) is odd is also true
if we replace C by —C. In this setting, it still makes sense to consider &,,(n)
&m(n)

such that n = p,; and ask what is the limiting distribution of &, € [0, c0)
as m — oo. Recall that for the probability measure studied in [13] and [15] the
limiting distribution was given by the Dickman-de Bruijn probability distribution.
In the case of signed measures considered by Avdeeva, Li, and Sinai, the limiting
distribution is an explicit tempered distribution involving first and second derivatives
of § functions. The same phenomenon occurs when one studies complex-valued
measures P, as done by F. Cellarosi [11]. He extended the results in [13] to
complex measures on ensembles of k-free integers, and obtained an explicit error
term. F. Cellarosi extended the results in [13] to complex measures [11] for k-free
integers and, assuming some regularity for the test functions, obtained a general
limit theorem for the distribution of &,, as m — oo, with an explicit error term.

The understanding of the autocorrelations for the function w(n) (described
by Chowla’s conjecture) is still far from being complete, although a number
of remarkable results have appeared recently. For example, K. Matomiki, M.
Radziwill, and T. Tao [50] proved in 2015 that for every positive integer k and every
10 < H < N we have

DD I ICE I R TCES )

hi,...hy<H |[n<N

loglog H 1 k-1
=0 |k H*'N|.
( < log H + logl/3000 N)

The same year, E.H. El Abdalaoui and X. Ye [25] independently proved that for
every ¢ > 0

N2
E | wmtn ) =0 (e )

h<N |n<N

On the other hand, the situation is fully understood for the square of the Mobius
function w?(n), i.e. the indicator of square-free integers. In 2013, F. Cellarosi
and Ya.G. Sinai [14] considered the r-point correlation functions for the sequence
(1*(n))n=>1, namely

. 1
e,y = Jim S P Rt o) i ),
n<N

which were first studied by L. Mirsky in 1949. For example ¢;(0) = 1/¢(2) =
6/m2, ¢2(0,1) = [T, prime(1 — 2/p?) ~ 0.3226340989, and ¢4(0, 1,2,3) = 0.
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They use these correlation functions to construct a probability measure /7 on the
space of binary sequences X = {0, 1}2. For every positive integer » and every
integers ko < k1 < ... < k,, they set

I{ixe X: xtkg) =xtk))=...=xtkr) =1} :=22) cr (0, k1 — ko, ko — kg, - .., kr —kg)-

This defines the measure of arbitrary cylinders (subsets of X in which finitely many
coordinates are fixed) and determines uniquely a probability measure on X, which
is invariant under the shift 7 : X — X, Tx = x’, x’(n) = x(n + 1). In other words,
Cellarosi and Sinai construct a dynamical system (X, I1, T')) which encodes all the
statistics of the number-theoretical sequence Mz (n). The main result of [14] is that
the dynamical system (X, I1, T) has pure point spectrum, and is isomorphic to the
an ergodic translation on the compact abelian group

G= [] z/rz.

p prime

equipped with the normalized Haar measure. The ergodic translation on G is given
byt :gmr— g+ (1,1,1,...), where the first coordinate is considered modulo
4, the second coordinate modulo 9, etc. Dynamical systems of this kind are often
referred to as “Kronecker systems”. The surprising fact is that the group G can be
obtain using only the second correlation function c2(h1, h2) = (0, hp —h1). In fact,
the sequence (c2(0, h)),>0 is positive definite and, by Bochner-Herglotz theorem,
¢2(0, h) is the h-th Fourier coefficient of a probability measure v on the circle S!.
This measure is then shown to be atomic, supported on the “rational” points of S!
of the form 27!/ 4 where 0 <l <d?—1landdisa square-free integer. The set of
such points (i.e. the support of the measure v) is a discrete group, and its Pontryagin
dual is precisely the compact abelian group G.

The results of [14] were independent of an earlier paper by M. Baake, R. V.
Moody, and P. A.B. Pleasants [5] in which the spectral measure v corresponding to
the second correlation function for square-free integers had been computed.

The main theorem of [14] strengthen a result by P. Sarnak. He defines a subset
A of Z to be admissible if its reduction modulo p? does not cover all of the residue
classes modulo p? for every prime p. He then considers the set <7 of sequences
x € X = {0,1}% such that {k € Z : x(k) # 0} is admissible. Sarnak proved
[57] that < coincides with the closure in X of the orbit of the sequence (U2 ()
under the shift 7'; furthermore, the topological dynamical system (<, T)—which
is a subshift not of finite type—has topological entropy equal to jfz log2, is
proximal, has no nontrivial Kronecker factors, and has a nontrivial joining (in
the sense of Furstenberg, [35]) with (G, t). Sarnak also defines a shift-invariant
probability measure m on </ and proves that the dynamical system (<7, m, T) is
a factor of (G, Haar, 7). In particular (&7, m, T) cannot be weak-mixing. It turns
out that (7, m, T) is isomorphic to the dynamical system (X, I1, T') constructed by
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Cellarosi and Sinai and, by the main theorem of [14], is isomorphic to the Kroncker
system (G, Haar, 7).

More generally, it follows from the main theorem in [14] is that the sequence
(u?(n)), is a typical realization of an ergodic dynamical system with zero
Kolmogorov—Sinai entropy, and no mixing properties. In other words, the function
w?(n) is almost periodic. This result shows that the randomness in the Md&bius
function ©(n) does not come from the locations of zeros and non-zeros (which are
described by %(n)), but only from the parity of the number of prime divisors of
square-free n’s. As pointed out by E.H. El Abdalaoui and M. Disertori [26], the
results of [14] and [57] can be rephrased as follows: let (X, m, T') be a uniquely
weakly mixing dynamical system, then for every continuous function f : X — C
with [y, f(x)dm(x) =0 and every x € X we have

D FT" () = o(N)

n<N

as N — oo.

The results in [14] have been generalized to k-free integers in an arbitrary number
fields by F. Cellarosi and I. Vinogradov [16]. They showed, for instance, that the two
dimensional array obtained by considering the indicator of square-free Gaussian
integers in Z[i] is a typical realization of an ergodic Z2-action with pure point
spectrum on a compact abelian group. In 2013, P.A.B. Pleasants and C. Huck [54]
studied the statistics (and entropy) of k-free points in an arbitrary lattice, using a
geometric notion of k-freeness that agrees with the one considered in [14] when the
lattice is Z.

Another generalization of square-free numbers is given by %-free numbers, that
is integers that are not divisible by any of the elements of & = {by, by, b3, ...},
where the b;’s are pairwise relatively prime integers greater than and such that
2?21 1/b; < oo. These integers were introduced in 1966 by P. Erdés [30] and
reduce to square-free integers when % consists of the squares of the primes. The
work of Sarnak [57] and Cellarosi and Sinai [14] has been extended in 2015 by E.H.
El Abdalaoui, M. Lemanczyk, and T. De la Rue [29] to #-free integers. The paper
[29] also discusses a remarkable result, namely that the statistics obtained in the
Mirsky-like correlation functions (where one averages over the interval [1, N]) can
be achieved by averaging over rather short intervals of the form [N, N 4++/N). This
partially answers a question by P. Erdés, who conjectured that for every ¢ > 0, the
interval [N, N + N¢) always contains at least one Z-free integer, for large enough
N. Moreover, the authors of [29] show that Chowla’s conjecture is equivalent to
a genericity condition for the sequence (u(n)),>1 with respect to the so-called
“completely random” extension of the Z-free analogue of the zero entropy measure
m considered by Sarnak in [57] (or the measure IT considered by Cellarosi and
Sinai in [14]). Some recent progress on the statistics of Z-free integers in short
intervals is due to and K. Matoméki [48] and M. Avdeeva [2]. In particular, Avdeeva
is able to find find the asymptotic growth of the variance for Z-free integers in short
intervals of the form [x, x + N), where N is fixed, ] < x < X and X — o0. A
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consequence of her work is a partial improvement of Matoméki’s estimate on the
number of short intervals containing no %-free integers. In Matomiki’s approach,
however, N is allowed to grow with X and in this setting her estimates are, to the
best of our knowledge, the strongest available. It is worthwhile mentioning that [2]
also includes estimates for the variance of k-free integers in arbitrary number fields,
previously considered in [16].

As mentioned above, P. Sarnak showed that the topological dynamical system
obtained as orbit closure of the sequence (12(n)),, which is a subshift not of finite
type of (X, T), has positive topological entropy. Moreover, it was proven that there
exists a unique measure of maximal entropy, as shown by R. Peckner [53] and in
a more general setting by J. Kulaga-Przymus, M. Lemariczyk and B. Weiss [45].
Moreover, it is shown in [53] that the Pinsker factor of the measure of maximal
entropy is precisely the measure considered by F. Cellarosi and Ya.G. Sinai in
[14]. This means that the dynamical system considered in [14] is a fundamental
building-block in the study of the thermodynamical formalism of the topological
shift associated to u2(n).

Remarkable progress has been made towards Sarnak’s conjecture, and many
classes of deterministic sequences have been shown to be orthogonal to the Mobius
sequence. The works of B. Green and T. Tao [40], J. Bourgain, P. Sarnak and T.
Ziegler [7],]. Liu and P. Sarnak [46], B. Green [39], S. Ferenzi, J. Kutaga-Przymus,
M. Lemanczyk, and C. Mauduit, C. [32], S. Ferenczi and C. Mauduit [33], C.
Mauduit and J. Rivat [51], E.H. El Abdalaoui, M. Lemainczyk, M. and T. de la Rue
[28], are just a few of the remarkable achievements in this direction, some of which
have been influenced by Ya.G. Sinai’s work.

The intimate connection between Sarnak’s and Chowla’s conjectures has been
analyzed from a dynamical point of view by E.H. El Abdalaoui, J. Kulaga-Przymus,
M. Lemanczyk, and T. De la Rue [27]. Among many beautiful results, they highlight
that their work and the main theorem of F. Cellarosi and Ya.G. Sinai [14] imply that
if Chowla’s conjecture holds for the Liouville function, then it must also hold for
the Mobius function. This may seem quite obvious, given the similarities between
the two functions. However, the recent work of K. Matomiki, M. Radziwilt and T.
Tao [49] shows how the sign patterns for the Liouville function may be easier to
study than those of the Mobius function.

Amongst the very recent activity toward the relation between Sarnaks and
Chowlas conjecture, we refer the reader to the works of T. Tao [64], A. Gomilko, D.
Kwietniak, M. Lemanficzyk [36], and E.H. El Abdalaoui [43].

We believe that the interest of Ya.G. Sinai in problems at the intersection between
number theory, probability theory, and the theory of dynamical systems has given
extraordinary momentum to the research in all these fields. We are confident that the
future mathematical endeavours of Ya.G. Sinai will be equally pivotal and inspiring
for many generations of mathematicians to come.
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Entropy Theory of Dynamical Systems )

Check for
updates

B. Gurevich

Abstract This section is devoted to Sinai’s advances in the entropy theory of
dynamical systems and to some developments of his ideas. A history of dynamical
entropy is also represented. When describing several events of this history, author’s
personal recollection is partially used.

Sinai’s participation in the creation and development of the entropy theory of
dynamical systems was the first direction of his scientific activity that made his
name renowned to many mathematicians as early as he was a student. A number of
reviews of this field has been published since then. Some of them, especially [18]
and [63] were used when writing this section.

This area of ergodic theory the foundations of which were laid by Andrei
Nikolaevich Kolmogorov had a dramatic impact on ergodic theory and, more
generally, on theory of dynamical systems as a whole. Multiple completely new
problems arisen right after introducing the concept of entropy at once attracted
to this field several gifted young mathematicians. One of them was Kolmogorov’s
student Yasha Sinai.

1 Prehistory of Dynamical Entropy (Shannon, Khinchin,
Kolmogorov)

In 1948, Claude Shannon published his famous paper “Mathematical theory of
communications” [45], where he proposed the quantity

H(p)=—)_ pilog p; ¢))
i=1
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as a measure of uncertainty associated with a random experiment with n outcomes
whose probabilities are pi, ..., p, (Shannon used the base 2 logarithms, but
the base is of no importance). Shannon points out that the same expression
for entropy was known in physics—he mentioned Ludwig Boltzmann—but had
another meaning. In the mathematical theory of information transmission (or simply
information theory) developed by Shannon, the entropy became a very important
concept.

Shannon’s theory quickly attracted particular interest among specialists in a
variety of sciences, in particular, mathematicians. In the Soviet Union, a majority
of them grouped around A.N. Kolmogorov and A.Ya. Khinchin. In 1953, Shannon’s
paper [45] was published in Russian (under another title and with some omissions),
and in the same year A.Ya. Khinchin [22] proved rigorously that a few natural
properties of entropy determine it uniquely up to a positive factor to be given by the
expression (1). Starting from the mid-1950s, Kolmogorov popularized information-
theoretic ideas in numerous papers and speeches at scientific meetings, and at about
that time he planned for extensive studies in different fields of mathematics with the
use of these ideas.

It was repeatedly observed that the decade from 1950 to 1960 was one of
the most fruitful periods in Kolmogorov’s scientific activity: suffice it to say
that Hilbert’s 13th problem was solved and the KAM theory was founded just
in this period. Kolmogorov worked hard on problems of classical mechanics.
According to his own words, he was motivated by John von Neumann’s works on
spectral theory of dynamical systems and the results by Bogoliubov and Krylov in
topological dynamics. In spite of all these facts, it appeared absolutely surprising
that Kolmogorov decided to apply the concept of entropy to dynamical systems.

2 Emergence of Dynamical Entropy

The first presentation of Kolmogorov’s new concept arose during the course of
lectures on dynamical systems he delivered at the Mechanics and Mathematics
Department of Moscow State University in the fall 1957. The lectures remained
unpublished, and all we know is based on the memories of Kolmogorov’s students.
Yasha Sinai became a graduate student just at that time, and he witnessed [54, 61]
that at one lecture, Kolmogorov unexpectedly introduced a new notion, namely the
entropy of a Bernoulli shift, and proved some its properties.

Kolmogorov’s approach stated in [23] concerned itself with much more general
class of dynamical systems, and it turned out to be quite different. From the very
beginning, Kolmogorov uses Rohlin’s theory [39] of Lebesgue spaces and their
measurable partitions. According to this theory, in a Lebesgue space (a universal
example is the interval [0,1] with the Lebesgue measure), there is one-to-one
correspondence between the o-subalgebras of the o-algebra of measurable sets
and measurable partitions. More precisely, one should deal with classes of sets
and partitions which coincide up to a set of zero measure (in short mod 0). The
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above-mentioned approach is as follows (our notation is somewhat different from
that in [23]). Let (M, .#, u) be a Lebesgue space, where .# is the o-algebra of
measurable sets and p a probability measure without atoms (below we often omit
A from the notation). Kolmogorov first introduces the joint conditional information
of measurable partitions & and y, given a measurable partition 8, and its particular
case (when y = «), the conditional entropy of o given B. It is the random variable
H,(«|B) that is defined at a point x € M via formula (1): if ¢ = (A1, Ap,...)isa
countable partition, one puts p; := (A;|Cyx), where Cy is the atom of S containing
x. The integral of H, («¢|B) in x (w.r.t. i) is denoted by H («|B) and called the mean
conditional entropy of o given B (now one usually omits the word ‘mean’). In fact,
Kolmogorov defines H («|B) for all measurable partitions «, 8 or, equivalently, for
all o-subalgebras of the basic o-algebra .# . Then he proves the main properties of
the quantities introduced, and turns in the next section to dynamical systems.

He considers a one-parameter group {7’} of measure-preserving transformations
of M and introduces a new concept that in the future will play an outstanding part
in entropy theory. Namely, he calls {7} a quasi-regular dynamical system if there
exists a o-algebra «&# C .# such that (a) T'«/ 2 & fort > 0; (b) the minimal
o-algebra containing U, T o7 is .#4; (c) N T' <7 is trivial in the sense that every set
in this o -algebra has measure O or 1.

Quasi-regularity simulates the regularity property of some stationary processes
that gradually forget their past, in which case <7 is the collection of events observed
until time 0, and 77 is the shift by 7 in the trajectory space of the process.

The term ‘quasi-regularity’ was soon abandoned by Kolmogorov’s followers in
favor of ‘K -property’, ‘K-mixing’ or ‘Kolmogorov’s mixing’ and so on, while the
systems with this property received the name of ‘K -systems’.

Kolmogorov states that for every K -algebra <7 (a o -algebra with properties (a)—
(c)) and for every s > 0, we have H(T'* o/ |T'«/) = hs, where h € [0, 0o] is
independent of <. This h was called the entropy of the dynamical system {T"}.

However, it was soon discovered by V.A. Rohlin that Kolmogorov’s proof
of the independence of k& from .« was incorrect. Curiously, some other famous
mathematicians made later similar mistakes.

Kolmogorov was deeply distressed with his error, presumably the only erroneous
statement in his publications by then, and was striving to correct it as soon as possi-
ble. In late 1959 he submitted a new paper [24]. Here he deals with the discrete time
systems (automorphisms) only, and considers the countable measurable partitions
o = (Aq, Ay, ...) such that

H() ==Y u(A)logu(Ay) < oo

1

and « is generating (or a generator) in the sense that the sets T"A;, n € Z,i =
1,2, ..., generate the o-algebra .#. He proves that for such « the limit

lim n'H(e2™ ") = h(T, o),
11—
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where
H ™Y :=H@vT'av-.-vT"a), )

is independent of «, and now one refers to this joint value of h(T, @) as h(T), the
entropy of the automorphism T := T'. By definition the partition o/%_l is formed
by the sets A;, N TlA,-1 n... T"_IA,;H , while the existence of £ (T, o) was already
mentioned by Shannon in other terms.

Therefore, Kolmogorov [24] defined the entropy for all automorphisms that have
a generator of finite entropy. Let us note that from the very beginning, the definitions
of the entropy were stated in such a way as to make this quantity invariant under
isomorphisms (the dynamical systems {7} and (T"} acting in the spaces (M, )
and (M, [1), respectively, are isomorphic if there exists a mod 0 isomorphism ¢ :
(M, ) — (M, 1) that takes T’ to T! for each r; if ¢ is discrete, it suffices to
have this for + = 1). The entropy from [24] is clearly invariant, which enabled
Kolmogorov to solve a long-stated problem: he showed that two Bernoulli schemes
with distributions p and p’ generate the non-isomorphic shifts (Bernoulli shifts) in
the corresponding sequence spaces if H(p) # H(p’). It is necessary to note that
this was already stated in [23] and even in Kolmogorov’s lectures mentioned above.

However, at that time Kolmogorov already knew that there existed a more general
definition of the entropy suggested by Ya. Sinai. Kolmogorov recommended Sinai’s
paper [46] for publication in ‘Doklady Akademii Nauk SSSR’ (‘Proceedings of the
USSR Academy of Sciences’) the same day as he submitted [24], and both papers
appeared in the same issue of the journal.

Sinai deals with an automorphism 7 of a Lebesgue space (M, ) and finite
partitions & of M into measurable sets. He defines the entropy of T by

h(T) =suph(T, @), 3)

where the supremum is taken over all o as above (h(T) is also said to be the
measure-theoretic or metric entropy of 7 with respect to ). Then he proves the
following important theorem.

Theorem 1 Ifa = (Ay,...,Ax) and B = (By, ..., By) are finite partitions such
that every Bj belongs modO0 to the o-algebra generated by the sets T"A;, i =
1,....k,neZ then h(T, B) < h(T, o).

This immediately implies that #(T) = h(T, ) if « is a generator, and a similar
(and even simpler) argument proves that 2(T) = 0 if T has a one-sided generator,
i.e., a partition @« = (Ay, ..., Ag) such that the sets T"A;,i = 1,...,k,n € Z+
generate mod O the basic o-algebrain M.

The advantages of these general results and such an approach were demonstrated
in this paper. Sinai considers a group automorphism 7" of a 2-dimensional torus,
given by a 2 x 2 matrix T with integer entries and det T +1. The Lebesgue
measure is T-invariant, and T is ergodic if and only if T has a real eigenvalue A
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with |A| > 1. It is proved in detail in [46] that A(T) = log|X|. Therefore two
ergodic automorphisms of a 2-torus can be isomorphic only if the eigenvalues of the
corresponding matrices coincide in absolute value. The multidimensional extension
concerns the automorphisms 7 of an n-torus whose matrices T have only real
eigenvalues A; and reads: h(T) = }_;. ;- log|A;|. This statement is claimed to
have a proof similar to that for the 2-torus case.

Sinai’s work [46] merited so detailed considerations here, because it not only
contained the first definition of entropy applicable to all automorphisms of a
Lebesgue space (in fact, of any probability space), but also gave a means for
calculating the entropy for specific systems. Group automorphisms of tori were the
first nontrivial examples.

Already at this stage one could have suspected that the entropy theory for systems
with positive entropy must differ essentially from that for systems with zero entropy
(like shifts on compact Abelian groups with Haar’s measure). This prediction was
confirmed later.

Upon concluding this section, I should mention one more character of the entropy
drama. It became a custom in papers and books on entropy theory to mention that
D. Arov, the 1957 final-year student of the Odessa State University, suggested in his
handwritten thesis to use Shannon’s entropy in the study of dynamical systems (this
fact was mentioned for the first time in [24]). In fact, Arov introduced a quantity
that he named the e-entropy of a dynamical system with continuous time, but,
for an automorphism 7', it would read as follows. For every ¢ € (0, 1/2], the
e-entropy of T is defined by he(T) = supy( h(T, ), where 2L(¢) is the family
of measurable partitions with all atoms of measure > ¢. This definition remained
unpublished for many years (see [6]). Arov had no means for evaluating his entropy,
and he considered no examples. Clearly, lim;—.0h:(T) = h(T), so that h(T)
in Sinai’s definition is determined by the function ¢ +— h (7). But, for ergodic
automorphisms, the opposite is also true: if Ty, T» are ergodic and h(T1) = h(T3),
then ho(T1) = he(T?) for all ¢. At the same time for non-ergodic automorphisms,
this is not the case. It seems that these facts cannot be established using only
elementary properties of the entropy (see below). The principal value of Arov’s
achievement is that he guessed that it is useful to take the supremum over partitions.
A similar approach was later used in Sinai’s definition. The same was earlier done
for Bernoulli shifts in Kolmogorov’s lecture mentioned above.

3 Early Development of Entropy Theory

Along with Sinai, a key role in this development was played by V.A. Rohlin and his
student L.M. Abramov, and a little later by Kolmogorov’s student M.S. Pinsker. In
the same year, 1959, Rohlin [40] described some useful properties of the entropy.
In particular, he introduced the following entropy metric p (‘Rohlin’s metric’) in
the space of partitions §& with H(§) < oo: p(§,n7) = HEIn) + H(nl§), and
proved that this space with p was a complete separable metric space and that
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|h(T, &) — h(T,n)| < p(&, n). Also he observed that if H(§) < oo, then

W(T,&) = h(£|&; ), where £ == V2 T ¢, 4)

This formula is very useful in evaluating the entropy of specific systems. Moreover,
it can be applied to endomorphisms (measurable, but in general not one-to-one maps
T such that (T~ la) = u(A)), and hence makes it possible to deal with the entropy
for them as well.

Abramov published two important technical papers, [1] and [2], where he found
the entropy of an induced automorphism as well as the entropy of the so-called
suspension flow. The next year, Pinsker [38] showed that for every automorphism 7’
of a Lebesgue space there exists a maximal factor-automorphism with zero entropy,
i.e., a o-algebra «7°(T) such that if @ is a countable measurable partition with
H(a) < oo, then h(T,«) = 0 if and only if all atoms of o belong to </O(T).
Since then the o-algebra .&7°(T) is called the Pinsker algebra, and the measurable
partition corresponding to it, is called the Pinsker partition of T and denoted by
7 (T). If h(T, ) > O for a given T and every nontrivial ¢, then T is referred to as
an automorphism with completely positive entropy; both o7°(T) and 7 (T) for such
T are trivial, i.e., each set in .27%(T') has measure 0 or 1.

During that period entropy theory was progressing very rapidly. Rohlin and Sinai
[44] investigated the o -algebras (or partitions) that increase under the action of an
automorphism 7. They proved the following:

Theorem 2 Forevery T there exists a measurable partition & such that (a) T¢ > &,
i.e., each atom of T& lies in an atom of &; (b) T"E tends in a natural sense to ¢,
the partition into individual points, as n — 0o; (c) T"& tends to n(T); and (d)
H(T§|8) = h(T).

They referred to such & as a perfect partition. If h(T) > 0, there exists partitions
that have only some of the properties (a)—(d). For example, in (d), instead of equality,
one can have H(T&|§) < h(T) (the opposite strict inequality is impossible). If (a)
and (b) hold, then lim,,_,oc 7~" > n(T). By definition, a K-partition £ satisfies
(a), (b), and lim,_,oc T7"£ is the trivial partition. Hence 7 (T) is trivial if T is a
K-automorphism (which was earlier stated in [38]). Combined with the existence
of a perfect partition, this implies that the family of K-automorphisms coincides
with that of automorphisms with completely positive entropy (for automorphisms
with finite generator this was also stated in [38]). Notice that contrary to what was
written in [23], there can be K-partitions & with H(T§|§) < h(T). Moreover,
E. Lindenstrauss, Y. Peres and W. Schlag [28] showed much later that, for some
dynamical systems, there exist K -partitions & with H(T§|§) = h for every positive
h < h(T).

Immediately after emergence of the dynamical entropy, the following two
questions came to the center of attention: how are the entropy and spectrum of a
dynamical system, especially of a flow, related to each other, and are two Bernoulli
shifts with equal entropy isomorphic?
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3.1 Entropy and Spectrum

Already Kolmogorov [23] noted that every K-automorphism had the Lebesgue
spectrum of infinite multiplicity and conjectured that the same might be true for the
K -flows. Rohlin [39] added that if T is an automorphism of (M, p) with h(T) > 0,
then the unitary operator Ur defined by Ut f (x) := f(Tx), f € L>(M, ), x € M,
has an invariant subspace L C L?*(M, u) where it has the Lebesgue spectrum
of infinite multiplicity. (T as a whole is said to have such spectrum if L is the
orthogonal complement of the one-dimensional subspace of constants.)

But for flows, the question turned out to be much more complicated. Kol-
mogorov’s conjecture was proved by Sinai [50] who used the so called suspension
representation, which can be assigned to every aperiodic flow. (This is an abstract
form of the Poincaré section and the first return map, or Poincaré map.)

However, not every flow with the Lebesgue spectrum of infinite multiplicity has
the K -property or positive entropy. The first example of this kind was the horocycle
flow on a compact surface of constant negative curvature. By means of the method
used by I. Gelfand and S. Fomin [10] in their study of the spectrum for the geodesic
flow, O. Parasyuk [35] showed that the horocycle flow has the Lebesgue spectrum,
while by the same method one can show that the spectral multiplicity is infinite. On
the other hand, Sinai’s conjecture that the entropy of the horocycle flow is zero, was
proved in [15].

3.2 Isomorphism Problem: First Results

Shortly thereafter Kolmogorov’s student L. Meshalkin [30] showed that two
Bernoulli shifts are isomorphic if they have equal entropy and if all the prob-
abilities that determine them, are of the form p’kf, where p is a positive inte-
ger, common for both systems, and k; are arbitrary positive integers such that
> p~ki = 1. The simplest case of such a situation is provided by the distributions
(1/8,1/8,1/8,1/8,1/2)and (1/4, 1/4, 1/4, 1/4,) with entropy 2 log 2 (since then
it is called Meshalkin’s example). The isomorphism is constructed in the form of
coding the realizations of a stationary process into realizations of another one, and
care is taken that the shift and measure in the first space are mapped into the shift
and measure in the second one, respectively. Some generalizations of Meshalkin’s
method were made afterward, but no general results emerged.

A completely different example of isomorphism was considered later by R. Adler
and B. Weiss [4], who established that two ergodic group automorphisms of the 2-
torus are isomorphic if they have the same entropy. For this they first proved that the
entropy of such automorphism with respect to the Lebesgue measure is bigger than
the entropy with respect to any other invariant measure. The latter fact fits naturally
in the thermodynamic formalism as well (see Sect. 4).
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But the first general result in the new isomorphism problem was obtained by
Sinai [52] (see [55] for details) who suggested the concept of a weak isomorphism of
dynamical systems. By definition it retains all properties of the isomorphism except
that the mappings of Lebesgue spaces onto one another are now not necessarily
invertible. Weakly isomorphic systems have the same spectrum and entropy, and,
what is much more important, all Bernoulli shifts with equal entropy are weakly
isomorphic. This spectacular theorem follows from another remarkable one.

Theorem 3 If T is an ergodic automorphism of a Lebesgue space and </ is a
strictly increasing o-algebra (such <f exists if and only if h(T) > 0), then for
any probability distribution p = (p1,..., px) with H(p) < H(T\), there
exists a partition « = (A1, ..., Ax) such that A; € <7, u(A;) = p; for all i, and
{T"«, n € Z} is a sequence of independent partitions, i.e., a generates a Bernoulli
factor.

This fact was of fundamental importance for the whole theory of dynamical
systems and its applications. Everybody realized the interplay between dynamical
systems and random processes: if T is an automorphism of a Lebesgue space (M, i)
and f a measurable function on M, then F := {f(T"x), x € M, n € Z} can be
treated as a stationary random process. If T itself is of probability origin (to be
the shift in the trajectory space of a stationary process), it would be not surprising
if T exhibits some stochastic behavior. But if T is a diffeomorphism, i.e., purely
deterministic, e.g., a group automorphism of the torus, one could expect that F
cannot be ‘too random’. Sinai’s theorem showed that this is not the case: even the
‘most random’ of all discrete time stationary processes, a Bernoulli process, can
appear as F in this construction. Today this is universally known, but at that time,
one had to show great intellectual bravery to imagine something of the kind.

The proof of the theorem on Bernoulli factors consists in successive transitions
from one increasing partition to another and taking their limit (intersection). Here
the following observation by Rohlin is used: if £ is an increasing measurable
partition, i.e., T_1§ < &, and n is a measurable partition such that T_lé <n<§g,
then n is also increasing. Moreover, every partition sequence obtained by this
strategy clearly decreases, and one should only make sure that the limit of this
sequence be of the form V72 T~ «, where « generates a Bernoulli factor and has the
prescribed measures of atoms. But this is only a skeleton of the proof. To implement
it in detail one should choose a transition between partitions mentioned above at
each step. In [55] where the proof was published, Sinai starts with a significant new
contribution to his joint work with Rohlin on the theory of increasing partitions.
Then he carried out the necessary construction, where a deep insight in the situation
helped him to overcome a number of technical difficulties.
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3.3 First Examples of Smooth K-Systems

The absolutely first such an example, I think, was an ergodic group automorphism
of the 2-torus. Its K-property was discovered by Sinai, but left unpublished (see,
however, [53]). Later Rohlin [41] obtained a similar result for automorphisms and
even endomorphisms of compact commutative groups (for endomorphisms, the K -
property is replaced by that of having completely positive entropy). And again
Sinai [48] discovered first smooth K -flows, namely, the geodesic flows on Riemann
manifolds of negative constant curvature and finite volume. In [48] he constructed
a K-partition for the 2-dimensional case to some extent explicitly and proved the
K-property of this partition, making use of the ergodicity of the horocycle flow
established by Hedlund. Sinai also evaluated the entropy of the geodesic flow in the
compact case. He expressed it in terms of the curvature, the volume of the whole
manifold (of dimension n) and the (n — 1)-dimensional volume of the unit (n — 1)
sphere.

Almost simultaneously Sinai found another evidence of stochasticity for
geodesic flows. Let {S;} be such a flow and f be a real measurable function on
its phase space X provided with the corresponding probability measure p. Then
fi(x) == f(S:x), x € X, is a stationary random process. In [47] he proved the
central limit theorem in the following form: if the flow {S;} acts on a manifold of
constant negative curvature and the function f satisfies some regularity conditions,
then the random variable F;(x) := for fi(x)dt, after subtracting its expectation
and dividing by the square root of its variance, will converge in distribution (as
T — 00) to a standard Gaussian random variable. From a general point of view, this
fact is not so surprising: since {S;} is a K-flow, F; is a sum of many small weakly
dependent random variables and must be asymptotically Gaussian. But to prove
this rigorously, one had to overcome considerable difficulties. The only general
sufficient condition known by then under which a stationary random process obeys
the central limit theorem, was the so-called Rosenblatt strong mixing condition
(named after M. Rosenblatt). However, as Sinai writes in [53], he could not check
if the above process Fr fits this condition. That is why he introduced [51] a weaker
‘local Rosenblatt’ condition and proved that it was also sufficient for the central
limit theorem to apply. Moreover, he managed to find out that many processes { F;}
obey this property, at least the set of functions f generating such processes is dense
in L2(X, ).

A little later Sinai [49] extended the results from [48] and [47] to the geodesic
flows on some compact surfaces of negative non-constant curvature. Some proper-
ties of the horocycles, known by that time and new ones, discovered specially for
this purpose, were also used there, but the Hedlund—Hopf approach could not be
applied literally.

Looking at Sinai’s achievements in entropy theory over the few years since
the work [46], everybody would be struck by abundance and depth of his results.
So it is hardly surprising that in 1962, he was invited as a speaker to the
International Congress of Mathematicians in Stockholm (more surprising is that he
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was authorized to leave Russia). In his paper [53] he not only discusses his previous
results, but also suggests some new directions of investigation. In particular, he
introduces the notion of a transversal flow related to a given automorphism 7 (or
flow {S$;}) acting on a Riemann manifold X. By definition the trajectory partition of
the transversal flow {Z;} is invariant in the sense that each trajectory is transferred
into another trajectory under the action of T (or every S;). Another property is that
there exists the local contraction coefficient, that is for every x € X and every
interval {Z;x,0 < s < u}, the time length of the interval {TZ;x, 0 < s < u}
divided by u tends to a limit A(x) (for {S;} the definition is similar). The transversal
flow relates to bundles of asymptotic trajectories: if two trajectories of T or {S;} start
from the same trajectory of {Z;}, they approach each other, often exponentially fast.
Thus the classes of asymptotic trajectories of the initial system can be identified with
the trajectories of the transversal flow. Such a structure in the phase space owes its
origin to the instability of the motion: for a point x of the phase space, the majority
of trajectories starting from points x” near x move away from the trajectory of x,
while the exceptional points x” constitute a ‘manifold” of positive codimension.

The simplest example is the ergodic automorphism 7" of the 2-torus, for which a
transversal flow can be taken as the motion with unit velocity along the eigenvector
of the corresponding matrix whose eigenvalue A is less than one. Another example
is the geodesic flow on a surface of a constant negative curvature, in which case
the part of the transversal flow is played by the horocycle flow. In both examples the
entropy is closely related to the contraction coefficients. In particular, the contraction
coefficient for an ergodic automorphism of the 2-torus, is the above eigenvalue A <
1, while the entropy equals —logA. In the case of geodesic flow the contraction
coefficient is —(—k)!/? (where k is the curvature), and the entropy is proportional
to it (let us note that by definition the contraction coefficient for a flow is similar not
to that for an automorphism, but to its logarithm).

An existence condition for a K-partition can also be expressed in terms of a
transversal flow. Moreover, under these conditions one can divide the trajectories of
the transversal flow into intervals in such a way as to obtain a K -partition. It is very
useful to consider the transversal flows for 7 and 7! (or {S;} and {S_;}) together.
In some cases it gives a possibility to find the partition = for T (or {S;}) almost
immediately.

One can observe that the transversal flow as such is not as essential for this
approach as the partition into its trajectories. That is why the multidimensional
case can also be included in this context, except that the transversal flow should
be replaced by a transversal field. The latter can be identified with the partition of
the phase space into the orbits of the field, and the above-mentioned properties of
the trajectory partition of the transversal flow, its invariance and the existence of the
contraction coefficient, should retain their validity.

Forerunners of some further investigations can be found here. For instance, in
1963, D. Anosov introduced a class of dynamical systems that were later named
after him. The definition of Anosov’s (or uniformly hyperbolic) systems resembles
that of the systems with transversal fields, and the theories of these two classes of
systems are to some extent close to each other. Moreover, many system studied
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by Sinai earlier (the ergodic group automorphisms of the 2-torus, geodesic flows
on compact manifolds of negative curvature) turned out to be Anosov’s systems.
This was a motivation for publishing the joint paper [5]. But shortly before, Sinai
published another work [57] where he continued the study of flows with Lebesgue’s
spectrum of infinite multiplicity started in [50] with the method of transversal fields
contemplated in [53]. He developed this approach in a measure-theoretic context,
much more general than needed for Anosov’s flows.

Emergence of Anosov’s systems and their generalizations opened up a new field
in theory of dynamical systems, and Sinai contributed much to this field (see [37]).

3.4 Generators

Let us recall that Kolmogorov’s definition of the entropy stated in [24] made sense
only for automorphisms that had generators with finite entropy. A more general
definition by Sinai [46] was free of this restriction, but the existence problem for
generators remained open for some time. The first result here was obtained by
Rohlin [42, 43], who proved that every aperiodic automorphism T with h(T) < oo
had a countable generator § with H(§) < oo. This made Kolmogorov’s definition
almost as general as Sinai’s. But this happened four years after the definitions by
Kolmogorov and Sinai appeared.

In 1970, W. Krieger [25] made the next step—he proved that every ergodic
automorphism T with h(T) < oo has a finite generator. Later he refined this
statement as follows: there exists a generator with < 2T 4 atoms; note that no
generator can have < 2"(T) atoms, so that this estimation can be treated as optimal.
It is interesting that Krieger’s argument is essentially based on a result of Sinai’s
student A. Zaslavsky, who also tried to solve the problem of finite generators. A
number of alternative proofs appeared containing refinements and generalizations
of Krieger’s result. The strongest of the statements I know, is due to C. Grillenberger
and U. Krengel [13]. The next theorem contains a particular case of their result.

Theorem 4 Let T be an ergodic automorphism with h(T) < oo, and p =
Pl, ..., Pk a probability distribution with H(p) > h(T). Then there exists a
generator & = (Cq, ..., Cy) such that u(C;) = p;i for1 <i <k.

This theorem together with Sinai’s theorem on Bernoulli factors can be used
to prove that h(T) determines Arov’s e-entropy (see Sect.2) for an ergodic
automorphism 7.

3.5 Entropy and Periodic Orbits

Periodic orbits of dynamical systems are of traditional interest to various fields of
mathematics, especially to geometry. From results by J. Hadamard and M. Morse,
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it is known that the set of tangent vectors of a compact surface of negative curvature
that are tangent to closed geodesics, is everywhere dense. In 1963 Anosov extended
this to the multidimensional case. A relation between periodic orbits and entropy
was realized rather early. In 1966, Sinai [56] published the following theorem.

Theorem 5 Let Q be a closed compact Riemann manifold of dimension d > 1
and v(t), the number of closed geodesics of multiplicity 1 and length < t, t > O.
Assume that the curvature K of Q along every 2-dimensional direction satisfies
—K3 < K < —K}. Then

) nv(t)

1
< lim sup . <(d-1)K;. (®)]

d— DK, < liminf ™"
—00 t t—00

Formally, the proof of the theorem was purely geometric, but the reasoning
behind it was closely related to the transversal fields method developed by Sinai
in [53] and used by him before in other contexts. He remarks that the constant K
in (5) can be replaced by the entropy of the geodesic flow.

This ability to reveal dynamical problems where they are not so evident as
above, is typical for Sinai’s mathematics. I repeatedly heard him saying: ‘this is
our question’ (or ‘ergodic question’), especially as a response to a physics talk
at his seminar. The dynamical approach to formally non-dynamical problems was
used by many Sinai’s followers, the most successful of which is G. Margulis. He
strengthened Theorem 5 by replacing lim sup and liminf for the limit. Later he
obtained, for Anosov’s flows, an even stronger result: lim;_, oo htv(t)e”” =1,
where £ is the topological entropy of the flow.

Similar estimates for the exponential grow rate of P,(T), the number of fixed
points of T", were proved for hyperbolic diffeomorphisms. For some popular
examples, such as topological Markov shifts and torus automorphisms, P, (7T") can
be found explicitly. In these cases a counterpart of the above Margulis formula holds.
There were attempts to obtain the similar results beyond the hyperbolic systems.
Namely, A. Katok proved in [17] a theorem that implies the following: if T is a
C (@ > 0) diffeomorphism of a smooth surface, then lim Sup,_, oo P"r(lT) >
hiwp(T). Recently this result was extended in a stronger form by Yu. Lima and
O. Sarig [27] to flows with positive topological entropy on 3-dimensional smooth
manifolds. They used some ideas from thermodynamic formalism for infinite
alphabet topological Markov shifts.

4 Topological Entropy and Emergence of Thermodynamic
Formalism

The history of topological entropy had in fact started somewhat earlier than when
its definition was published in full generality. Sinai did not participate in this
development personally, but his students did, and all this was discussed at his
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seminar. In 1964, W. Parry [36] considered the following question. Let A be an
n x n matrix with entries a; ; € {0, 1}, and

Xai={x=)icz €1, ..., % ay v =1} ©6)

The set X4 (now called a Markov set or a Markov compact) is clearly T-invariant
where T is the one step shift transformation on {1, ..., n}%. Assuming that A is
transitive in the sense that for every pair (i, j), there exists k € Z such that the
(i, j)th entry of A¥ is positive, Parry asks: what is the supremum of 1 (T) over the
family of T'-invariant probability measures p concentrated on X 4. (We write /1, (T)
instead of h(T'), because now w is not fixed.) He refers to this supremum as the
absolute entropy and shows that it equals log A(A) where A(A) is the maximal in
the absolute value eigenvalue (Perron number) of A. Moreover, it is achieved at the
unique p, the Markov measure (x;, i € Z, forms a stationary Markov chain with
respect to i) whose transition probabilities are expressed explicitly in terms of A.

It is fair to say that Shannon [45] solved almost the same problem in connection
with his definition of capacity for a noiseless channel. His results were improved by
Yu. Lyubich [29], but were not noticed in time by specialists in dynamical systems.

In 1965, R. Adler, A. Konheim and M. McAndrew [3] introduced a new
topological invariant for continuous maps of a compact topological space M.
They named it the fopological entropy and defined by analogy with h(T), except
that countable partitions and their entropy are changed for open covers (of any
cardinality) and the logarithm of the cardinality of their minimal subcovers. In [3]
and subsequent works the topological entropy for a variety of dynamical systems
was evaluated, and it turned out that Parry’s absolute entropy was simply the
topological entropy of the Markov shift T on X4 (X4 is compact in a natural
topology, and T is a homeomorphism of X 4).

The challenge immediately arose to discover the relationship between 4 (7") and
hiop(T), the topological entropy of T'. Parry’s result suggested that

hop(T) = sup  hy(T), @)
neS(T)

where #(T) is the family of T-invariant Borel probability measures on M.
For several years the variational principle (7) remained a conjecture. In 1969,
L. Goodwyn [12] showed that &, (T) < hwp(T). A year later, E. Dinaburg
[9] proved (7) for homeomorphisms of the spaces whose topological dimension
is finite. And at last, T. Goodman [11] established (7) in full generality. It is
interesting that another definition of A (T'), very popular now, arose in [9], but
its author is Kolmogorov, who recommended the paper for publication and made
a hand-written insert into the text (in [9] Kolmogorov’s authorship is indicated).
This definition is suitable for a continuous map 7 of a compact metric space
(M, p) and is as follows. One can define a sequence of metrics p, on M by
pn(X,y) = maxp<j<p p(Tix, Tiy) and, for every ¢ > 0, denote by N(T,n, ¢)
the minimal m such that there is a partition of (M, p) into m sets of diameter < 2¢.
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Then lim,_, ¢ lim,,_s oo ,11 log N(T, n,e) = hwp(T). Let us note that, by definition,
log N(T', n, €) is the Kolmogorov g-entropy of the compact (M, p,). Since hop(T)
is determined by the topology on M, the equality implies that we can take any metric
p inducing this topology for evaluating A, (T) in this way.

At the same time as this development, significant events have occurred in
statistical physics. R. Dobrushin, O. Lanford, and D. Ruelle (the two last working
together) suggested a new approach to the notion of the limiting Gibbs distribution,
including it into the more general concept of a Gibbs random field on Z¢ or R?
(or a Gibbs measure on the configuration space). This soon resulted in the ‘Gibbs
explosion’ in mathematical methods of statistical physics, comparable with the
‘entropy explosion’ in ergodic theory. What is more, the two fields turned out
to be related to each other due to a variational principle. Although the physicists
primarily are interested in the multidimensional case, we consider a 1-dimensional
lattice compact spin system. Then we have, as before, a compact metric space M
(the space of spin configurations in Z), a continuous map 7 defined on M (the
shift transformation), and a continuous function f : M — R (determined by the
interaction potential). One defines the functional p — h,(T) + f fdu, e I(T).
Its supremum P ( f) is referred to as the pressure. The definition of P(f) becomes a
variational principle if we take into account that P (f) can be defined independently,
by f only. The points of maximum of the functional in question are said to be the
equilibrium measures, and usually one can prove that these measures are the same
as the Gibbs measures mentioned above. All this can be carried out in a general
situation, with no mention of physical models; P(f) is often referred to as the
pressure (or topological pressure) of f (because T is usually fixed). If f = 0,
we arrive at the definition of hp(7). Thus the topological entropy is a special
case of the topological pressure. The principal questions now concern the existence
and properties of equilibrium measures, in particular, the number of them and the
possibility of alternative, more explicit, descriptions for these measures. Gradually,
due to these and related problems, a new direction in the theory of dynamical
systems arose, which is often referred to as the Thermodynamic Formalism. The
term was already used in this meaning by R. Bowen [7], but it was known in
statistical physics (where it had another meaning) at least from the first half of the
twentieth century.

Sinai’s paper [59] became one of the cornerstones of the Thermodynamic
Formalism. He suggested an alternative approach to the notion of a Gibbs measure.
This measure is obtained as a weak limit of probability measures ft, , absolutely
continuous with respect to a measure of maximal entropy for T with densities of the
form py n(x) = cpmexpy i, f (T'x). Taking a mixing finite alphabet topologi-
cal Markov shift for T (such T possesses only one measure of maximal entropy) and
a sufficiently ‘smooth’ f, Sinai proves that the limit limy, ;;— 00 fbm,n =: | €Xists,
and he discovers its properties. Then he considers an Anosov diffeomorphism T
defined on a Riemann manifold M and, using his theorem on Markov partitions
[58] (improved by Bowen), he transfers u ¢ to M. 1f f is determined by the volume

expansion coefficient along an unstable manifold, then the T -invariant measure fi f
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obtained in this way exhibits some remarkable features, in particular, the measures
it induces on unstable manifolds are absolutely continuous with respect to the
Riemannian volume on the corresponding manifolds. This & ¢ is called u-Gibbsian
(‘w’ is after ‘unstable’). Another f related to stable manifolds yields s-Gibbsian
measures. A similar construction is suggested in [59] for Anosov flows. This will be
described in more detail and with some generalizations in [37].

S Ornstein’s Theory

Ornstein’s solution to the isomorphism problem for Bernoulli shifts was published
in 1970. While the result was known already, the paper [31] was not yet available
in the Soviet Union. D. Ornstein came to a symposium on information theory in
Tallinn. Sinai and a group of his students also came there. I remember that for several
consecutive days, instead of attending official meetings, we met in a separate room,
and Don tried to explain his proof to us. He was writing on the blackboard nothing
but several letters ‘a’ and ‘b’ variously ordered, and his arguments appeared to be
heuristic and not too clear. Much later, when working on a Russian translation of his
book [32], I realized the depth and originality of his approach. It is not necessary to
present Ornstein’s theory in detail here, because there are good presentations in the
literature. I only wish to say a few words (some of his results were obtained together
with his collaborates, but for short I mention below only him).

Ornstein deals with an automorphism 7 of a probability space (M, ., i) (this
space does not need to be a Lebesgue space, but .# should be countably generated)
and a finite measurable partition £ of M whose atoms are numbered. He refers
to (T, &) as a process (in fact, every discrete time stationary process with a finite
number of states has such representation). There were several notions of mixing, or
regularity, for stationary processes, the weakest of which is the K -mixing (or the K -
property of T if £ is a generator). Ornstein discovered a new mixing condition called
by him the very weak Bernoulli (V.W.B.) condition. It is intermediate between the
K -mixing and the uniformly strong mixing (or ¢-mixing) by I. Ibragimov. Similar
to the K-mixing, the VW.B. holds for all & if it does for at least one generating
& (when T is fixed), and this condition is equivalent to that T is isomorphic to a
Bernoulli shift.

A key part in Ornstein’s theory is played by a metric d (introduced by him) in
the space of processes. Roughly speaking, the d-distance between processes (7, &)
and (77, &1) such that T, Tp are ergodic and &, &; have the same number of atoms,
is the proportion of those i for which Tix and T'x, when x, x| are representative
points, belong to differently numbered atoms of & and &; (the Hamming distance).
A precise definition is based on the Kantorovich distance between measures on a
finite set. Ornstein referred to a process (7', £) as a Bernoulli process (B-process) if
T is isomorphic to a Bernoulli shift, while & is arbitrary. He proved that the set of
B-processes is closed in d.
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All familiar stationary processes that could be B-processes because of their
mixing property and positive entropy, turned actually out to be B-processes. First of
all this holds true for mixing Markov chains.

Ornstein extended his theory to continuous time dynamical systems and defined
a flow {T'} to be a Bernoulli flow (B-flow) if 7' is (i.e., is isomorphic to) a
Bernoulli automorphism. And again, many popular examples were found to be B-
flows, among which were the geodesic flows on compact manifolds of negative
curvature.

Ornstein proved that every two B-automorphisms or B-flows with the same
entropy, finite or infinite, are isomorphic. On the other hand, together with P. Shields
he constructed an uncountable family of K-automorphisms with equal entropy
which are pairwise non-isomorphic. The simplest example of a K- but not a B-
automorphism was found by S. Kalikow [16] in 1982. This example can also be
described as a simple random walk in Z in a random environment, or as a Markov
shift with continuous alphabet and a very simple transition function. These and
other results in the field lead to the conclusion that, contrary to initial hope, the
classification problem for K-systems is of the same complexity as for all ergodic
dynamical systems.

From a technical standpoint, Ornstein’s contribution into ergodic theory is that
he managed to combine two different lines of thought on a measure preserving map:
as on a continuous matter of geometry and as on a collection of symbolic sequences
familiar to coding theory. A connecting link, although almost invisible, is dealing
with partitions whose atoms are labeled. This made his approach, combinatoric in
its nature, much more flexible.

Ornstein wrote in the book [32] that his research was motivated by his wish
to gain better insight into the Sinai weak isomorphism theorem. But there is an
essential difference between their approaches: Sinai’s proof is based on a physically
realizable coding method, that is, if a sequence x = (x;,i € Z) is coded into
a sequence y = (y;,i € Z), then yg is a function of xg, x_1,.... This is not
the case for Ornstein’s coding, which requires some anticipation. However, this
anticipation, in general inevitable, can be made locally finite. Namely, M. Keane
and M. Smorodinsky [19] invented an invertible mod 0 coding of one Bernoulli shift
into another one (with the same entropy) with the following property: there exist two
functions, x — k™ (x) € Z, and x — kT (x) € Z, such that yo, the Oth component
of the coded sequence y, is a function of the components x; of the initial sequence x
with —k~(x) <i < k™ (x). Such a coding is said to be finitary.

6 Kakutani Equivalence

Ornstein’s isomorphism theorem stimulated studying another classification of
dynamical systems based on the so-called Kakutani equivalence (or monotone
equivalence). This notion was introduced by S. Kakutani in 1944. For the continuous
time case, Kakutani equivalence is a time change in flows. In the discrete time case,
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one of equivalent definitions is the following: two ergodic automorphisms, T1 and
T», are Kakutani equivalent if there are isomorphic suspension flows constructed
over T1 and T», respectively. This equivalence relation does not seem too interesting
for entropy theory, because it does not preserve the entropy 4 (7T), but only the
property of having h(T) = 0, h(T) = oo, or 0 < h(T) < oo. However, the theory
of Kakutani equivalence was progressing similarly to Ornstein’s isomorphism
theory and through the latter it relates to entropy.

In the mid-1970s, A. Katok and J. Feldman (a little later) initiated independently
this development (see a detailed exposition in [33]). There is a distance (denoted
by f) in the space of processes that plays the role in the Kakutani equivalence
theory that resembles the one played by d in the Ornstein theory. Replacing d by f,
one obtains the so called loosely Bernoulli (LB) systems (introduced by Feldman)
instead of the very weak Bernoulli ones (see Sect.5). This class is invariant with
respect to the Kakutani equivalence and closed under going to factors, induced and
integral automorphisms, and to suspension flows. But together with all Bernoulli
automorphisms of finite entropy, it contains many automorphisms with zero entropy,
in particular, the ergodic shifts on compact commutative groups. On the other hand,
Feldman constructed a K-automorphism that is not LB and hence is not Bernoulli.
Another such an example is the Kalikow automorphism mentioned above. The
simplest class of automorphisms equivalent to each other was introduced by Katok
under the name of ‘standard’. All standard automorphisms have zero entropy.

7 Other Entropy Type Characteristics of Dynamics

In 1967, A. Kushnirenko [26], following an approach suggested by A. Kirillov,
defined, for an automorphism 7 of Lebesgue’s space (M, ) and an arbitrary
sequence of integers A := {n1, na, ...}, what he called the A-entropy of T by

ha(T) = suplimsup H(T"E v --- v TE),

& k—oo

where sup is taken over all measurable partitions & with h(§) < oo. It is clear
that hy(T) = h(T) when A = {1,2,...} and that h4(T) is a metric invariant
for each A. Kushnirenko proved that h4(T) has the approximation properties
similar to those of h(T), and, as in the case of h(T), these properties enable
evaluation of the A-entropy for some important examples. In particular, it turned
out that the horocycle flow and its Cartesian square have different A-entropies
for A = (29,21, ...} and hence these two flows with zero entropy and Lebesgue
spectrum of infinite multiplicity are not isomorphic.

Another approach to entropy type invariants is developed in recent works of
A. Vershik and his group (see [64]).

They note that each finite or countable measurable partition & of a Lebesgue
space (M, u) induces a semi-metric pz on (M, u) by p:(x,y) = Scw),c(y)»
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where C(x), C(y) are the atoms of & that contain x and y, respectively. Then
they define a natural class of ‘admissible’ semi-metrics on (M, @) (containing
pg) and suggest one to study not the evolution of measurable partitions under
the action of 7', but the evolution of admissible metrics and semi-metrics. Some
invariants of the latter evolution do not depend on the initial semi-metric and can
characterize T itself. Among them is the class of ‘scaling’ sequences describing
the growth rate of the ‘c-entropy’ of the space (M, u) with respect to the average
semi-metric p® (x, y) := n~' Y72} p(T'x, T'y), where p is an admissible semi-
metric. The definition of the e-entropy is close to that by Kolmogorov, but uses
the Kantorovich distance between probability measures on M. In some cases one
can define, simultaneously with scaling classes, a numerical invariant, the ‘scaling
entropy’. Presumably these invariants can distinguish automorphisms with zero
entropy. It has been proved that the automorphisms with discrete spectrum are
characterized by bounded scaling sequences. Similar ideas can be found in earlier
works by J. Feldman and S. Ferenczi.

8 Entropy for Actions of General Groups

As early as in the first half of the 1970s, advances in entropy theory for actions of
Z and R resulted in creation of the corresponding theory for more general groups
actions.

An action T of a countable group G by automorphisms of Lebesgue’s space
(M, ) is a homomorphism of G to the group of automorphisms 7,, g € G,
of (M, u) (for non-countable groups some measurability or continuity conditions
should be added).

The first general results were obtained by J.-P. Conze [8] who introduced the
entropy and K -property for actions of Abelian finitely generated groups. He also
proved that every K -action of such a group has completely positive entropy.

As far as I know, there are only two works by Sinai on entropy for actions of
groups more general than Z and R. In 1985, together with his student N. Chernov,
he considered [62] the time evolution of an infinite system of hard spheres in R?
that elastically collide with each other and move by inertia between collisions. This
motion induces an infinite-dimensional dynamical system {7}, ¢ € R} that preserves
a family of Gibbs measures. Earlier Sinai and his students contributed much in
construction of such dynamics. It is clear that the entropy of this system is infinite,
but the appropriately normalized entropy of its approximating finite-dimensional
system with respect to a natural approximating invariant measure has a finite limit
h; this fact was established by Sinai earlier. The authors of [62] observe that the
Gibbs measures are invariant not only under the group of time shifts {7}, but also
under the action of the space shifts, which commute with {7;}. Then they show that
h estimates from below the entropy of the system in question under the action of the
group R4 of space-time shifts.
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In 1985, Sinai published the work [60] devoted to the action of the group Z> on
a sequence space. There he answered a question asked by the lecturer during by
J. Milnor’s lecture on cellular automata.

Gradually most parts of entropy theory were extended to Z¢, R? and then to
general amenable groups. A countable amenable group G is characterized by the
existence of a sequence of finite sets F;, C G (named after Fglner) such that
lim, o0 #(gFy, AF,)/#F, = 0 for every g € G. (For locally compact amenable
groups the cardinality should be replaced by the Haar measure.) Given a Fglner
sequence {F,}, one can define the entropy for an action T of G by

h(T) :=sup lim H(Vgecp,T4§),
s n—o0

where sup is taken over all finite measurable partitions or all partitions with finite
entropy (the limit does not depend on {F, }).

Ornstein’s isomorphism theorem for Bernoulli shifts with equal entropy was
extended to Bernoulli actions of amenable groups by Ornstein and Weiss [34]. Much
earlier, A. Stepin showed that this theorem holds for a group if this is the case for
a subgroup. B. Kaminskiy extended the theory of invariant partitions to actions of
Z? and introduced the notion of K -action. Then he proved that K-action can be
characterized by the property of having completely positive entropy.

In parallel with old questions, such as if the entropy can be computed from a
generator (Kolmogorov—Sinai theorem), many new ones arose for general groups.
For instance, what are the information pasts for a partition with finite entropy? In
other words, what should be taken instead of {z € Z : z < 0} in the definition &, =
Vu<0T "€ to keep Eq. (4) valid? For actions of amenable groups G information pasts
were studied by B. Pitskel in 1975. Some amenable groups have no information
pasts at all. On the other hand, if, say, G = 72, one should draw a straight line L
through the origin and take the set G~ consisting of all g € G lying on one side of
L, and add all g € L N G lying on one side of the origin. These sets G~ form the
collection of information pasts for Z2.

For a number of years it could seem that the applications of entropy theory and
ergodic theory as a whole to the setting of group actions, were limited to the case of
amenable groups. But recently this class of groups was considerably extended.

In 1999, M. Gromov [14] and, in 2000, B. Weiss [65] (more explicitly) intro-
duced a new class of groups called sofic groups. A countable group is sofic if there
exists a sequence of positive integers d,, and a sequence of maps o, : G — Sym(d,)
(the symmetric group on A, := {1, ...,d,}) such that (i) d, — o0 as n — 00, (ii)
for each pair of distinct g, g’ € G,

#{6 € An: 00(8)8 = 0 (g")8} = 0(dn);
(iii) for each pair g, g’ € G,

#{6 e Ay, on(gg/)S #* 0,(8)0n (g/)S} =o(dy).
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The sequence {0, } is called a sofic approximation of G, while properties (ii) and (iii)
mean that it is asymptotically free and asymptotically multiplicative, respectively.
All amenable and free groups are sofic. Moreover, there are no examples of
countable non-sofic groups. A few years later L. Bowen initiated development of
entropy theory for actions of these groups. Apart from him, significant contributions
were made by D. Kerr and H. Li. As these authors write, they wanted to follow
the Kolmogorov and Sinai line of research as far as possible. But, according to
Kerr, Bowen replaced “the internal information-theoretic approach of Kolmogorov
with the statistical-mechanical idea of counting external finite models”. First of
all, an alternative to the function h(7, &) had to be found. This was done by
different authors in different ways (with the help of sofic approximations, but
not so simple and natural as for amenable groups with the help of Fglner’s
sequences). A definition of 2 (T) close to the classical one is due to Kerr [20]. In
this definition A(T') = supg h(T, §), where sup is taken over finite partitions. But
the novelty is that h(7, &) = infy>¢ h'(T, &, «), where h'(T, €, ) is an entropy
type quantity depending on £ and its finite refinement «. With this definition the
classical Kolmogorov—Sinai theorem remains true. There are many other equivalent
definitions including ones based on operator algebras, topological models and
random sofic approximations. Ornstein’s isomorphism theorem was extended by
L. Bowen to a wide class of non-amenable sofic groups. Kerr and Li [21] defined an
extension of the topological entropy and proved a variational principle (see Sect. 4).
The theory is progressing rapidly. In particular, there is Bowen’s work on actions
of sofic groupoids, based on the Rudolf-Weiss invariance theorem for the relative
entropy. However, it is unknown if there exists a countable non-sofic group.
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1 Introduction

Sinai was never really far away from Mathematical Physics. Already his first papers
on Kolmogorov-Sinai entropy and on the stability of Kolmogorov’s flow in 2D
hydrodynamics (joint with L. Meshalkin, [19]) were very much in the areas which
are closely related to Mathematical Physics. However, in his first research period,
roughly in the late 1950s and the early 1960s, Sinai’s work was mostly concentrated
around Ergodic Theory and Dynamical Systems. It is fair to say that his deep
and lasting interest in Mathematical Physics started with his work on Statistical
Mechanics in the late 1960s. This period culminated in the celebrated Pirogov—
Sinai theory of phase transitions for ferromagnetic systems. After that Mathematical
Physics was always one of the main themes of Sinai’s research. In general it was
a period of very active interaction between mathematicians and physicists in the
USSR. It was especially true for Sinai. At the beginning of 1970s Sinai moved to
the Landau Institute for Theoretical Physics where he was surrounded by a stellar
group of physicists. During the Landau Institute period, Sinai made fundamental
contributions to the spectral theory of Schrodinger operators with quasi-periodic
potentials, renormalization theory for Dyson’s hierarchical models, random walks
in random environment, renormalization theory of dynamical systems. Later his
interests moved in the direction of the random Burgers equation and Navier—Stokes
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equations. Below we discuss Sinai’s contributions in all of the above directions apart
from the Navier—Stokes equations which will be discussed in [5]. We decided to
include papers on Burgers equation in the Mathematical Physics Section since this
area is closer related to Mathematical Physics and Statistical Mechanics then to the
Turbulence Theory.

And a final disclaimer. The body of Sinai’s work is huge. Below we are dis-
cussing only a selection of his work. It goes without saying that all the responsibility
for the selection lies entirely with the author of this text.

2 Statistical Mechanics

From the end of the 1960s Statistical Mechanics became one of the main direction
of Sinai’s research. The famous Seminar on Statistical Mechanics at the Moscow
State University was one of the world leading centers in the area of mathematical
Statistical Mechanics. Sinai was one of the organisers and leaders of the seminar.
Mathematical Statistical Mechanics was still a very “young” area at that time, and it
is fair to say that many new directions and ideas were discovered by the participants
of the seminar. One of the special issues of the European Physical Journal H is
dedicated to the history of the seminar [22].

One of the first contributions of Sinai to the equilibrium statistical mechanics
was a series of papers, joint with R. Minlos, on the phenomenon of the separation of
phases [20, 21]. The main result, which is often cited as the “droplet theorem”,
provides a description of the structure of typical configuration of a spin system
in 4+ phase which conditioned to have a large component of negative spins. It
was proved that at low temperatures the system will have two domains, with a
prevalence respectively of positive and negative spins, moreover these two domains
are separated by one large contour of approximately square shape. Note that in the
late 1980s and the early 1990s, R. Dobrushin, R. Kotecky, and S. Shlosman obtained
more precise information on the shape of a droplet [7].

A sophisticated technique developed in [20, 21] is based on analysis of the
statistics of contours. It was much further developed in the so-called Pirogov—
Sinai theory of phase transitions. This theory, developed by Sinai and his student
S. Pirogov, is an outstanding achievement, providing, in a certain sense, a final
solution to the problem of the phase transitions at low temperatures. The main result
can be formulated in the following way. Consider a statistical mechanics system on
the lattice Z4 , d > 2 with a translation-invariant Hamiltonian Hy, and spin variable
taking a finite number of values. Assume that the system has a finite number k
of periodic ground states, that is spatially periodic spin configurations minimising
the Hamiltonian Hy. We also assume that this k£ ground states satisfy certain non-
degeneracy requirement, called Peierls stability condition. This condition is always
easy to check in concrete models. The classical example is provided by the Ising
model where one has two ground states where all the spin variables take the same
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value +1 or —1 respectively. Consider now a (k — 1)-parameter family of periodic
Hamiltonians

Hy, = Hy+piHy + -+ pg—1 He1,

which resolves the degeneracy of the ground states. Namely, any subset of the
set of k ground states can be realised as a set of ground states for some u =
(U1, ..., mk—1) from a ball || < € for € small enough. Then for small enough
temperatures locally in a parameter © one has a full stratification of the set of pure
phases, that is ergodic Gibbs states. In other words, there exists a parameter value
w(B) for which the system has exactly k pure phases, corresponding to all k ground
states. Then there are k curves y;, 1 < i < k originated from the point @ (8) such
that on each curve one has k — 1 pure phases. The numeration corresponds to the
ground states. Namely, the curve y; has pure phases corresponding to all ground
states except the ith one. Every two curves y; and y; are connected by a smooth two-
dimensional surfaces y; ; such that for i € y;,; the number of pure phases is k — 2,
and they correspond to all ground states except the ith and the jth. And so on, this
stratification continues further until all K — 2 dimensional surfaces with exactly two
pure phases are constructed. Everywhere else outside of the constructed manifolds a
pure phase is unique. This stratification depends on the parameter 8 which is called
inverse temperature which must be large enough. One can say that a u-dependent
linear structure of ground states at zero temperature (8 = +0o0) survives for small
positive temperatures and translates into the structure of pure phases. However, the
dependence on the parameter w is not linear anymore. The main technical tool
in Pirogov-Sinai theory is based on the method of contour expansions developed
by the authors. Counter expansions can be viewed as a far reaching extension of
the Peierls approach to the problem of phase transition in Ising model. Note that
later, in the 1980s, the Pirogov—Sinai theory was extended by R. Dobrushin and M.
Zahradnik to systems with continuous spin variables.

Another important series of papers of Sinai is dedicated to the renormalization
group theory. The ideas of scaling invariance which originated in quantum field
theory started to play exceptionally important role in statistical physics starting
from the 1960s. One should mention here M. Fisher, L. Kadanof, K. Wilson,
A. Patashinski, V. Pokrovsky, A. Polyakov, A. Migdal and many others. Renor-
malization group method became one of the main tools in the studies of critical
phenomena. The success of renormalization theory culminated with the 1982 Nobel
prize for K. Wilson for his contributions and development of the e-expansion
method. At the same time the rigorous mathematical explanations of the scaling
invariance and conformal invariance is still an extremely important but very difficult
and challenging problem. Sinai jointly with P. Bleher have developed a complete
mathematical theory of the renormalization behaviour for the so-called Dyson
hierarchical model [3, 4]. Although statistical mechanics systems provided by the
hierarchical models are rather simplistic, their renormalization behaviour is highly
nontrivial, and a development of the mathematically rigorous theory was a great
achievement. I should add that the 2010 Fields Medal was awarded to S. Smirnov
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for the proof of conformal invariance for several 2D statistical mechanics systems
at the critical point.

3 Spectral Theory of Schrodinger Operators

Another important area of Sinai’s research starting from the 1970s was connected
with the study of spectral properties of one-dimensional Schrédinger operators
with quasi-periodic potentials. Two papers of Sinai in this direction were very
influential and played an important, perhaps crucial, role in the development of the
subject. In the first paper [6], joint with E. Dinaburg, the authors managed to prove
existence of a postive measure component of continuous spectrum in the case of
small coupling constants, that is, for small quasi-periodic potentials. In the second
paper [24], written somewhat 10 years later, Sinai considered the opposite case
of large coupling constants and proved the existence of the pure point spectrum
with exponentially localized eigenfunctions. This result demonstrates that for large
quasi-periodic potentials one has Anderson localization and the spectral behaviour
is similar to the case of random potentials. Although the authors in [6] consider the

. 2 . . .
Schrodinger operators — ddlelf 4+ V(x)¥ in continuous setting, below we present
results in an equivalent discrete case:

(HS Y)n = =Vt — Yne1 + AV (0 4 na) s,

The operator Hg‘ *acts as a self-adjoint operator in the Hilbert space /(Z). It is
assumed that the potential V (x) is a smooth (analytic) function on the unit circle S L
The main (and most studied) example is provided by the potential V (x) = cos 2w x.
In the case of rational « = p/q, the operator is periodic. It is well known that in this
case the spectrum is absolutely continuous and has a so-called zone structure. The
results here go back to the classical papers by F. Bloch and G. Floquet. Dinaburg
and Sinai proved that in the case of irrational Diophantine ¢, there exists a set of
positive Lebesgue measure of energies E corresponding to Bloch eigenfunctions of
the form Y, g(n) = aa,E(noz)e"k(“*E)”, provided the coupling constant A is small.
These eigenfunctions satisfy the relation Héx ’Akﬁa, E = EYq . It follows that in the

case of small A the spectrum of the operator H,' ** contains an absolutely continuous
component. The most important feature of the paper is the application of the KAM
techniques. They are used to deal with that main difficulty of the problem related to
the so-called small divisors. To illustrate how KAM theory appears in the spectral
problem for the Schrédinger operator, consider an eigenfunction equation

(Hg ™ ¥ = —VYnst = Yot + 2V (0 + no)y = Ev.
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(w,m) _ (AV(G +no) —E —1> ( U )
1,an N 1 0 ‘/fn—l '

Then we have

Using a notation

AV() — E —1

SE(0) = ( | 0

> e SL(2,R)
we obtain

Qﬁfﬁl) =Se@+n—Da)...SpO +a)Se©) (1/%—01) )

The resulting object is called the Schrodinger cocycle. The main question here
is to study asymptotic properties of the products of the values of a smooth matrix-
valued function Sg (6) along a trajectory of the rotation of the unit circle by an angle
a. It is convenient to think that there exists a bundle over the unit circle with each
fiber being the two-dimensional plane R2. Then a matrix Sk (f) can be viewed as a
linear operator acting from R? over a point 6 into R? over a point 6 + & (mod 1).
If we make a coordinate change in every fibre given by a smooth matrix-valued
function B(6), then the original cocycle in new coordinates will have the following
form:

Sp(0) = B~1(0 + a)Sp(6) B(©).

The situation will be especially simple if the resulting cocycle is a constant one,
i.e., it does not depend on 6. Cocycles which can be reduced to a constant cocycle,
are called reducible. The main statement of the Dinaburg—Sinai theorem is that in
the case of small coupling constants the Schrédinger cocycle is reducible for a
set of energies E of a positive Lebesgue measure. Later H. Eliasson showed that
in the case of small coupling constants, Schrédinger cocycles are linearizable for
Lebesgue almost all E which implies that in this case the spectrum is pure absolutely
continuous.

In the opposite case of large coupling constants, the spectrum is pure point. To
prove this statement, one has to construct a basis in /2(Z) which consists of eigen-
functions for the operator Hé‘)M . This was done by Sinai [24] and independently
by J. Frohlich, T. Spencer, and P. Wittwer [10] for a slightly more special class of
potentials. Sinai proved that for Diophantine « and typical 6, the spectrum is pure
point provided the coupling constant A is large. Moreover the eigenfunctions decay
exponentially fast, i.e., the phenomenon of Anderson localization holds. In terms of
a Schrodinger cocycle the case of large A corresponds to the hyperbolic behaviour



248 K. Khanin

with one positive and one negative Lyapunov exponents. It follows that there exists
a unique unit stable vector
V-1

n lﬁo
S%(0 0
£ )<¢ 1) ~

such that

exponentially fast as n — oo. Here S;(0) = Se(@ + (n— Da) ... Sg (@ +a)Se(9).
Also there exists a unique unit unstable vector which contracts backward in time:

(S0 — ne)) ! <1f° ) -0

-1

exponentially fast as n — oo. The eigenvalues are such values of E for which both

vectors coincide:
(-
(/) (/)

The proof of the existence of such values of E and of the fact that the corresponding
eigenfunctions form a basis in [2(Z), is the main achievement of the Sinai paper. It
should be mentioned that Sinai does not use the cocycle representation in his paper.
The proof, in fact, is based on a difficult analysis of the resonances appearing in the
problem. As Sinai put it in one of his comments: “Localisation is due to interplay
between resonances”. The two papers by Sinai which we discussed above laid the
foundations for a huge research area which was very actively studied in the last
30 years. Important contributions were made by A. Avila, J. Avron, J. Bellissard,
J. Bourgain, D. Damanik, H. Eliasson, J. Frohlich, M. Goldstein, M. Herman,
S. Jitomirskaya, R. Krikorian, Y. Last, J. Puig, W. Schlag, B. Simon, and T. Spencer.

Note that the results of Sinai have a perturbative character. In other words, they
are related to asymptotic regimes corresponding to either small or large values of the
coupling constant A. In the last years a large progress was made in studying spectral
properties for all values of the coupling constant. In particular, now one has a full
description of the transition from the absolute continuous spectrum to the pure point
one for the almost Mathieu operator with potential V (x) = cos 2w x. It turns out that
in this case, the spectrum is absolutely continuous for all 1 € [0, 2) for all values of
a, 6. For A = 2 the spectrum is almost surely continuous and singular. “Almost
surely” means that for any irrational «, one cannot exclude the existence of an
12(Z) eigenfunction for an at most countable exceptional set of 6. Conjecturally such
exceptional valued do not exist, but at present it is an open problem. For A > 2, the
spectrum is almost surely pure point. It is known that the exceptional values of «, 6
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exist but they form a set of zero measure. A big contribution to the non-perturbative
results formulated above is due to former Sinai’s student S. Jitomirskaya. Finally,
I should mention the results of A. Avila who developed a global non-perturbative
theory for general analytic potentials. These results formed a very significant part of
the body of work for which Avila was awarded the Fields Medal in 2014.

4 Random Walks in Random Environment

In 1982, Sinai published two papers on random walks in random environment. In the
first of these papers [23] he considered a one-dimensional random walk on a lattice
Z'. In a simplest case when a particle can only jump to one of its neighbors, the
random environment is completely determined by a sequence of random variables
0 < p(x) < 1 which represents the probability of a particle at point x € Z' to jump
right to a neighboring point x + 1. Then the probability to jump left to x — 1 is given
by 1 — p(x). It is assumed that {p(x), x € Z'} form an independent identically
distributed (iid) sequence of random variables. It is also assumed that the situation
is non-degenerate (elliptic), that is, the probability distribution for p(x) is bounded
away from 0 and 1. Such random walks in random environment were first considered
by M. Kozlov and F. Solomon in the early 1970s. Later H. Kesten, M. Kozlov, and
F. Spitzer [15] proved that the random walk is recurrent almost surely with respect
to the environment if and only if E log p(x)/q(x) = 0. However, it was not known
how the random walk really behaves in this case. In 1982 Sinai solved this problem
and discovered a new important phenomenon of anomalous diffusion, which is in
our days called Sinai’s random walk. To describe Sinai’s result in more details let
us assume that p(x) = 1/2 + €€(x), g(x) = 1/2 — €&(x), where {£(x), x € Zl}
is an iid sequence of random variables with compact support and zero mean value.
Then the non-degeneracy condition is satisfied for € small enough. Assume also
that the distribution for £ is even, which guarantees that the recurrence condition
holds. For € = 0 the environment is non-random, and we have the usual simple
random walk with diffusive behavior. Namely, x (n) ~ /n, where x (n) is a position
of random walk at time n, and the probability distribution for x(n)/+/n converges
to the normal (Gaussian) distribution N (0, 1) asymptotically as n — oo. It turns
out that for any € > 0 the behavior of the walk is completely different. Remarkably,
Sinai proved that for an arbitrary small €, one has x (n) ~ log® n. Moreover, for large
values of n, the rescaled position of a random walk x (n)/ log? n is located in a small
neighborhood of some random point m, which depends on the realization of the
environment {&(x), x € Z'}. Sinai also proved that the probability distribution for
my, as a function of the random environment, has a limit as n — 0o. Such seemingly
strange behavior of a random walk can be explained by the fluctuation mechanism.
Namely, due to the fluctuations of the environment, there are special places on the
lattice Z' which trap a random walk for a long time. These traps can be viewed as
certain potential wells. They are characterized by their depth, or, in other words, by
the time required to escape from the trap. The random walk sits in the trap for a
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long time and waits for a fluctuation which will allow it to escape. After that the
random walk relatively quickly reaches another, even deeper, trap which requires
even longer escape time. One can say even more. In fact, a random walk is localised
inside the trap. As shown by Sinai’s student A. Golosov [12], a random walk
asymptotically has a limiting distribution inside the trap. We should also mention
several generalizations of Sinai’s random walks. One can consider a situation when
the random walk can jump, not only to the neighboring positions, but also further
away. Interesting results in this direction were obtained in the last 15 years by
E. Bolthausen, D. Dolgopyat, and I. Goldsheid. One can also consider random walks
in random environment in higher dimensions. The trapping mechanism discovered
by Sinai is essentially one-dimensional. In dimension 3 and above for small ¢ the
random walk will have diffusive behavior. A possibility of anomalous diffusion
for large values of € is an open problem. In dimension 2 it is expected that the
diffusion will slow down, but only by a logarithmic factor. It is also expected that
the probability distribution for a properly normalized random walk converges to the
Gaussian law, however at present there are no rigorous results in this case.

Another important paper by Sinai on random walks in random environment, joint
with V. Anshelevich and K. Khanin, deals with the case of the so-called symmetric
random walks. In this case, the probability to jump along a certain edge of the lattice
7@ is random, but it depends only on the edge but not on the direction of a jump [1].
It is more convenient to consider random walks with continuous time. Then the
environment is given by a collection of positive iid random variables 7 (e) labeled
by the edges e of the lattice Z¢. These random variables are viewed as rates of
jumps along a particular edge. Again, one should also assume that the probability
distribution for this random variables n(e) is bounded away from 0. In this case,
due to the symmetry condition, the traps are not possible, and the behavior of
random walk is diffusive. Moreover there exists an effective non-random covariance
matrix. Contrary to the previous case, the result about diffusive behavior holds in
any dimension.

Closely related problems were actively studied starting from the late 1970s in the
context of the averaging theory for parabolic operators with random coefficients—
so-called homogenisation problem. The main results in this direction were obtained
by V. Zhikov, S. Kozlov, O. Oleinik, and G. Papanicolaou, S. Varadhan. The main
achievement of the approach developed in Sinai’s paper compare to other results
on homogenisation is connected with a possibility to control the effective diffusion.
The paper [1] not only proves self-averaging and the existence of diffusive behavior,
but also provides a convergent power series for the effective covariance matrix.

5 Renormalization Methods in Dynamical Systems

We have already discussed Sinai’s work on renormalization for Dyson hierarchical
model. The renormalization ideology became a really important tool in Sinai’s
approaches to different problems. He applied it even to the problem of singularities
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for the 3D Navier—Stokes equations (see [5]). Here we discuss Sinai’s results related
to renormalization in dynamics. Starting from the late 1970s, the renormalization
ideas made their way into the theory of dynamical systems. It all started with a work
of M. Feigenbaum on the universal mechanism of transition to chaos through the
infinite sequences of the period-doubling bifurcations. Very soon renormalization
became one of the most important and powerful tools in asymptotic analysis of
dynamical systems. In 1984 Sinai in a joint paper with E. Vul and K. Khanin [27]
developed the thermodynamic formalism describing universal metrical properties of
the Feigenbaum attractor. This was an important paper for the development of the
mathematical theory. Note that the Feigenbaum attractor in a modern terminology
is a multifractal object. In this context [27] can be considered as the first example of
the so-called multifractal formalism.

Another series of papers where renormalization ideas played a very important
role is related to the problem of linearization of nonlinear circle diffeomorphisms.
In 1961, V. Arnold [2] in a framework of the KAM theory, proved a local theorem
on the analytic linearization of analytic circle diffeomorphisms close to the linear
ones under condition that their rotation numbers are typical in the Diophantine
sense. M. Herman developed a global theory and proved that for typical rotation
numbers the conjugacy is smooth for C3-smooth diffeomorphisms [13]. In 1987,
Sinai and K. Khanin [18] suggested a new approach to the Herman theory based
on the renormalization ideas. Using the new approach they proved smoothness of
linearization for C>*€-smooth diffeomorphisms. It is important to mention that this
result is essentially sharp. Indeed for C2-diffeomorphisms with typical rotation
numbers the linearization is singular in general. In a couple of years in another
joint paper [26] Sinai and K. Khanin proved much stronger result. Assume that 7
is a C**€-smooth diffeomorphism for € > 0. Also assume that 7 has an irrational
rotation number p which belongs to the Diophantine class Ds. Namely, there exists
aconstant c(p) > O such thatforall p, g € Z, g # 0 the following inequality holds:
lpg — pl = c(p)g~'~%. Then the conjugacy with the linear rotation by the angle p
is C'+€=% smooth, provided € > 8. A simpler proof of this result was given recently
by K. Khanin and A. Teplinsky [16]. Note that also at the end of 1980s another
approach to the Herman theory was developed independently by Y. Katnelson and
D. Ornstein [14].

Concluding our brief discussion of Sinai’s work in the area of dynamical
renormalization, let us mention two more papers by Sinai. In the first one, joint
with K. Khanin, the renormalization was applied to the construction of the KAM
invariant curves for area-preserving cylinder maps similar to the Standard map [17].

In the second paper (joint with A. Golberg and K. Khanin) a new phenomenon of
complex universality was discovered numerically [11]. The complex universality
is a generalization of the Feigenbaum universality. It concerns with universal
asymptotic properties of sequences of bifurcations for families of holomorphic
maps. It is interesting that the development of a mathematical theory for complex
universality is still an open problem.
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6 Random Burgers Equation

Sinai always followed with great interest the developments in mathematical hydro-
dynamics. Of course, that is not surprising for a student of A. Kolmogorov. We have
already mentioned his early work (joint with L. Meshalikin) on the linear stability
of the so-called Kolmogorov flow [19]. Then it was a long break until the end of
the 1980s and the beginning of 1990s, when Sinai started to work on problems
related to the random Burgers equation. As we already explained above, we decided
to include the work in this direction in the Mathematical Physics chapter since the
random Burgers equation and closely related Kardar—Parisi—Zhang (KPZ) equation
in our days are more popular in the Mathematical Physics community.

The Burgers equation was initially suggested by J. Burgers as a model nonlinear
equation of the hydrodynamics type:

ur+ - Vyu =vAu + f(x,1),

where v > 0 is the viscosity, and f (¢, x) is an external force applied to the system.
The main difference with the Navier—Stokes equation is the absence of the pressure
term which is responsible for the incompressibility condition. Hence the Burgers
equation correspond to compressible flows. Sometimes people studying the Burgers
equation even speak about turbulence without pressure. Another name which is used
increasingly often is Burgulence. Despite the fact that the dynamics described by
the Burgers equation has very little in common with “real” hydrodynamics, there is
huge interest in the Burgers equation, and its importance is related to its numerous
applications in non-equilibrium statistical mechanics and mathematical physics. The
examples of such applications are provided by cosmological models of large scale
structures in the universe which goes back to the original approach by Ya. Zeldovich,
dynamics of interfaces which is described by the KPZ equation, and many others.
The disordered situation when a random element is present in the system, is the
most interesting case in this area. Usually the two cases of disordered input are
considered. The first one corresponds to the random initial conditions (so-called
decaying turbulence). The second setting is provided by systems with the random
external force. In both settings the most interesting case is the inviscid Burgers
equation when the shock waves (or, simply, shocks) are formed. The shocks are
evolving in time and merge with each other which create a physical mechanism for
the dissipation of energy even in the case of zero viscosity.

Initially Sinai’s interest in the Burgers equation was inspired by his interaction
with U. Frisch and with V. Yahot. He wrote several important papers on the random
Burgers equation in both the setting of the random initial conditions and the random
forcing setting. In the first paper dedicated to the one-dimensional inviscid Burgers
equation, Sinai studied the case when the initial condition is given by a realization
of the Wiener process [25]. The main result of the paper is a very precise description
of the structure of shocks. In one-dimensional case, shocks are located at isolated
points. The set of these points has a very complicated structure. Sinai proved that
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for an arbitrary small ¢, the shocks form a set of the Hausdorff dimension 1/2.
This important result generated a lot of activity in studying models with different
statistical assumptions on the initial conditions.

The second direction of Sinai’s work is related to the Burgers equation with a
random external force f“(x, t). Since the random force is pumping energy into the
system, which compensates the dissipation due to the merging of shocks, one can
expect a stationary statistical behavior in this case. In a very influential physical
paper A. Polyakov suggested to apply the methods of Quantum Field Theory to
the problem of Burgulence. The theory developed by Polyakov predicted certain
scaling behavior in the stationary regime. In particular, he studied the probability
distribution for a random variable £ = u, (x, ) which represent the gradient of the
velocity field. In the stationary regime, the probability law for £ is given by a density
p(&) which is obviously not universal and depends on the statistical properties of
the forcing f“(x, t). At the same time, it is natural to expect that the asymptotic
behavior of p(£), namely the tails as £ — =oo, are universal. It is easy to see
that the tails are asymmetric. Indeed, large positive values of £ have an extremely
small probability. It is possible to show that —log p(§) ~ £3 as & — 400. On the
other hand, the negative tail of p(£) as £ — —oo should behave as |£|* for some o
negative. Polyakov’s theory predicted the value of « = —5/2. This prediction was
disproved in Sinai’s papers, joint with Weinan E, K. Khanin, and A. Mazel [8, 9].
The main result of [9] is the development of the theory of stationary solutions in the
one-dimensional case. The random Burgers equation is closely related to the theory
of random Lagrangian systems. It turns out that for such Lagrangian systems and for
any value of the average drift almost surely, there exists a unique global minimizer.
Moreover, this minimizer is a hyperbolic orbit of the random Lagrangian flow with
one stable and one unstable direction. One can show that for any given time ¢ the
unique global solution u®(x, t) corresponds to the unstable manifold of the global
minimizer. It follows that the stationary solution is piecewise smooth, and, hence, at
any given time, the number of shocks is finite. Using this conclusion one can show
that the main contribution to the probability of large negative values of £ comes from
the pre-shock points, i.e., such space-time locations where new shocks are created.
The contribution of such preshock points is easy to estimate which gives the right
value of @ = —7/2. The papers [8, 9] were important for the development of this
research area. Later the results were extended to the multi-dimensional setting in the
papers by R. Iturriaga, K. Khanin and by K. Khanin, K. Zhang. Very interesting and
important is the problem of stationary solutions to the random Burgers equation in
the non-compact (non-periodic) case. The first results in this direction were obtained
recently by Yu. Bakhtin, E. Cator, and K. Khanin. Note that this problem is closely
related to the problem of KPZ universality which was extremely actively studied in
the last 10 years.
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Sinai’s Work on Markov Partitions m)
and SRB Measures ik

Yakov Pesin

Abstract Some principal contributions of Ya. Sinai to hyperbolic theory of dynam-
ical systems, focusing mainly on constructions of Markov partitions and of Sinai—
Ruelle-Bowen measures, are discussed. Some further developments in these direc-
tions stemming from Sinai’s work, are described.

1 Introduction

In this article I discuss some of the many principal contributions of Ya. Sinai to
the hyperbolic theory of smooth dynamical systems. I focus on two related topics:
(1) Markov partitions and (2) Sinai—Ruelle-Bowen (SRB) measures. Dynamical
systems that admit Markov partitions with finite or countable number of partition
elements allow symbolic representations by topological Markov shifts with finite
or respectively countable alphabet. As a result these systems exhibit high level of
chaotic behavior of trajectories. SRB-measures serve as natural invariant measures
with rich collection of ergodic properties. Various constructions of Markov parti-
tions as well as of SRB-measures represent an important and still quite active area
of research in dynamics that utilizes Sinai’s original ideas and develops them further
to cover many other classes of dynamical systems. Therefore, along with describing
results by Ya. Sinai, I briefly survey some of the latest developments in this area.

I stress that hyperbolic theory of dynamical systems provides a rigorous math-
ematical foundation for studying models in science that exhibit chaotic motions.
For reader’s convenience, I begin with an informal discussion of the role that the
hyperbolic theory plays in studying various chaotic phenomena.
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1.1 From Scientific Determinism to Deterministic Chaos

In the nineteenth century the prevailing view in dynamics was causal or scientific
determinism best expressed by Laplace as follows:

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would be present before
its eyes.

It took about a century to shake up this view with the discovery by Poincaré—in
his work on the three-body problem—of the existence of homoclinic tangles formed
by intersections of stable and unstable separatrices of a hyperbolic fixed point.

Poincaré wrote:

When we try to represent the figure formed by these two curves and their infinitely many
intersections. . . one must be struck by the complexity of this shape, which I do not even
attempt to illustrate. Nothing can give us a better idea of the complication of the three-body
problem, and in general of all problems of dynamics for which there is no uniform integral.

In 1963, in his talk at the International Conference on Nonlinear Oscillations
(Kiev, Ukraine), Smale [66] made the crucial observation that the homoclinic tangle
contains a horseshoe, i.e., a fractal set that is locally the product of two Cantor sets.
One obtains this set by taking the closure of the set of intersections of stable and
unstable separatrices near the fixed point. The horseshoe provided the first example
of a differential map with infinitely many hyperbolic periodic points.

Smale’s discovery was an important step in shaping up a new area of research
in dynamical systems—the hyperbolicity theory—that studies relations between
chaotic motions, instability of trajectories and fractal structure of invariant sets.
The foundation of this new area was built in the 1960s—1970s in seminal works of
Anosov, Sinai, and Smale, see [5, 6, 5962, 66, 67]. I would like also to emphasize
an important role for the development of the theory of dynamical systems that was
played during this time by two Moscow seminars, one run by Alekseev and Sinai'
and another one by Anosov and Katok (see [19, 37, 38]) as well as by Smale’s school
at Berkeley.

The current view on dynamics draws a much richer picture allowing a variety
of motions ranging from regular to intermittently chaotic to all-time chaotic. More-
over, a dynamical system, which is typical in a sense, should possess an invariant
fractal set of complicated self-similar geometric structure, and the trajectories that
start on or in a vicinity of this set are unstable (hyperbolic). The combination of
fractality of the set and instability of trajectories causes these trajectories to behave
unpredictably; such a chaotic behavior can persist all the time or can be intermittent.

! After Alekseev’s untimely death in 1980, the seminar was run by Sinai only.
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Furthermore, one should typically expect to have infinitely many such fractal
sets, which are mixed together in one invariant multi-fractal set. These fractal sets
can occupy either the whole phase space, or a part of it, in which case the dynamics
on its complement can be quite regular—the highly non-trivial phenomenon known
as the essential coexistence, see [25, 26, 35] for a detailed description of the
phenomenon and recent examples of systems with discrete and continuous time that
exhibit it.

To describe the phenomenon of the appearance of “chaotic” motions in purely
deterministic dynamical systems, one uses the controversial but expressive term
deterministic chaos.” Its crucial feature is that the chaotic behavior is not caused by
an external random force such as white noise, but by the system itself. The source
of the deterministic chaotic behavior is instability along typical trajectories of the
system, which drives orbits apart. On the other hand, compactness of the phase space
forces them back together; the consequent unending dispersal and return of nearby
trajectories is one of the hallmarks of chaos.

After Poincaré, the fact that instability can cause some complicated chaotic
behavior was further observed and advanced in works of Birkhoff, Hadamard, Hopf,
and Morse. Many years later some systems with chaotic behavior were found and
studied numerically by Lorenz, Chirikov, Ford, Zaslavsky, etc. I refer the reader to
Sinai’s articles [63—65] for a more detailed discussion of the chaos theory, its earlier
development and relations between chaotic behavior and instability of trajectories
as well as for relevant references. In these papers Sinai also demonstrates how ideas
and methods of statistical physics can be used to explain various chaotic phenomena
in dynamics.

1.2 Markov Partitions and Symbolic Representations
of Chaotic Dynamics

To explain what it means for deterministic trajectories to exhibit chaotic behavior,
consider a map f acting on a phase space M and a point x € M. Let us divide the
phase space into two parts A and B. Given an orbit { f"(x)}, we write 0 if f"(x)
lies in A and 1 otherwise. This way we obtain a coding of every trajectory by a
two-sided infinite sequence of symbols 0 and 1 that is

x—>ow={...,0-2,0_1,09, w1, w2, ...}, where w; = 0or 1.
The principal question is:

Given a symbolic sequence of 0 and 1, can we find a point x whose trajectory is
coded by this sequence?

2This term was first used in works of Chirikov, Ford and Yorke.
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If so, starting with a random symbolic sequence that is obtained, for example, by
flipping a dime, one gets a random orbit of the system whose location in either A
or B can only be predicted with a certain probability.

Another way to look at this is to say that the system under consideration is
modeled by (or equivalent to) the classical Bernoulli process in probability theory.

Smale’s horseshoe is a classical example which allows the above coding and
hence, a symbolic representation by the full shift on 2 symbols. In many “practical”
situations however, one may need more sophisticated partitions of the phase space
called Markov partitions (the term coined by Sinai). In general, elements of Markov
partitions may have very complicated fractal structure. These partitions allow one
to model the systems by more general Markov (not necessarily Bernoulli) processes
with finite or even countable set of states. From the probability theory point of view
such processes are chaotic in the strongest possible sense.

The first construction of Markov partitions was obtained by Adler and Weiss [1]
in the particular case of hyperbolic automorphisms of the 2-torus (see also Berg,
[12] whose work is independent of [1]). As a crucial corollary they observed that
the map allowed a symbolic representation by a subshift of finite type and that this
can be used to study its ergodic properties.

Sinai’s groundbreaking contribution was to realize that existence of Markov
partitions is a rather general phenomenon and in [59] he designed a method
of successive approximations to construct Markov partitions for general Anosov
diffeomorphisms (see Sect.3 below for more details). Furthermore, in [62] Sinai
showed how Markov partitions can be used to study ergodic properties of hyperbolic
dynamical systems and he was also the first to observe the analogy between the
symbolic models of Anosov diffeomorphisms and lattice gas models in physics—
the starting point in developing the thermodynamic formalism.

Using a different approach, Bowen constructed Markov partitions with finitely
many elements for Axiom A diffeomorphisms, see [15]. The construction for
hyperbolic flows was carried out independently by Bowen [16] and Ratner [54] (see
also [15, 17]). Recently, Sarig [57] constructed Markov partitions with a countable
number of elements for surface diffeomorphisms with positive topological entropy.
Symbolic dynamics associated with hyperbolic systems was also studied by Alek-
seev [2].

Aside from smooth dynamical systems, Markov partitions with countable num-
ber of partition elements were constructed for a particular class of hyperbolic
billiards by Bunimovich and Sinai [20] and by Bunimovich, Sinai, and Chernov
[21] (see also the article by Szasz [68]).

1.3 Entropy

Introduced by Kolmogorov and Sinai, the metric entropy is one of the most impor-
tant invariants of dynamics, and this manifests itself in the famous isomorphism
problem. Given a transformation 7: X — X preserving a measure (4, we say that
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(T, ) is a Bernoulli automorphism if it is metrically isomorphic to the Bernoulli
shift (o, x) associated to some Lebesgue space (Y, v), so that v is metrically
isomorphic to Lebesgue measure on an interval together with at most countably
many atoms and « is given as the direct product of Z copies of v on ¥Z. Bernoulli
systems exhibit the highest level of chaotic behavior and entropy is a complete
invariant that distinguishes one Bernoulli map from another. This statement is
known as the isomorphism problem for Bernoulli systems. I refer the reader to
the article by Gurevich [32] for a more detailed discussion of this problem, its
history, and relevant references, but I would like to emphasize the important role of
Sinai’s work on weak isomorphism [58] that laid the ground for the famous Ornstein
solution of the isomorphism problem for Bernoulli systems, [46, 47].

Since in this paper we are mostly interested in smooth hyperbolic dynamical
systems, we will present a formula for the entropy of these systems with respect to
smooth or SRB measures. This formula connects the entropy with the Lyapunov
exponents (see Theorem 3 below); the latter are asymptotic characteristics of
instability of trajectories of the system. We will also discuss the Bernoulli property;
establishing it for smooth hyperbolic systems is based on verifying Ornstein’s
criterium for Bernoullicity.

1.4 Hyperbolicity

Intuitively, hyperbolicity means that the behavior of orbits that start in a small
neighborhood of a given one resembles that of the orbits in a small neighborhood of
a hyperbolic fixed point. In other words, the tangent space along the orbit { " (x)}
should admit an invariant splitting

TynoyM = E°(f"(x)) @ E"(f" (x)) ey

into the stable subspace E® along which the differential of the system contracts and
the unstable subspace E* along which the differential of the system expands.

One should distinguish between two types of hyperbolicity: uniform and nonuni-
form. In the former case every trajectory is hyperbolic and the contraction and
expansion rates are uniform in x. More generally, one can consider a compact
invariant subset A C M and require that f acts uniformly hyperbolic on A. Such
a set A is called uniformly hyperbolic. In the case of nonuniform hyperbolicity the
set of hyperbolic trajectories has positive (in particular, full) measure with respect
to an invariant measure and the contraction and expansion rates depend on x. Thus,
nonuniform hyperbolicity is a property of the system as well as of its invariant
measure (called hyperbolic).

One can extend the notion of hyperbolicity by replacing the splitting (1) along
the orbit { /" (x)} with the splitting

TpneoyM = E°(f"(x)) @ E(f"(x)) ® E*(f"(x)) @
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into the stable E°, unstable E" and central E€ subspaces with the rates of
contraction and/or expansion along the central subspace being slower than the
corresponding rates along the stable and unstable subspaces. This is the case of
partial hyperbolicity.

2 An Overview of Hyperbolicity Theory

In this section I formally introduce three major types of hyperbolicity and briefly
discuss some of their basic properties.

2.1 Uniform Hyperbolicity

It originated in the work of Anosov and Sinai [5, 6]; see also the book [39] for the
state of the art exposition of the uniform hyperbolicity theory.

A diffeomorphism f of a compact Riemannian manifold M is called uniformly
hyperbolic or Anosov if for each x € M there is a continuous df-invariant
decomposition of the tangent space TxM = E*(x) & E"(x) and constants ¢ > 0,
A € (0, 1) such that for each x € M:

1. |ldx f*v]| < cA™||v]| forv € E*(x) andn > O;

2. ||ldy f7"0|| < Ay forv € E¥(x) and n > 0.

The distributions E* and E* are called stable and unstable, respectively. One can
show that they depend Hdolder continuously in x. Clearly, the angle between stable
and unstable subspaces is bounded away from zero in x.

Using the classical Hadamard—Perron theorem, for each x € M one can construct
a local stable manifold V* (x) and a local unstable manifold V*(x) such that

(L1 x e VS%(x)and T, V54 (x) = ES"(x);

L2)  fV¥(x) C Vi(fx))and f~1(V*(x) C VE(f (x)).

Furthermore, define the global stable manifold W*(x) and the global unstable
manifold W" (x) by

Wi = Jrrorgren, whe = o).

n>0 n>0

These sets have the following properties:

(G1) they are smooth submanifolds;
(G2) they are invariant under f, thatis, f(W**(x)) = W5*(f(x));
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(G3) they are characterized as follows:

Wi(x) ={yeM:d(f"(y), f"(x)) = 0, n — oo},
W) ={y e M :d(f"(»), f"(x)) = 0, n > —oo};

(G4) they integrate the stable and unstable distributions, that is, E**(x) =
T, W™ (x).

It follows that W¥(x) and W¥(x) form two uniformly transverse f-invariant
continuous stable and unstable foliations W* and W% with smooth leaves. In
general, the leaves of these foliations depend only continuously on x.3

Any sufficiently small perturbation in the C! topology of an Anosov diffeomor-
phism is again an Anosov diffeomorphism. Hence, Anosov diffeomorphisms form
an open set in the space of C! diffeomorphisms of M.

There are very few particular examples of Anosov diffeomorphisms, namely

1. A linear hyperbolic automorphism of the n-torus given by an n x n-matrix A =
(aij) whose entries a;; are integers, det A = 1 or —1, and all eigenvalues |A| # 1;

2. The Smale automorphism of a compact factor of some nilpotent Lie group (see
[67] and also [39]).

A topologically transitive C2 Anosov diffeomorphism f preserving a smooth
measure u is ergodic, and if f is topologically mixing, then it is a Bernoulli
diffeomorphisms with respect to p. The Bernoulli property was established by
Bowen [15], and a much more general result is given by Statement 4 of Theorem 2.

A compact invariant subset A C M is called hyperbolic if for every x € A
the tangent space at x admits an invariant splitting as described above. For each
x € A one can construct local stable V¥ (x) and unstable V*(x) manifolds which
have Properties (L1) and (L2).

A hyperbolic set A is called locally maximal if there exists a neighborhood U
of A with the property that given a compact invariant set A’ C U, we have that
A’ C A. In this case

A=) f1).

nez

Locally maximal hyperbolic sets can be characterized as having local direct product
structure, that is, given two points x, y € A, which are sufficiently close to each
other, the intersection [x, y] = V*(x) N V¥(y) lies in A. If g is a small perturbation
in the C! topology of a diffeomorphism f with a locally maximal hyperbolic set
Ay, then g possesses a locally maximal hyperbolic set Ag that lies in a small
neighborhood of A .

3In fact, the dependence in x is Holder continuous.
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A diffeomorphism f is called an Axiom A diffeomorphism if its non-wandering
set £2(f) is a locally maximal hyperbolic set.

The Spectral Decomposition Theorem claims (see [39]) that the set £2( f) of an
Axiom A diffeomorphism f can be decomposed into finitely many disjoint closed
f-invariant locally maximal hyperbolic sets, £2(f) = AjU---U A, suchthat f|A;
is topologically transitive. Moreover, for each i there exists a number n; and a set
A; C A; such that the sets fk(A,-) are disjoint for 0 < k < n;, their union is the set
A, f"(A;) = A;, and the map f"|A; is topologically mixing.

2.2 Nonuniform Hyperbolicity

It originated in the work of Pesin [49-51]; see also the books [7, 8] for a sufficiently
complete description of the modern state of the theory.

A diffeomorphism f of a compact Riemannian manifold M is non-uniformly
hyperbolic if there are a measurable d f -invariant decomposition of the tangent space
T.M = E*(x) & E"(x) and measurable positive functions £(x), c¢(x), k(x) and
A(x) < 1 such that for almost every x € M (here /(S1, S2) denotes the angle
between subspaces S;):

1. ldf"v|| < c(x)A(x)*||v]| forv € ES(x), n > O;

2. ldf "]l < c(x)AX)*||v| forv € E¥(x), n > 0;

3. /(E*(x), E"(x)) = k(x);

4 c(fmx) < Do), k(fmx) = et @IMkx), A(f"(x) = Ax),
m € 7.

The last property means that the rates of contraction and expansion (given by A(x))
are constant along the trajectory and the estimates in (1) and (2) can deteriorate with
a rate which, while exponential, has a sufficiently small exponent.

Non-uniform hyperbolicity can also be expressed in more “practical” terms using
the Lyapunov exponent of .

1
x(x,v) =limsup loglldfivll, x € M, ve T, M.
n

n—o00

This means that for all sufficiently large n and a sufficiently small ¢,
ldfyvll ~ exp(x (x,v) & &)n.

If x (x, v) > 0, the differential asymptotically expands v with some exponential rate,
and if x (x, v) < 0, the differential asymptotically contracts v with some exponential
rate.

Therefore, f is non-uniformly hyperbolic if for almost every trajectory with
respect to , the Lyapunov exponent x (x, v) is not equal to zero for every vector v;
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in this case the measure u is called hyperbolic. In other words,
E'(x) = Ep(x) ={ve ThtM: x(x,v) <0}, E"(x)=E%(x)= j‘.,l(x).

Nonuniform hyperbolicity is equivalent to the fact that Lyapunov exponents of f
are nonzero almost everywhere in M (i.e., the smooth invariant measure for f is
hyperbolic)—the phenomenon known as the Anosov rigidity. One can show that f
is an Anosov diffeomorphism if:

1. the Lyapunov exponents for f are nonzero at every point x € M, see [33, 45];
2. the Lyapunov exponents for f are nonzero on a set of total measure one, i.e., on
a set that has full measure with respect to any invariant measure, see [23, 24].

If 1 is a hyperbolic measure, then for almost every x € M one can construct local
stable and unstable manifolds V*(x) and V*(x). They depend measurably on x, in
particular, their sizes can be arbitrarily small.

An example of a diffeomorphism with nonzero Lyapunov exponents was con-
structed by Katok [36]. Starting with a hyperbolic automorphism of the 2-torus,
he used the slow-down procedure in a neighborhood of a hyperbolic fixed point
p to turn p into an indifferent fixed point. In particular, the Lyapunov exponents
at p are all zero. Katok used this example as a starting point in his construction
of area preserving C* diffeomorphisms with nonzero Lyapunov exponents on
compact surfaces. This result was extended by Dolgopyat and Pesin [31] who
showed that any compact manifold of dimension >2 admits a volume preserving
C®° diffeomorphism with nonzero Lyapunov exponents.

2.3 Partial Hyperbolicity

It originated in the work of Brin and Pesin [18] and of Pugh and Shub [34]; see also
the book [52] for a sufficiently complete exposition of the core of the theory.

A diffeomorphism f of a compact Riemannian manifold M is called partially
hyperbolic if for each x € M there is a continuous d f -invariant decomposition of
the tangent space TxM = E*(x) ® E°(x) @ E"(x) and constants c1, ¢2, ¢3, c4 > 0,
A< m1 < w2 < A, mq < 1 such that foreach x € M and n > O:

L ldx f"vll < c1rfllv]l forv € E*(x);

2. lldx f"ull = c223|lv]| for v € E¥(x);

3. capfllvll < lldx f"vll < e3ppllvl| for v € E€(x).

The distributions E*, E*, and E¢ are called stable, unstable and central, respec-

tively. They depend continuously in x.* Clearly, the angle between any two
subspaces E°(x), E*(x) and E€(x) is bounded away from zero uniformly in x.

4One can show that the dependence in x is Holder continuous.
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Any sufficiently small perturbation in the C! topology of a partially hyperbolic
diffeomorphism is again a partially hyperbolic diffeomorphism. Hence, partially
hyperbolic diffeomorphisms form an open set in the space of C! diffeomorphisms
of M.

The stable and unstable distributions E* and E* can be integrated to continuous
foliations W*¥ and W, respectively, with smooth leaves. The central distribution
may or may not be integrable.

Some well-known examples of partially hyperbolic diffeomorphisms are (1) a
direct product of an Anosov diffeomorphism with the identity map of a manifold;
(2) a group extension over an Anosov diffeomorphism; (3) the time-1 map of an
Anosov flow.

A compactinvariant subset A C M is called partially hyperbolic if the restriction
f|A is partially hyperbolic in the above sense. For each x € A, one can construct
local stable V*(x) and unstable V*(x) manifolds.

3 Markov Partitions

3.1 Definition of Markov Partitions

Let A be a locally maximal hyperbolic set for a diffeomorphism f of a compact
smooth Riemannian manifold M. From now on we assume that f| A is topologically
mixing. The general case can be easily reduced to this one by using the Spectral
Decomposition Theorem.

A non-empty closed set R C A is called a rectangle if

e diam R < § (where 6 > 0 is sufficiently small);
* R = int R where int R is defined in the relative topology in R;
* [x,y] € R whenever x, y € R

A rectangle R has direct product structure that is given x € R, there exists a
homeomorphism

0:R—> RNVOx)x RNVW(x).0

One can show that both § and 6! are Holder continuous. A finite cover Z =
{R1,..., Ry} of Abyrectangles R;,i = 1,..., p is called a Markov partition for

fif

SWe use here the fact that the set A is locally maximal.
0In other words, 6 identifies the rectangle R with the product R N VE(x) x RNV® (x).



Sinai’s Work on Markov Partitions and SRB Measures 267

1. intR; Nint R; = P unless i = j;
2. foreach x € intR; N f~'(int R;) we have

FWV@NR) CVI(f)NR;,  f(VEX)NR) D VI(f(x)NR;.

These relations are called the Markov property of the Markov partition. We stress
that despite the name a Markov partition % is a cover of A which is almost a
partition: any two elements of the cover can intersect only along their boundaries.

3.2 Symbolic Models

A Markov partition Z = {R1, ..., R,} generates a symbolic model of f|A by a
finite Markov shift or a subshift of finite type (X4, o), where X4 is the set of two-
sided infinite sequences of numbers {1, ..., p}, which are admissible with respect
to the transfer matrix of the Markov partition A = (a;;) (i.e., a;; = 1 if int R; N
f~NintR i) # ¥, and a;; = 0 otherwise). Namely, define

R, = ﬂf IRy, RY = ﬂ (R,
j=—1
_ p@) (u)
R’?n In — Rl el leO in

Now we define the coding map x: ¥4 — A by

XCoovioneeoovion e in, o) = [ Ril, iy

n>0

Note that the maps f and o are conjugate via the coding map x,i.e., fox = xoo.
The map y is Holder continuous and injective on the set of points whose trajectories
never hit the boundary of any element of the Markov partition.

For any points @ = (..., i_1,i0,i1,...) € Zpand o’ = (... ,i" |, i}, i{,...) €
X 4 with the same past (i.e., i} =i forany j < 0) we have that x (') € Vv (x)N
R(x), where x = x (w) and R(x) is the element of a Markov partition containing x.
Similarly, for any point ” = (..., i",,i{,i{,...) € X4 with the same future as
w(e.,i lj =ij forany j > 0) we have that x (") € V) (x) N R(x). Thus, the set
V® (x) N R(x) can be identified via the coding map x with the cylinder C ng in the
space E;{ of “positive” one-sided infinite sequences of numbers {1, ..., p} and the
set V(S)(x) N R(x) can be identified via the coding map x with the cylinder Ci; in

the space X', of “negative” one-sided infinite sequences of numbers {1, ..., p}.
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3.3 Sinai’s Construction of Markov Partitions

I outline here a construction of Markov partition from [59] (see also [27]). For
simplicity, I only consider Anosov diffeomorphisms of the two-dimensional torus,
in which case the geometry of the construction is rather simple and it produces
a partition whose elements are connected subsets with non-empty interior. In the
multi-dimensional case the requirement that partition elements are connected cannot
be ensured unless one allows partitions with countable number of elements. For the
construction of Markov partitions for general Axiom A maps I refer the reader to
the works of Bowen [14, 15].”

Let f be an Anosov diffeomorphism of the two dimensional torus T2. Fix & > 0.
We shall construct a Markov partition with diameter of elements < ¢. It suffices
to do so for some power n of f. Indeed, if # is a Markov partition for f”, then
Mie—n f k% is a Markov partition for f.

For points in the torus, local stable and unstable manifolds are smooth curves
which are called stable and unstable curves. In the course of our construction every
rectangle R is a closed connected subset of the torus. Its boundary d R is the union
of four curves, two of which are stable and the other two are unstable. The union
of stable curves forms the stable boundary 3°R of R while the union of unstable
curves forms the unstable boundary 3" R of R. For every x € R we denote by yp(x)
(respectively, y(x)) the full length stable (respectively, unstable) curve through
x, i.e., the segment of stable (unstable) curve whose endpoints lie on the unstable

(stable) boundary of R.
Letusnow fix§ > 0,n > 0,and let L € (0, 1) be thg constant in tlle definition
of Anosov diffeomorphisms. A collection of rectangles # = {Ry, ..., R p} is called

a sufficient (n, §)-collection if
o 2.
L. U§:1~RJ =T
2. diamR; <46,j=1,...,p;
3. given arectangle R 7> one can find two subcollections of rectangles {R,-l e, Rik }
and {ﬁsl, e, ﬁst} such that

@ f"(Rj) C Uiy Ri, and f7"(R)) € Ujy Rei: )
(b) for every x € Rj, if f"(x) lies in some rectangle R;, from the first
subcollection, then f”(y}%_(x)) C J/I%_ (f"(x));
J 4

(c) for every x € R i, if f7"(x) lies in some rectangle Rw from the second
subcollection, then f’"(ykﬁf_(x)) C )/I’g (f " (x)).
J Se

It is not difficult to show that given § > 0 and a large enough n > 0, there is a
sufficient (n, §)-collection Z.

"In [14], Bowen used a method similar to the original Sinai method known as the method of
successive approximations. In [15] he used a different approach based on pseudo-orbits.
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Our goal is to slightly “extend” each rectangle of a given sufficient (n, §)-
collection Z in both the stable and unstable directions to ensure the Markov
property in these directions. This will produce a cover of the torus by rectangles,
which is a Markov cover.

To this end fix a rectangle R, € % and consider two subcollections
{Ril, e, Ié,-k} and {ﬁsl, R Rst}, which have the properties with respect to ﬁj
mentioned above. We refer to the union of the (un)stable boundaries of all rectangles
in the subcollection as the (un)stable boundary of the subcollection.

Consider the set f” (3”1@). It consists of two unstable curves y' = f"(y{")
and y;' = f"(p3) where the curves y, and p,' form the unstable boundary of R Iz
Denote by A, By and A3, By the endpoints of these curves. We refer to A; and
A3 as the left endpoints of y{* and y;', respectively, and to By and B; as the right
endpoints of y;' and yy’, respectively. If R,, is a rectangle from the subcollection
that contains A1, then it also contains Aj.

Consider now the full length unstable curve yR‘; (A1). It intersects the stable

boundary of I%m at two points, C1 and Dj. One of them, say Cy, lies on the “left”
of Ay and does not belong to the curve y{* (while the other one does). We now
extend the curve p;' to the left by adding the segment f~"(A;C)) to its left point
S7"(A}). It is easy to see that the length of this segment does not exceed §A™".
Similarly, the full length unstable curve ygm (A7) intersects the stable boundary of

Ry, at two points, C2 and D; of which C; lies on the “left” of A> and does not
belong to the curve y,'. We again extend the curve y)' to the left by adding the
segment " (A2C>) to its left point f~"(A3). The length of this segment does not
exceed SA7". As a result we obtain a new rectangle 1?5, which is a left extension of

the rectangle R ;- The left stable boundary of this new rectangle is the stable curve
F7(CIC). )

In a similar manner we can extend the rectangle R; to the right and obtain a new
rectangle which has the Markov property in the unstable direction with respect to
the subcollection associated to R j. Continuing in this way, we obtain a new cover
ZM = (R, ..., RV} which has the Markov property in the unstable direction
with respect to the cover R. Note that the diameter of each rectangle in the new
cover in the unstable direction does not exceed § + A", while the diameter in the
stable direction does not exceed §. Proceeding by induction we obtain a sequence of
covers Z4) = {Iéiq), o, ﬁ;q)} such that

1. rectangles in the cover 2D have the Markov property in the unstable direction
with respect to the rectangles in the cover %(qﬂ_l);
2. the diameter of each rectangle in the cover Z@) in the unstable direction does
not exceed
1 = p—(g+Dbn
1 —A"

while the diameter in the stable direction does not exceed §;
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3. foreachq > Oand j =1, ..., p we have that Ié;q) C Ié;q_l) and the rectangle

Ié;q) is a connected subset.

One can show that the sets RT = Uq>0 R;q) forms a cover Z71, which has the
Markov property in the unstable direction and whose diameter in the unstable
direction does not exceed 1—1*" 26, while the diameter in the stable direction does
not exceed §. Furthermore each rectangle in this cover is a connected subset.
Replacing f" with f~" and repeating the above argument, we can slightly extend
each element of the cover Z7 in the stable direction to obtain a new cover % =
(%)~ which has the Markov property in both the unstable and stable directions
and whose diameter does not exceed 17;,,, 28. Moreover, each rectangle in this
cover is a connected subset. One can now subdivide the rectangles of the cover to
obtain the desired Markov partition.

4 SRB Measures I: Hyperbolic Attractors

4.1 Topological Attractors

Let f be a diffeomorphism of a compact smooth Riemannian manifold M. A
compact invariant subset A C M is called a topological attractor for f if there
is an open neighborhood U of A such that f(U) C U and

A=) .

n>0

The set U is said to be a trapping region or a basin of attraction for A. The maximal
open set with this property is called the topological basin of attraction for A. It
follows immediately from the definition of the attractor that A is locally maximal,
i.e., is the largest invariant set in U.

4.2 Natural and Physical Measures

Starting with the volume m in U, consider its evolution under the dynamics, i.e., the
sequence of measures

n—1
1 k
n = E . 3
m n L fem 3)
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This sequence is compact in the week™ topology, and hence has a convergent
subsequence my, . Clearly, the limit of m,, is supported on A and by the Bogolubov—-
Krylov theorem, it is an f-invariant measure called a natural measure for f. In
general, the measure ;. may be quite trivial—just consider the point mass at an
attracting fixed point.

Given a measure p on an attractor A, define its basin of attraction B(u) as the
set of p-generic points x € U, i.e., points such that for every continuous function ¢
on A,

n—1

1
lim Y () = / pdu. “)
e A

A natural measure p on the attractor A is a physical measure if its basin of
attraction B(u) has positive volume. An attractor with a physical measure is called
a Milnor attractor.

4.3 SRB Measures

Let i be a hyperbolic invariant measure supported on A. Using results of nonuni-
form hyperbolicity theory one can construct for almost every x € A a local stable
V*(x) manifold and a local unstable V*(x) manifold. It is easy to show that for such
points x we have V¥ (x) C A and consequently, W*(x) C A (recall that W*(x) is
the global unstable manifold through x). On the other hand, the intersection of A
with stable manifolds of its points is a Cantor set.

There is a collection {A¢}¢>1 of nested subsets of A that exhaust A (mod 0)
such that local stable V¥ (x) and unstable V*(x) manifolds depend continuously
on x € Ay. In particular, their “sizes” are bounded uniformly from below. Given
x € Ay, set

o= | v,

YeB(x,re)NAg

where ry > 0 is sufficiently small, and let & be the partition of Q¢ (x) by local
unstable leaves V¥(y), y € B(x, r¢)N Ag. Denote by " (y) the conditional measure
on V¥(y) generated by p with respect to the partition & and by m”(y) the leaf-
volume on V*(y) generated by the Riemannian metric.

A hyperbolic invariant measure p on A is called an SRB measure (after Sinai,
Ruelle and Bowen) if for every € with (A¢) > 0, almost every x € A, and almost
every y € B(x, rg) N Ag the measures u”(y) and m"(y) are equivalent. The idea of

8Both ©¥(x) and m" (x) are probability measures.
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describing an invariant measure by its conditional probabilities on the elements of a
continuous partition goes back to the classical work of Kolmogorov and later work
of Dobrushin on random fields, [30] (see also [62]).

The following result describes the density d“(x, y) of the conditional measure
uH(x) with respect to the leaf-volume m" (x).

Theorem 1 (Sinai [62], Pesin and Sinai [53], Ledrappier [41]) For almost every
x the density d*(x, y) is given by d*(x, y) = p*(x) "' p%(x, y) where for y € V*(x)

‘ oy Jacdf1E*(f 75 ()
o = ciapien o ®
and
p" (x) =/ p"(x, y)dm" (x)(y) (6)
Vi(x)

is the normalizing factor.

The Eq. (5) can be viewed as an analog of the famous Dobrushin—Lanford—Ruelle
equation in statistical physics, see [40] and [62].

Using results of nonuniform hyperbolicity theory one can obtain a sufficiently
complete description of ergodic properties of SRB measures.

Theorem 2 Let f be a C'*< diffeomorphism of a compact smooth manifold M with
an attractor A and let i be an SRB measure on A. Then

1. A = UizOAi’ AiNAj= R

2. u(Ag) =0and u(A;) > 0fori > 0;

3. flA; is ergodic fori > 0;

4. foreachi > Othereisn; > 0suchthat A; = U;”:l Ajj where f(Aij) = Aj j11,
f(Ap1) = Air and [ A;y is Bernoulli.

For smooth measures this theorem was proved by Pesin in [50] and its extension
to SRB measures was obtained by Ledrappier in [41] (see also [7, 8]). We note that
the proof of the Bernoulli property in Statement 4 of the theorem is based on the
work of Ornstein and Weiss who established the Bernoulli property for geodesic
flows on compact manifolds of negative curvature, [48].

SRB measures admit the following characterization.

Theorem 3 Let 1 be a measure on A of positive entropy. Then w is an SRB measure
if and only if its entropy is given by the entropy formula:

hu(f) = / Y ) du).

A %i()>0
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For smooth measures (which are particular cases of SRB measures) the entropy
formula was proved by Pesin [50] (see also [7]) and its extension to SRB measures
was obtained by Ledrappier and Strelcyn [42]. The fact that a hyperbolic measure
satisfying the entropy formula is an SRB measure was shown by Ledrappier [41].°

It follows from Theorem 3 that any ergodic SRB measure is a physical measure
(any ergodic component of an SRB measure is an ergodic SRB measure). In
particular, if an attractor supports an ergodic SRB measure then it is a Milnor
attractor.

The limit measures for the sequence of measures (3) are natural candidates for
SRB measures. The classical eight figure map'? is an example of a diffeomorphism
f with an attractor A such that the sequence of measures (3) converges to a
hyperbolic measure © whose basin of attraction has full volume, however u is not
an SRB measure for f.

4.4 Uniformly Hyperbolic Attractors

An attractor A is hyperbolic if it is a uniformly hyperbolic set for £.'! The unstable
subspace E" is integrable: given x € A, the global unstable manifold W* (x) lies in
A, and hence the attractor is the union of the global unstable manifolds of its points,
which form a lamination of A. On the other hand the intersection of A with stable
manifolds of its points may be a Cantor set.

Theorem 4 Assume that the map f| A is topologically transitive. Then the sequence
of measures (3) converges to a unique SRB measure on A and so does the sequence
of measures (7) (independently of the starting point x ).

This theorem was proved by Sinai, [60] for the case of Anosov diffeomorphisms,
Bowen [15], and Ruelle [56] extended this result to hyperbolic attractors, and Bowen
and Ruelle [17] constructed SRB measures for Anosov flows.

Well-known examples of hyperbolic attractors are the DA (derived from Anosov)
attractor and the Smale—Williams solenoid (see [39] for definitions and details).

In the following two subsections I will outline two different approaches to prove
Theorem 4. The first approach was developed by Sinai in [60] and uses Markov
partitions, while the second one deals with the sequence of measures (3) in a
straightforward way and hence, is more general. In particular, it can be used to

°In this paper we use the definition of SRB measure that requires that it is hyperbolic. One can
weaken the hyperbolicity requirement by assuming that some (but not necessarily all) Lyapunov
exponents are non-zero (with at least one positive). It was proved by Ledrappier and Young [43, 44]
that within the class of such measures, SRB measures are the only ones that satisfy the entropy
formula.

10This is a two dimensional smooth map with a hyperbolic fixed point whose stable and unstable
separatrices form the eight figure. Inside each of the two loops there is a repelling fixed point.

! Clearly, the set A is locally maximal.
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construct some special measures for partially hyperbolic attractors which do not
allow Markov partitions; these are so called u-measures which are natural analog of
SRB measures in this case, see [53] and Sect. 6. For simplicity of the exposition
I only consider the case of Anosov diffeomorphisms, extension to hyperbolic
attractors is not difficult.

4.5 First Proof of Theorem 4 (Sinai [60])

Let # be a Markov partition of sufficiently small diameter and let Z~ =
\/o2o f7"Z. One can show that the partition Z~ has the following properties:

1. f# >%,

2. V22, fX%~ is the trivial partition;

3. there is an r > 0 such that every element of the partition Z~ is contained in a
local stable manifold and contains a ball in this manifold of radius 7.

Given x € A, denote by Cgp- (x) the element of the partition %~ containing x. For
every n > 0 we have that " (Cgp-(x)) = Cfn(5-)(f"(x)) and that /" is a bijection
between Cgp-(x) and Cpn(-)(f"(x)). Therefore, /™" transfers the normalized
leaf-volume on C gn(g-)(f" (x)) to a measure on C- (x) which we denote by iy.
This measure is equivalent to the leaf-volume on C4- (x) and we denote by p,(y)
the corresponding density function, which is continuous. One can show that the
sequence of functions p, converges uniformly to a continuous function p(y) =
oc () (V)5 which can be viewed as the density function for a normalized measure
AC - (x) 0N Cgp— (x). These measures have the following properties:

1. fic o () is equivalent to the leaf-volume on Cg- (x);
2. for every measurable set A C C/,_ C Cf-1(%-y the following Chapman-—
Kolmogorov relation holds:

A(AIC -1 gp-)) = (AIC L (C Ly IC p1-);

3. the measures /& are determined by Properties 1 and 2 uniquely.

One can now show that for any x € M and any measurable subset A C M there is
a limit

B(A) = Tm Ji(AIC f-n(p- (X)),

which does not depend on x. The number 1 (A) determines an invariant measure for
f which is the desired SRB measure.
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4.6 Second Proof of Theorem 4 (Pesin and Sinai, [53])

The way of constructing SRB measures on A based on the sequence of measures (3)
can be viewed as being “from outside of the attractor”. There is another way to
construct SRB measures “from within the attractor”. Fix x € A and consider a local
unstable leaf V = V¥(x) at x. One can view the leaf-volume m"(x) on V¥(x) as a
measure on the whole of A. Consider the sequence of measures on A

n—1
1
)= Y fim" (). (7)
k=0

We shall show that every limit measure for the sequence of measures (7) is an SRB-
measure. In fact, every SRB-measure @ can be constructed in this way, i.e., it can
be obtained as the limit measure for a subsequence of measures v,. Furthermore, if
f1A is topologically transitive, then the sequence of measures (7) converges to @
and so does the sequence of measures (3).

We stress that in the definition of the sequence of measures (7) one can replace
the local unstable manifold V*(x) with any admissible manifold, i.e., a local
manifold passing through x and sufficiently close to V*(x) in the C! topology.

Let 1 be a limit measure of the sequence of measures (7) and let z be such that
w(B(z,r)) > 0 for every r > 0. Consider a rectangle R of size r > 0 containing
z and its partition £ into unstable local manifolds V*(y), y € R. We identify the
factor space R/€ with W = V¥(z) N A and we denote by U, = f"(V). Set

Ay ={y e W: V¥(y) N U, # 0},
B, ={yeW: V¥y)nau, # ?},
C, = A, \ B,.
Note that C, is a finite set, and we denote by §, the measure on W, which is the

uniformly distributed point mass on C,. If & is a continuous function on A with
support in R, then

/hdv,,:/ hdv,
A R

=Z/ hdv,

yeA, H(2)NU,
=Z / hdv,,~|—Z / hdv,
yEC,, “(Z)mUn yEB,, “(Z)mUn

— 10 4@,
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One can show that 1,52) < S where C > 0 is a constant. One can further show that

IV =, > p (). ) fv o h(w)p" (y, w) d ' (w)
u y

Y€Cy
= f cnp" (" (), Y)P" () () h” O ),
w Vi (y) P (y)
where
n—1 1
e = [ [THac@riE“ (5o ]
k=0

and p"(y) is given by (6).

It follows that for any subsequence ny; — oo for which the sequence of measures
v, (x) converges to a measure w1 on A, one has that u is an SRB measure.

The above argument implies that (int R) > 0 and hence, the set

E=|[] f'(ntR)

nez

is open and is an ergodic component of u of positive measure (i.e., f|E is ergodic).
In fact, every ergodic component of p can be obtained in this way and hence, is
open (mod 0). One can derive from here that there are at most finitely many SRB
measures and if f|A is topological transitive, then there is only one SRB measure.

5 SRB Measures II: Chaotic Attractors

5.1 Chaotic Attractors: The Concept

An attractor A for a diffeomorphism f is chaotic if there is a natural measure
that is hyperbolic, i.e., a measure with nonzero Lyapunov exponents (with some
being positive and some being negative). In this case using results of nonuniform
hyperbolicity theory one can show that for almost every x € A there are a local
stable V*(x) and unstable V*(x) manifolds. It is easy to see that for such points x
we have V¥(x) C A, so that the attractor contains all the unstable manifolds of its
points.
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5.2 Chaotic Attractors: Some Open Problems

1. Construct an example of a diffeomorphism f with an attractor A such that the
volume m is a non-invariant hyperbolic measure for f (i.e., for almost every
x € U with respect to m and for every nonzero vector v € Ty M the Lyapunov
exponent x (x, v) # 0) but the sequence of measures (3) converges to a measure
n on A for which the Lyapunov exponent x (x, v) = 0 for almost every x € U
with respect to o and for every nonzero vector v € T, M;

2. Construct an example of a diffeomorphism f with an attractor A such that for
almost every x € U with respect to volume m and for every nonzero vector
v € Ty M the Lyapunov exponent x (x, v) = 0 but the sequence of measures (3)
converges to a hyperbolic measure i on A.

5.3 The Hénon Attractor

Consider the Hénon family of maps given by
Hap(x,y) = (1 —ax’ + by, x). ®)

For a € (0,2) and sufficiently small b there is a rectangle in the plane, which
is mapped by H,  into itself. It follows that H, ; has an attractor—the Hénon
attractor.

Benedicks and Carleson [9] developed a highly sophisticated techniques to
describe the dynamics near the attractor. Building on this analysis, Benedicks and
Young [10] established existence of SRB measures for the Hénon attractors.

Theorem 5 There exist ¢ > 0 and by > 0 such that for every 0 < b < by one can
find a set Ay € (2 — ¢&,2) of positive Lebesgue measure with the property that for
each a € Ay, the map H, p admits a unique SRB measure (L, .

Wang and Young [71] introduced and studied some more general 2-parameter
families of maps with one unstable direction to which the above result extends.

The underlying mechanism of constructing SRB measures in these systems is
the work of Young [72] where she introduced a class of non-unformly hyperbolic
diffeomorphisms f admitting a symbolic representation via a tower whose base
A is a hyperbolic set with direct product structure and the induced map on the
base admits a Markov extension. Assuming that the return time R to the base is
integrable, one can show that there is an SRB measure.

As in the case of uniformly hyperbolic systems, the real power of a symbolic
representation is not just to help prove existence of SRB-measures but to show the
exponential decay of correlations, the Central Limit Theorem, etc. For the Hénon
attractor, Benedicks and Young [11] showed that if for all 7 > 0 we have f Rdm <
CAT where C > 0,0 < A < 1 and the integral is taken over the set of points x € A
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with R(x) > T, then f has the exponential decay of correlations for the class of
Holder continuous functions.

5.4 Chaotic Attractors: An Example

Let f be a diffeomorphism with an attractor A to be the Smale—Williams solenoid.
f has an SRB measure on A. In a small ball B(p, r) around a fixed point p, the map
f is the time-1 map of the linear system x = Ax of ODEs.'> We wish to perturb f
locally by slowing down trajectories near p. Define a map g to be the time-1 map
for the following nonlinear system of ODEs inside B(p, r)

X =vYx)Ax
and set g = f outside of B(p, r). Here ¢ (x) = ||x]|* for ||x|| < 2 and ¢¥(x) = 1
for || x| > 2.

Theorem 6 (Climenhaga, Dolgopyat, Pesin, [28]) The map g has an SRB-
measure.

5.5 Chaotic Attractors: Constructing SRB-Measures

Consider the set S C U (U is a neighborhood of the attractor A) of points such
that

* f(S) C S, i.e., Sis forward invariant;
e there are two measurable cone families K¥(x) = K%(x, E;(x),0(x)) and
K*(x) = K"(x, E>(x), 8(x)),"? which are invariant,'* i.e.,

Df(K"(x)) C K*“(f(x)), Df~NK*(f(x))) C K*(x)

and transverse, i.e., Ty X = E1(x) ® Ex(x).
Define

e A(x) =sup{log||Df (v)|: v € K’(x), ||v]| = 1}—coefficient of contraction;
e AM(x) =inf{log | Df (v)|: v € K" (x), |[v|| = 1}—coefficient of expansion;

e d(x) = max (0, (A*(x) — A*(x))—defect of hyperbolicity;,

e A(x) = A"(x) — d(x)—-coefficient of effective hyperbolicity;

12The matrix A is assumed to be hyperbolic having one positive and two negative eigenvalues.
13Recall that given x € M, a subspace E(x) C T, M, and 6(x) > 0, the cone at x around E (x)
with angle 6 (x) is defined by K (x, E(x),0(x)) ={ve TyM: / (v, E(x)) < 0(x)}.

14We stress that the subspaces Ej(x) and E>(x) do note have to be invariant under df .
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e a(x) = /(K*(x), K"(x)) > O—angle between the cones;
e pp(x) = limy— oo i#{O <k < n: oz(fk(x)) < a}—average time the angle
between the cones is below a given threshold & > 0.

We further assume that for every x € §,

S lim,_ o} S5 A5 @) > 0;

(82) limg_.0 pg(x) = 0;
(S3)  limyooo ! ST A°(F¥(x)) <O

Theorem 7 (Climenhaga, Dolgopyat, Pesin, [28]) Assume that the set S has
positive volume. Then f possesses an SRB-measure.

In [70], Viana conjectured that if the set of all points with non-zero Lyapunov
exponents for a C' diffeomorphism f has positive (in particular, full) volume
(which is not necessarily invariant), then [ admits an SRB measure. The above
theorem provides some stronger conditions under which the conclusion of Viana’a
conjecture holds. An affirmative solution of this conjecture for surface diffeomor-
phisms, under some general additional assumptions, is obtained in a recent work by
Climenhaga, Luzzatto and Pesin [29]. It is conjectured that if Requirement (S1) is
replaced with a stronger requirement that

' 1 n—1 .
lim, o PCACH DS

k=0

for some A > O, then f possesses at most finitely many SRB-measures. In
[55], F. Rodriguez Hertz, J. Rodriguez Hertz, Tahzibi and Ures showed that
any topologically transitive surface diffeomorphism possesses at most one SRB
measure.

6 SRB-Measures III: Partially Hyperbolic Attractors

6.1 Partially Hyperbolic Attractors

An attractor A is partially hyperbolic if f|A is uniformly partially hyperbolic, i.e.,
if the tangent space T'A admits an invariant splitting

TA=E'®E°“®E"

into strongly stable, central and strongly unstable subspaces, respectively, which
satisfy conditions (1)—(3) in Sect. 2.3. The subspace E* is integrable: given x € A,
a local unstable leaf V*(x) lies in A, and hence so does the global strongly unstable
manifolds W". It follows that the attractor is the union of the global strongly unstable
manifolds of its points, which form a lamination of A.
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One can obtain an example of a partially hyperbolic attractor by considering the
product map F = f; x f» where fi: M — M is a map possessing a uniformly
hyperbolic attractor and f>: S' — S is an isometry.

If f is a diffeomorphism possessing a uniformly (partially) hyperbolic attractor
A = Ay then any sufficiently small perturbation g of f in the C ! topology
possesses a uniformly (partially) hyperbolic attractor A, that lies in a small
neighborhood of A ¢. This provides an open set of uniformly (partially) hyperbolic
attractors in the spaces of C! diffeomorphisms.

6.2 SRB-Measures on Partially Hyperbolic Attractors

Let A be a partially hyperbolic attractor for a diffeomorphisms f. A measure u
on A is a u-measure if for almost every x € A, the conditional measure u"(x)
generated by p on the global strongly unstable leaf W* (x) is absolutely continuous
with respect to the leaf-volume m" (x). One can show that the Jacobian of the u-
measure in the unstable direction is given by the formula (5). The following result
shows that every partially hyperbolic attractor carries a u-measure. Its proof can be
obtained by adjusting the argument in the second proof of Theorem 4 to the partial
hyperbolicity setting.

Theorem 8 (Pesin, Sinai, [S3]) The following statements hold:

1. Any limit measure u of the sequence of measures (3) is a u-measure on A;
2. Any limit measure |1 of the sequence of measures (7) is a u-measure on A.

Unlike the case of hyperbolic attractors, the topological transitivity of f|A (or
even topological mixing) does not guarantee uniqueness of u-measures.

Every SRB-measure on a partially hyperbolic attractor A is a u-measure but
not every u-measure is an SRB-measure. We say that a u-measure v has negative
(positive) central exponents if there is an invariant subset A C A with v(A) > 0
such that the Lyapunov exponents x (x, v) < 0 (respectively, x (x, v) > 0) for every
x € A and every nonzero vector v € E°(x). A u-measure with negative (positive)
central exponents is an SRB-measure.

Below is a result that guarantees existence and uniqueness of SRB-measures for
partially hyperbolic attractors with negative central exponents. It requires existence
of at least one u-measure with negative central exponents and a strong transitive
condition. A detailed discussion of these requirements can be found in [22].

Indeed, consider F = f; x f3, where fj is a topologically transitive Anosov diffeomorphism
and f a diffeomorphism close to the identity. Then any measure © = p; X wup, where g is the
unique SRB-measure for f| and p; any f>-invariant measure, is a #-measure for F. Thus, F has
a unique u-measure if and only if f, is uniquely ergodic. On the other hand, F is topologically
mixing if and only if f, is topologically mixing.
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Theorem 9 (Bonatti, Viana, [13]; Burns, Dolgopyat, Pollicott, Pesin, [22]) Let
f be a C'*¢ diffeomorphism of a compact smooth manifold M with a partially
hyperbolic attractor A. Assume that:

1. there exists a u-measure v with negative central exponents;
2. for every x € A the global strongly unstable manifold W" (x) is dense in A.

Then v is the unique u-measure for f and is the unique hyperbolic SRB-measure
for f whose basin of attraction B(v) has full volume in the topological basin of
attraction of A.

The case of positive central exponents is more difficult and existence of SRB-
measures can be established under the stronger requirements that (see [69]):

1. there is a unique #-measure v with positive central exponents on a subset A C A
of full measure;
2. for every x € A the global strongly unstable manifold W*(x) is dense in A.

6.3 Dominated Splitting and SRB-Measures

The key tool in constructing SRB-measures in the uniform hyperbolic setting is
presence of a dominated splitting, i.e., a decomposition of the tangent bundle
T.M = E1(x) @ E>(x) for every x € A such that

1. Eq(x) and E5(x) depend continuously on x;
2. £(E1(x), E2(x)) is bounded away from 0;
3. thereis 0 < A < 1 such that

IDFIEI@)] < &, IDFIEII - IDf T E2(f @Il < A
Construction of SRB measures for systems with dominated splitting was effected in

various situations. Here is an (incomplete) list:

* (Alves, Bonatti, Viana, [3]) there is a subset S C U of positive volume and ¢ > 0
such that for every x € S,

. 1 ¢ _ :
lim sup Y log ldf M E2(f/ ()] < —e.
j=1

n—o00

In this case, in addition one can have no more than finitely many distinct SRB
measures.

* (Alves, Dias, Luzzatto, Pinheiro, [4]) there is a subset S C U of positive volume
and ¢ > 0 such that for every x € S,

| — ;
lim inf Z log ldf Y E2(f/ (x)|| < —e.
n—oon
=
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In this case, in addition one can have no more than finitely many distinct SRB
measures. In fact, if f is topologically transitive and m(S) = 1, then the SRB
measure is unique.

We stress that for non-uniformly hyperbolic f, the splitting of the tangent space
does not have to be dominated.
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Further Developments of Sinai’s Ideas: m)
The Boltzmann-Sinai Hypothesis ik

Nandor Simanyi

Abstract In this chapter we present a brief survey of the rich and manifold
developments of Sinai’s ideas, dating back to 1963, concerning his exact mathemat-
ical formulation of Boltzmann’s original ergodic hypothesis. These developments
eventually lead to the 2013 proof of the so called “Boltzmann-Sinai Ergodic
Hypothesis”.

1 Preface

In 1963, Ya. G. Sinai [23] formulated a modern version of Boltzmann’s ergodic
hypothesis, what we now call the “Boltzmann-Sinai Ergodic Hypothesis”: The
billiard system of N (N > 2) hard balls of unit mass moving on the flat torus
TV = RY/Z" (v > 2) is ergodic after we make the standard reductions by fixing
the values of trivial invariant quantities. It took 50 years and the efforts of several
people, including Sinai himself, until this conjecture was finally proved. In this short
survey we provide a quick review of the closing part of this process, by showing how
Sinai’s original ideas developed further between 2000 and 2013, eventually leading
to the proof of the conjecture.

2 Posing the Problem: The Investigated Models

Non-uniformly hyperbolic systems (possibly, with singularities) play a pivotal role
in the ergodic theory of dynamical systems. Their systematic study started several
decades ago, and it is not our goal here to provide the reader with a comprehensive
review of the history of these investigations but, instead, we opt for presenting in a
nutshell a cross section of a few selected results.
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In 1939, G.A. Hedlund and E. Hopf [3, 4], proved the hyperbolic ergodicity (i.e.,
full hyperbolicity and ergodicity) of geodesic flows on closed, compact surfaces
with constant negative curvature by inventing the famous method of “Hopf chains”
constituted by local stable and unstable invariant manifolds.

In 1963, Ya. G. Sinai [23] formulated a modern version of Boltzmann’s ergodic
hypothesis, what we call now the “Boltzmann—Sinai Hypothesis”: the billiard
system of N (> 2) hard balls of unit mass moving on the flat torus T" = R"/Z"
(v = 2) is ergodic after we make the standard reductions by fixing the values of the
trivial invariant quantities. It took seven years until he proved this conjecture for the
case N = 2, v = 2 in [24]. Another 17 years later, N. I. Chernov and Ya. G. Sinai
[26] proved the hypothesis for the case N = 2, v > 2 by also proving a powerful
and very useful theorem on local ergodicity.

In the meantime, in 1977, Ya. Pesin [12] laid down the foundations of his theory
on the ergodic properties of smooth, hyperbolic dynamical systems. Later on, this
theory (nowadays called Pesin theory) was significantly extended by A. Katok and
J-M. Strelcyn [5] to hyperbolic systems with singularities. That theory is already
applicable for billiard systems, too.

Until the end of the 1970s the phenomenon of hyperbolicity (exponential
instability of trajectories) was almost exclusively attributed to some direct geometric
scattering effect, like negative curvature of space, or strict convexity of the
scatterers. This explains the profound shock that was caused by the discovery of
L. A. Bunimovich [1]: Certain focusing billiard tables (like the celebrated stadium)
can also produce complete hyperbolicity and, in that way, ergodicity. It was partly
this result that led to Wojtkowski’s theory of invariant cone fields, [29, 30].

The big difference between the system of two balls in TV (v > 2, [26]) and the
system of N (> 3) balls in TV is that the latter one is merely a so called semi-
dispersive billiard system (the scatterers are convex but not strictly convex sets,
namely cylinders), while the former one is strictly dispersive (the scatterers are
strictly convex sets). This fact makes the proof of ergodicity (mixing properties)
much more complicated. In our series of papers jointly written with A. Kramli and
D. Szasz [7, 8], and [9], we managed to prove the (hyperbolic) ergodicity of three
and four billiard balls on the toroidal container T". By inventing a new topological
methods and the Connecting Path Formula (CPF), in the two-part paper [13, 14], I
proved the (hyperbolic) ergodicity of N hard balls in T", provided that N < v.

The common feature of hard ball systems is—as D. Szdsz pointed this out first
in [27] and [28]—that all of them belong to the family of so called cylindric
billiards, the definition of which can be found later in this survey. However, the first
appearance of a special, 3-D cylindric billiard system took place in [6], where we
proved the ergodicity of a 3-D billiard flow with two orthogonal cylindric scatterers.
Later D. Szasz [28] presented a complete picture (as far as ergodicity is concerned)
of cylindric billiards with cylinders whose generator subspaces are spanned by
mutually orthogonal coordinate axes. The task of proving ergodicity for the first
non-trivial, non-orthogonal cylindric billiard system was taken up in [20].

Finally, in our joint venture with D. Szdsz [21] we managed to prove the complete
hyperbolicity of typical hard ball systems on flat tori.
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2.1 Cylindric Billiards

Consider the d-dimensional (d > 2) flat torus T¢ = RY/.% supplied with the
usual Riemannian inner product (., .) inherited from the standard inner product of
the universal covering space R?. Here .# < R is supposed to be a lattice, i.e., a
discrete subgroup of the additive group R¢ with rank(.#) = d. The reason why we
want to allow general lattices other than just the integer lattice Z, is that otherwise
the hard ball systems would not be covered. The geometry of the structure lattice .Z
in the case of a hard ball system is significantly different from the geometry of the
standard orthogonal lattice Z¢ in the Euclidean space R?.

The configuration space of a cylindric billiard is Q = T \ (C; U --- U Cy),
where the cylindric scatterers C; (i = 1, ..., k) are defined as follows:

Let A; C R be a so called lattice subspace of R4, which means that rank(A; N
%) = dimA;. In this case the factor A;/(A; N %) is a subtorus in T¢ = R¢/.Z,
which will be taken as the generator of the cylinder C; C T¢,i =1,...,k Denote
by L; = AI.J- the orthocomplement of A; in RY. Throughout this survey we will
always assume that dim L; > 2. Let, furthermore, the numbers r; > 0 (the radii of
the spherical cylinders C;) and some translation vectors ; € T¢ = R /. be given.
The translation vectors #; play a crucial role in positioning the cylinders C; in the
ambient torus T¢. Set

Ci = ’x €T dist(x — 1, Ai/(A; N.L)) < r,-].

In order to avoid further unnecessary complications, we always assume that the
interior of the configuration space Q = T? \ (C; U---U Cy) is connected. The
phase space M of our cylindric billiard flow will be the unit tangent bundle of Q
(modulo some natural gluings at its boundary), i.e., M = Q x S?-1. (Here S-!
denotes the unit sphere of R?.)

The dynamical system (M, {S’}, u) that we investigate is called a cylindric
billiard flow. Here S (+ € R) is the dynamics defined by uniform motion inside
the domain Q and specular reflections at its boundary (at the scatterers), and w is
the Liouville measure.

2.2 Transitive Cylindric Billiards

The main conjecture concerning the (hyperbolic) ergodicity of cylindric billiards is
the “Erd&tarcsa conjecture” (named after the picturesque village in rural Hungary
where it was initially formulated) that appeared as Conjecture 1 in Section 3 of [22]:

Conjecture 1 (The Erdétarcsa Conjecture) A cylindric billiard flow is ergodic if
and only if it is transitive, i.e., the Lie group generated by all rotations across the
constituent spaces of the cylinders acts transitively on the sphere of compound
velocities, see Section 3 of [22]. In the case of transitivity the cylindric billiard
system is actually a completely hyperbolic Bernoulli flow, see [2] and [11].
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The theorem of [15] proves a slightly relaxed version of this conjecture (only
full hyperbolicity without ergodicity) for a wide class of cylindric billiard systems,
namely the so called “transverse systems”, which include every hard ball system.

2.3 Transitivity

Let Ly, ..., Ly C RY be subspaces, A; = Lj-,dimL; = 2,i = 1,..., k. Set
4 ={U €S0(d) : U|A; =1dya,},

and let 4 = (4),...,%) C SO(d) be the algebraic generate of the compact,
connected Lie subgroups %; in SO(d). The following notions appeared in Section 3
of [22].

Definition 2 We say that the system of base spaces {L1, ..., L} (or, equivalently,
the cylindric billiard system defined by them) is transitive if and only if the group
& acts transitively on the unit sphere SY~! of R,

Definition 3 We say that the system of subspaces {L1, ..., L} has the Orthogonal
Non-Splitting Property (ONSP) if there is no non-trivial orthogonal splitting R? =
B & By of RY with the property that for every index i (1 <i < k) L; C Bj or
L; C B;.

The next result can be found in Section 3 of [22] (see 3.1-3.6 thereof):

Proposition 4 For the system of subspaces {L1, ..., L} the following three prop-
erties are equivalent:

1. {Ly, ..., L} is transitive;
2. {Ly,..., Ly} has the ONSP;
3. the natural representation of 4 in RY is irreducible.

2.4 Transverseness

Definition 5 We say that the system of subspaces {L1, ..., L} of R is transverse
if the following property holds: For every non-transitive subsystem {L; : i € I}
(I C {1,...,k}) there exists an index jo € {1, ..., k} such that Pg+(Aj) = ET,
where A j, = Lj.z), and ET = span{L; : i € I}. We note that in this case, necessarily,
jo & I, otherwise Pg+(Aj)) would be orthogonal to the subspace Lj, C ET.
Therefore, every transverse system is automatically transitive.

We note that every hard ball system is transverse, see [15]. The main result of
that paper is the following theorem.



Further Developments of Sinai’s Ideas: The Boltzmann—Sinai Hypothesis 291

Theorem 6 Assume that the cylindric billiard system is transverse. Then this
billiard flow is completely hyperbolic, i.e., all relevant Lyapunov exponents are
nonzero almost everywhere. Consequently, in such a dynamical system every ergodic
component has positive measure, and the restriction of the flow to each ergodic
component has the Bernoulli property, see [2] and [11].

An immediate consequence of this result is the following result.
Corollary 7 Every hard ball system is completely hyperbolic.

Thus Theorem 6 above generalizes the main result of [21], where the complete
hyperbolicity of almost every hard ball system was proven.

3 Toward Ergodicity

In the series of articles [6, 8, 9, 13], and [14] the authors developed a powerful, three-
step strategy for proving the (hyperbolic) ergodicity of hard ball systems. First of
all, all these proofs are inductions on the number N of balls involved in the problem.
Secondly, the induction step itself consists of the following three major steps:

3.1 Stepl

To prove that every non-singular (i.e., smooth) trajectory segment S%?lxy with a
“combinatorially rich” symbolic collision sequence is automatically sufficient (or,
in other words, “geometrically hyperbolic”), provided that the phase point xo does
not belong to a countable union J of smooth sub-manifolds with codimension at
least two. (Containing the exceptional phase points.)

Here combinatorial richness means that the symbolic collision sequence of the
orbit segment contains a large enough number of consecutive, connected collision
graphs, see also the introductory section of [21].

The exceptional set J featuring this result is negligible in our dynamical
considerations—it is a so called slim set, i.e., a subset of the phase space M that
can be covered by a countable union U:il F,, of closed, zero-measured subsets F},
of M that have topological co-dimension at least 2.

3.2 Stepll

Assume the induction hypothesis, i.e., that all hard ball systems with N’ balls (2 <
N’ < N) are (hyperbolic and) ergodic. Prove that then there exists a slim set S ¢ M
with the following property: For every phase point xo € M \ S the whole trajectory
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§(=20.%) x) contains at most one singularity and its symbolic collision sequence is
combinatorially rich, just as required by the result of Step 1.

3.3 Step 111

By using again the induction hypothesis, prove that almost every singular trajectory
is sufficient in the time interval (zp, oo), where f#( is the moment of the singular
reflection, i.e., a tangential reflection or multiple reflections occurring at the same
time. (Here the phrase “almost every” refers to the volume defined by the induced
Riemannian metric on the singularity manifolds.)

We note here that the almost sure sufficiency of the singular trajectories
(featuring Step III) is an essential condition for the proof of the celebrated Theorem
on Local Ergodicity for algebraic semi-dispersive billiards proved by Chernov and
Sinai in [26]. Under this assumption the theorem of [26] states that in any algebraic
semi-dispersive billiard system (i.e., in a system such that the smooth components
of the boundary dQ are algebraic hypersurfaces) a suitable, open neighborhood Uy
of any hyperbolic phase point xo € M (with at most one singularity on its trajectory)
belongs to a single ergodic component of the billiard flow.

In an inductive proof of ergodicity, steps I and II together ensure that there exists
an arc-wise connected set C C M with full measure, such that every phase point
xo € C is hyperbolic with at most one singularity on its trajectory. Then the cited
Theorem on Local Ergodicity (now taking advantage of the result of Step III) states
that for every phase point xo € C an open neighborhood Uy of x( belongs to one
ergodic component of the flow. Finally, the connectedness of the set C and u(C) = 1
easily imply that the billiard flow with N balls is indeed ergodic, and actually fully
hyperbolic, as well.

In the papers [16, 21], and [17] we investigated systems of hard balls with masses
mi, my, ..., my (m; > 0) moving on the flat torus ’IFZ =R"/L-Z",L > 0.

The main results of the papers [16] and [17] are summarized as follows:

Theorem 8 For almost every selection (my, ..., my; L) of the external geometric
parameters from the region m; > 0, L > Lo(r, v), where the interior of the phase
space is connected, it is true that the billiard flow (Mm,L, {S"3, Mm,L) of the N-
ball system is ergodic and completely hyperbolic. Then, following from the results
of [2] and [11], such a semi-dispersive billiard system actually enjoys the Bernoulli
mixing property, as well.

Remark 9 We note that the results of the papers [16] and [17] nicely complement
each other. They precisely assert the same, almost sure ergodicity of hard ball
systems in the cases v = 2 and v > 3, respectively. It should be noted, however,
that the proof of [16] is primarily dynamical-geometric (except the verification
of the Chernov—Sinai Ansatz), whereas the novel parts of [17] are fundamentally
algebraic. We note that the Chernov—Sinai Ansatz claims that almost every singular
trajectory is eventually hyperbolic.
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Remark 10 The above inequality L > Lq(r, v) corresponds to physically relevant
situations. Indeed, in the case L < Lo(r, v) the particles would not have enough
room to even freely exchange positions.

4 The Conditional Proof

In the paper [18] we again considered the system of N (> 2) elastically colliding
hard spheres with masses my, ..., my and radius r on the flat unit torus T", v > 2.
We proved the Boltzmann—Sinai Ergodic Hypothesis, i.e., the full hyperbolicity
and ergodicity of such systems for every selection (m1, ..., my; r) of the external
parameters, provided that almost every singular orbit is geometrically hyperbolic
(sufficient), i.e., that the so called Chernov—Sinai Ansatz is true. The proof does
not use the formerly developed, rather involved algebraic techniques, instead it
extensively employs dynamical methods and tools from geometric analysis.

To upgrade the full hyperbolicity to ergodicity, one needs to refine the analysis
of the degeneracies, i.e., the set of non-hyperbolic phase points. For hyperbolicity,
it was enough that the degeneracies made a subset of codimension > 1 in the
phase space. For ergodicity, one has to show that its codimension is > 2, or
to find some other ways to prove that the (possibly) arising one-codimensional,
smooth submanifolds of non-sufficiency are incapable of separating distinct, open
ergodic components from each other. The latter approach was successfully pursued
in [18]. In the paper [16], I took the first step in the direction of proving that the
codimension of exceptional manifolds is at least two: It was proved there that the
systems of N > 2 disks on a 2D torus (i.e., v = 2) are ergodic for typical (generic)
(N + 1)-tuples of external parameters (mq, ..., my,r). The proof involved some
algebro-geometric techniques, thus the result is restricted to generic parameters
(my,...,my; r). But there was a good reason to believe that systems in v > 3
dimensions would be somewhat easier to handle, at least that was indeed the case in
early studies.

In the paper [17], I was able to improve further the algebro-geometric methods
of [21], and proved that for any N > 2, v > 2, and for almost every selection
(my, ...,mpy; r) of the external geometric parameters the corresponding system of
N hard balls on T" is (fully hyperbolic and) ergodic.

In the paper [18] the following result was obtained.

Theorem 11 For any integer values N > 2, v > 2, and for every (N + 1)-
tuple (m1, ..., mp, r) of the external geometric parameters the standard hard ball
system (Mm,r, {S,’n’,} , ,um,,) is (fully hyperbolic and) ergodic, provided that the
Chernov=Sinai Ansatz holds true for all such systems.

Remark 12 The novelty of the theorem (as compared to the result in [17]) is
that it applies to every (N + 1)-tuple of external parameters (provided that the
interior of the phase space is connected), without an exceptional zero-measure set.
Somehow, the most annoying shortcoming of several earlier results was exactly
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the fact that those results were only valid for hard sphere systems apart from an
undescribed, countable collection of smooth, proper submanifolds of the parameter
space RN+ 5 (my, ma, ..., my; r). Furthermore, those proofs do not provide any
effective means to check if a given (m1, ..., my; r)-system is ergodic or not, most
notably for the case of equal masses in Sinai’s classical formulation of the problem.

Remark 13 The present result speaks about exactly the same models as the result
of [15], but the statement of this new theorem is obviously stronger than that of
the theorem in [15]: It has been known for a long time that, for the family of
semi-dispersive billiards, ergodicity cannot be obtained without also proving full
hyperbolicity.

Remark 14 As it follows from the results of [2] and [11], all standard hard ball
systems (the models covered by the theorems of this survey), once they are proved to
be mixing, they also enjoy the much stronger Bernoulli mixing property. However,
even the K-mixing property of semi-dispersive billiard systems follows from their
ergodicity, as the classical results of Sinai in [24] and [25] show. Here it is
worth noting that in his publication [25] Sinai pays tribute to the late Russian
physicist N. S. Krylov [10], who appeared to be the first physicist pointing out the
potential importance of studying hard sphere systems in order to better understand
Boltzmann’s ergodic hypothesis.

In the subsequent part of this survey we review the necessary technical prereq-
uisites of the proof, along with some of the needed references to the literature. The
fundamental objects of the paper [18] are the so called “exceptional manifolds”
or “separating manifolds” J: they are codimension-one submanifolds of the phase
space that are separating distinct, open ergodic components of the billiard flow.

In §3 of [18] we proved Main Lemma 3.5, which states, roughly speaking, the
following: Every separating manifold / C M contains at least one sufficient (or
geometrically hyperbolic) phase point. The existence of such a sufficient phase point
x € J, however, contradicts the Theorem on Local Ergodicity of Chernov and Sinai
(Theorem 5 in [26]), since an open neighborhood U of x would then belong to
a single ergodic component, thus violating the assumption that J is a separating
manifold. In §4 this result was exploited to carry out an inductive proof of the
(hyperbolic) ergodicity of every hard ball system, provided that the Chernov—Sinai
Ansatz holds true for all hard ball systems.

In what follows, we make an attempt to briefly outline the key ideas of the proof
of Main Lemma 3.5 of [18]. Of course, this outline will lack the majority of the
nitty-gritty details, technicalities, that constitute an integral part of the proof. The
proof is a proof by contradiction.

We consider the one-sided, tubular neighborhoods Us of J with radius 6 > 0.
Throughout the whole proof of the main lemma the asymptotics of the measures
w(Xs) of certain (dynamically defined) sets Xs C Us are studied, as § — 0. We
fix a large constant ¢3 > 1, and for typical points y € Us \ Us/» (having non-
singular forward orbits and returning to the layer Us \ Us/2 infinitely many times in
the future) we define the arc-length parametrized curves py ;(s) (0 < s < h(y, 1))
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in the following way: p, ; emanates from y and it is the curve inside the manifold
Eé(y) with the steepest descent towards the separating manifold J. Here Eé(y) is
the inverse image S’ (2,’ (y)) of the flat, local orthogonal manifold passing through
y: = S'(y). The terminal point IT(y) = py; (h(y, 1)) of the smooth curve p, ; is
either

(a) on the separating manifold J, or
(b) on a singularity of order k1 = k1(y).

The case (b) is further split in two sub-cases, as follows:

/1) ki(y) < ¢33
(b/2) 3 = ki(y) < oo.

About the set Us(oo) of (typical) points y € Us \ Usz with property (a), it
is shown that, actually, Us(co) = #. Roughly speaking, the reason for this is the
following: For a point y € Us(oo) the iterates S” of the flow exhibit arbitrarily
large contractions on the curves py ;, thus the infinitely many returns of S’ (y) to the
layer Us \ Us/2 would “pull up” the other endpoints S* (I7(y)) to the region Us \ J,
consisting entirely of sufficient points, and showing that the point I1(y) € J itself
is sufficient, thus violating the assumed hypothesis of the proof by contradiction.

The set Us\Us(c3) of all phase points y € Us\Us,> with the property k1(y) < ¢3
are dealt with by a lemma, where it is shown that

w(Us \ Us(c3)) = 0(8),

as § — 0. The reason, in rough terms, is that such phase points must lie at the
distance < § from the compact singularity set

U s (r%).

0<t<2c3

and this compact singularity set is transversal to J, thus ensuring the measure
estimate (Ug \ U5(63)) = 0(d).

Finally, the set Fs(c3) of (typical) phase points y € Us \ Us/2 with ¢3 < k1(y) <
oo is dealt with by Lemmas 3.36, 3.37, and Corollary 3.38 of [18], where it is
shown that u (F5(c3)) < C4, with constants C that can be chosen arbitrarily small
by selecting the constant c¢3 >> 1 big enough. The ultimate reason of this measure
estimate is the following fact: For every point y € Fj(c3) the projection

(y) = $® € oM

(where T ) is the time of the k1(y)-th collision on the forward orbit of y) will

have a tubular distance z;,p (ﬁ (y)) < C16 from the singularity set %~ U %,

where the constant C; can be made arbitrarily small by choosing the contraction
coefficients of the iterates S’*1© on the curves Pyt ) arbitrarily small with the help
e



296 N. Siményi

of the fine expansion and contraction estimates published in Appendix B of [18].
The upper measure estimate (inside the set 9M) of the set of such points 1 (y) € oM
(Lemma 2 in [26]) finally yields the required upper bound pu (Fs(c3)) < C§ with
arbitrarily small positive constants C (if c3 > 1 is big enough).

The listed measure estimates and the obvious fact

w (Us \ Usj2) ~ C28

(with some constant C; > 0, depending only on J) show that there must exist a
point y € Us \ Us;2 with the property (a) above, thus ensuring the sufficiency of the
point I1(y) € J.

In the closing section of [18] we completed the inductive proof of ergodicity
(with respect to the number of balls N) by utilizing Main Lemma 3.5 and earlier
results from the literature. Actually, a consequence of the Main Lemma will be that
exceptional J-manifolds do not exist, and this will imply the fact that no distinct,
open ergodic components can coexist.

5 Proof of Ansatz

Finally, in the paper [19] we proved the Boltzmann—Sinai Hypothesis for hard
ball systems on the v-torus R"/Z" (v > 2) without any assumed hypothesis or
exceptional model.

As said before, in [18] the Boltzmann—Sinai Hypothesis was proved in full
generality (i.e., without exceptional models), by assuming the Chernov—Sinai
Ansatz.

The only missing piece of the whole puzzle is to prove that no open piece of
a singularity manifold can precisely coincide with a codimension-one manifold
describing the trajectories with a non-sufficient forward orbit segment correspond-
ing to a fixed symbolic collision sequence. This is exactly what we claim in our
Theorem below.

5.1 Formulation of Theorem

Let Up C M\ oM be an open ball, T > 0, and assume that

(@ ST(Uy) N oM = @,
() ST is smooth on Uj.

Next we assume that there is a codimension-one, smooth submanifold J C
Up with the property that for every x € Uy the trajectory segment S'%71x is
geometrically hyperbolic (sufficient) if and only if x & J. (J is a so called non-
hyperbolicity or degeneracy manifold.) Denote the common symbolic collision
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sequence of the orbits SI0-Tly (x € Up) by ¥ = (e1,e2,...,ep), listed in the
increasing time order. Let #; = 7 (e;) be the time of the i-th collision, 0 < 1] < f» <
o<ty <T.

Finally we assume that for every phase point x € Uy the first reflection ™™ x in
the past on the orbit of x is a singular reflection (i.e., S™x e 5”%’5“) if and only if
x belongs to a codimension-one, smooth submanifold K of Uy. For the definition of
the manifold of singular reflections . %5“ see, for instance, the end of §1 in [18].

Theorem 15 Using all the assumptions and notations above, the submanifolds J
and K of Uy do not coincide.
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Markov Approximations and Statistical )
Properties of Billiards s

Domokos Szasz

Abstract Markov partitions designed by Sinai (Funct Anal Appl 2:245-253, 1968)
and Bowen (Am J Math 92:725-747, 1970) proved to be an efficient tool for
describing statistical properties of uniformly hyperbolic systems. For hyperbolic
systems with singularities, in particular for hyperbolic billiards the construction
of a Markov partition by Bunimovich and Sinai (Commun Math Phys 78:247-
280, 1980) was a delicate and hard task. Therefore later more and more flexible
and simple variants of Markov partitions appeared: Markov sieves (Bunimovich—
Chernov-Sinai, Russ Math Surv 45(3):105-152, 1990), Markov towers (Young,
Ann Math (2) 147(3):585-650, 1998), standard pairs (Dolgopyat). This remarkable
evolution of Sinai’s original idea is surveyed in this paper.

1 Introduction

Mathematical billiards appeared as early as in the early 1910s in the works of the
Ehrenfest couple, [43] (the wind tree model) and of D. Konig and A. Sziics, [47]
(billiards in a cube) and a bit later in 1927 in the work of G. Birkhoff, [10] (those in
an oval).! Ergodic theory itself owes its birth to the desire to provide mathematical
foundations to Boltzmann’s celebrated ergodic hypothesis (cf. [11, 61, 65]). I briefly
went over its history in my article [62] written earlier on the occasion of Sinai’s Abel
Prize. Therefore for historic details I recommend the interested reader to consult
that freely available article. Here I only mention some most relevant facts from it.
In particular, I present here two circumstances:

! Actually the Lorentz gas suggested by H. A. Lorentz in [50] is also a billiard in a space with
infinite invariant measure, cf. Sect. 3 below.
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1. The two most significant problems from physics motivating the initial study of
mathematical billiards were

(a) the ergodic hypothesis and
(b) the goal to understand Brownian motion from microscopic principles.

(In the last decades quantum billiards have also challenged both mathematicians
and physicists and, moreover, in the very last years billiard models of heat
transport have also become attackable.)

2. Sinai himself was aware of and highly appreciated the works of the N. S. Krylov,
the great Russian statistical physicist who—first of all in Russia—brought hard
ball systems, themselves hyperbolic billiards, to the attention of the community
of mathematicians as a hopeful candidate for hyperbolic behavior, and possibly
for ergodic one as well (cf. [48]).

From the side of mathematics the 1960s saw the birth and rapid development of
the theory of smooth hyperbolic dynamical systems with Sinai being one of the
leading creators of this theory. For mathematics Sinai’s 1970 paper [59] introduced
a new object to study: hyperbolic billiards as hyperbolic dynamical systems with
singularities. Later it turned out that this theory also covers basic models of chaos
theory, like the Lorenz system, the Hénon map, logistic maps, etc.

The rich world of hyperbolic billiards and Sinai’s emblematic influence on it is
demonstrated by the fact that no less than three articles of this volume are devoted
to Sinai’s achievements in their theory. Thus I will not address here Sinai’s main
accomplishments in the 1970s and 1980s and some of the most important later
expansions, see paper by Leonid Bunimovich [15], neither will I write about the
progress related to the Boltzmann—Sinai ergodic hypothesis, see paper by Nandor
Simdnyi [56]. The subject of my article will be restricted to developments related
to establishing statistical properties of hyperbolic billiards. These results grew out
of

* the appearance of the highly efficient method of Markov partitions making
possible to create Markov approximations to obtain statistical properties of
dynamical systems;

» Sinai’s ambition to create a mathematical theory for Brownian motion, a theory
also called the dynamical theory of Brownian motion (cf. [51]). Its final goal
is to derive Brownian motion from microscopic assumptions, in particular from
Newtonian dynamics.

With strong simplifications our topic is the treatment of statistical properties of
hyperbolic billiards via Markov approximations. The main steps in the development
of this theory are, roughly speaking, the following ones:

1. Markov partitions and Markov approximations for Anosov systems (and Axiom
A systems) (cf. [13, 57, 58, 60]);

2. Markov partitions and Markov approximations for 2D Sinai billiards (cf. [16,
17]);

3. Markov sieves and Markov approximations for 2D Sinai billiards (cf. [19, 20]);
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4. Young’s towers for hyperbolic systems with singularities, in particular for 2D
Sinai billiards (cf. [66]);
5. Chernov and Dolgopyat’s method of standard pairs (cf. [22]).

Sinai played a founding and instrumental role in the first three steps. Chernov and
Young wrote an excellent survey [27] on the fourth step also providing a pithy
historical overview about the place of Markov partitions in the theory of dynamical
systems. Referring to it permits me to focus here on the mathematical content of the
exposition. At this point I note that Pesin’s article [53] discusses Markov partitions
and their role in the theory of smooth hyperbolic systems in detail. My major goal
in this paper will be double folded:

* to put Sinai’s most original achievements into perspective;
e provide an idea about the vast and astonishing influence of them.

As the title of this paper suggests we restrict our attention to stochastic properties
of billiards obtained via Markov approximations. Consequently we do not discuss
results obtained through directly functional analytical approach whose one of most
spectacular achievements is the recent work of Baladi—-Demers—Liverani, [2] on the
exponential decay of correlations for the 2D finite-horizon Sinai billiard flow.

2 Markov Partitions for Anosov Maps
(and for Axiom A Maps)

Let f be an Anosov diffeomorphism of a compact differentiable manifold M or an
Axiom A diffeo on A, one of its basic sets. Markov partitions were first constructed
by Adler and Weiss [1] (and also by Berg [9]) for ergodic algebraic automorphisms
of 2D tori. The goal of [1] was to provide an important and quite spectacular positive
example related to the famous isomorphism problem. Sinai’s general construction
for Anosov maps [57] and its wide-ranging conclusions [58] revealed the sweeping
perspectives of the concept. Then Bowen [13] extended the notion to Axiom A
maps and also gave a completely different construction. In this section we treat both
approaches simultaneously. We also remark that the content of this section finds a
broader exposition in [53].

As to fundamental notions on hyperbolic dynamical systems we refer to [35,
45, 46, 53] while here we are satisfied with a brief summary. If a diffeomorphism
f: M — M has a hyperbolic structure, i.e., a decomposition into expanding vs.
contracting subspaces on its unit tangent bundle 77 M, then it is called an Anosov
map. Then there exist two foliations into (global) stable vs. unstable invariant
manifolds {W"} and {W*}. Connected, bounded pieces W (or W} ) of a W* (or
of a W¥) are called local stable (resp. unstable) invariant manifolds. In particular,
for any small ¢ > 0 denote by W("é)(x) and W(Sa)(x) the ball-like local manifolds
of diameter ¢ around an x € W". For sufficiently small ¢ the foliations possess
a local product structure: the map [.,.]: M x M — M is uniquely defined via
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{[x,y]} = W(‘g) x)N W{‘g) (). (We note that all these notions make also sense on a
basic set of an Axiom A diffeo, cf. [53].)

Definition 1 A subset R of small diameter ¢ is called a parallelogram if it is closed
for the operation [., .] and R = Cl(Int R). (Further notations: Wg(x) = W*(x) N R
and Wy, (x) = WY(x) N R.)

Definition 2 (Sinai [57]; Bowen [13]) A cover & = {Ry,..., Ry} of M with a
finite number of parallelograms with pairwise disjoint interiors is a Markov partition
ifforVi, jandV € IntR; N f~'Int R; one has

L. Wi, (x) C 7' Wy (fx)
2. W;;j(fx) C fWg ().

The inclusions in the definition imply that, whenever x € IntR; N f~'Int R s
then f _IWISQJ, (fx) intersects R; completely and similarly f Wl‘éi (x) intersects R;
completely (one can also say that these ways of intersections are Markovian). The
simplest example of a Markov partition is the one for the hyperbolic automorphism

T of the 2-torus: T2 = R2/Z? defined as follows: Tx = <2 1) x (mod Z2) (see

11

Fig. 1, cf. [1]).

Note that a Markov partition determines a symbolic dynamics t4. Indeed, let
A = (a;j,j)1<i, j<k be defined as follows: a; ; = 1 iff Int R; ﬂf’llnt R;j #¥and =
0 otherwise. Let X 4 be the subset of those o € {1, ..., k}Z = X suchthato € X4
iff Vn € Z  ay,x,,, = 1. Then the so-called left-shift 74 : X4 — X4 is defined
foro € ¥4 by (ta0); = 0i4+1. X4 is a closed subset of the compact metric space
X, a product of discrete spaces and then o4, called a subshift of finite type, is a
homeomorphism. For a ¢ € ¥4 the intersection N;cz, f —i Ry, consists of a single
point x which we denote by 7 (o) (Figs. 2 and 3).

Fig. 1 Algebraic automorphism of T2: Arnold’s cat
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Fig. 2 The four skew parallelograms form the Markov partition of T2. (They are blank!)

Fig. 3 The four elongated—differently tinted—skew parallelograms are the images of the ele-
ments of the Markov partition of Fig. 2
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Theorem 3 (Sinai [57]; Bowen [13]) n: X4 — M (or A) is a continuous
surjective map and f om = mw o 1.

Theorem 4 (Sinai [58])

1. For any transitive Anosov diffeomorphism f there exists a measure u°, positive
on open subsets, such that it is invariant with respect to f and f is a Kolmogorov-
automorphism.

2. Let &5 = {W*} be the stable foliation of M. Then the conditional measure
wf (. |W¥) induced on almost every W* is equivalent to the Riemannian volume
on W¥. (Analogous statement is valid for the unstable foliation, too.)

3. If f is an algebraic Anosov automorphism of M = TP, D > 2 (its invariant
measure is Lebesgue), then f is metrically conjugate (i.e., isomorphic) to a finite
Markov chain.

4. The previous Markov chain has maximal entropy among all Markov chains on X
possessing the same possible transitions.

Claim 1 asserts a very strong ergodic property: Kolmogorov mixing. Never-
theless, it is only a qualitative attribute, similarly to the Bernoulli property, the
strongest possible ergodic one. In the topologically mixing case an Anosov map
is also Bernoulli (cf. [14]). In typical applications to problems of physics one also
needs qualitative control of mixing, for instance when one has to prove a central
limit theorem (CLT). In that respect Claim 3 opened principally fruitful perspectives.
Indeed, for algebraic automorphisms of TP, once they are topologically mixing, the
finite Markov chain arising via the Markov partition is exponentially mixing. In such
cases, if one takes a Holder observable on T2, then this smoothness combined with
the strong mixing also provides strong stochastic properties, specifically a CLT. In
general, for the study of statistical properties of dynamical systems this approach
makes it possible to set in the arsenal of probability theory. Later we will see
the far-reaching consequences of this development. We note that in the Axiom A
case, Bowen [14] established exponential correlation decay for Holder functions
and thus implying the CLT for such functions. Claim 4 was the predecessor of
Sinai’s great work [60], where by introducing symbolic dynamics in the presence of
a potential function he connected the theory of dynamical systems with spin models
of equilibrium statistical physics. Later this work led to thermodynamic formalism
for hyperbolic systems, cf. for instance [14].

3 Sinai Billiard and Lorentz Process

A billiard is a dynamical system describing the motion of a point particle in a
connected, compact domain 9 C TP = RP/ZP. In general, the boundary 3 Q
of the domain is assumed to be piecewise C3-smooth; denote its smooth pieces by
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{004 11 <a < J < oo}. Inside Q the motion is uniform while the reflection at the
boundary 9 Q is elastic (by the classical rule “the angle of incidence is equal to the
angle of reflection”). This dynamics is called the billiard flow. (In what follows we
will mainly restrict our review to the discrete time billiard map.) Since the absolute
value of the velocity is a first integral of motion, the phase space of the billiard flow
is fixed as M = Q x Sp_j;—in other words, every phase point x is of the form
x = (g,v) withg € Q and v € R?, |v| = 1. The Liouville probability measure p
on M is essentially the product of Lebesgue measures, i.e., diu = const. dgdv (here
the constant is 1/(vol Q vol Sp_1)).

Let n(g) denote the unit normal vector of a smooth component of the boundary
a0 at the point g, directed inwards Q. Throughout the sequel we restrict our
attention to dispersing billiards: we require that for every ¢ € 9Q the second
fundamental form K (g) of the boundary component be positive (in fact, uniformly
bounded away from 0).

The boundary d Q defines a natural cross-section for the billiard flow. Consider
namely

IM ={(q.v) | g €90, (v,n(q)) = 0}.

The billiard map T is defined as the first return map on 9 M. The invariant measure
for the map is denoted by ?, and we have du® = const. |(v, n(g))|dgdv (with
const. = 2/(vold Q volSp_1)). Throughout the sequel we work with this discrete
time dynamical system.

The Lorentz process (cf. [50]) is the natural ZP cover of the above-described
toric billiard. More precisely: consider /7: R? — TP the factorisation by ZP.
Its fundamental domain D is a cube (semi-open, semi-closed) in RD, so RP? =
U,ezp (D + z), where D + z is the translated fundamental domain. We also lift the
scatterers to R? and define the phase space of the Lorentz flow as M= Q X Sp—1,
where Q = U,ezp (Q +z). In the non-compact space M the dynamics is denoted by
S* and the billiard map on M by T'; their natural projections to the configuration
space Q are denoted by L(¢) = L(¢; x),t € Ry and Lz € Z+ and called (periodic)
Lorentz flows or processes with natural invariant measures /i and 1%, respectively.

The free flight vector y : M — RP is defined as follows: ¥/ (X) = §(T%) — G (X).

Definition 5 The Sinai-billiard (or the Lorentz process) is said to have finite
horizon if the free flight vector is bounded. Otherwise the system is said to have
infinite horizon.

A Sinai billiard with finite horizon (in a—torus-like—cell of the hexagonal
lattice) is shown on Fig. 4 and one with infinite horizon in T? on Fig. 5.
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Fig. 5 Sinai billiard with infinite horizon in T?
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3.1 Singularities
Tangential Singularities

Consider the set of tangential reflections, i.e.,
S ={(q,v) € IM | (v,n(q)) = 0}.

It is easy to see that the map T is not continuous at the set 7~!.%. As a consequence,
the (tangential) part of the singularity set for iterates 7", n > 1is

yW:Oyi
i=1

where in general 7% = T*.7.

Multiple Collisions

After the billiard trajectory hits 0 Qq, N 3 Qq, (for some a1 # a2), the orbit stops to
be uniquely defined and there arise two—or more—trajectory branches. Denote

Z:={(q,v) € IM | q € 304, NIy, for some a| # az}.

Standing assumption We always assume thatif g € dQq, N 9 Q, for some a1 #
o, then these two smooth pieces meet in g in general position (in the planar case
this implies a non-zero angle between the pieces).

It is easy to see that the map T is not continuous at the set 7~ '%. As a
consequence, for iterates 7", n > 1 the part of the singularity set, caused by
multiple collisions, is

%W=O%i
i=1

where in general Z% = T*%.

Handling the Singularities

Here we only give a very rough idea. When hitting any type of singularities the
map is not continuous (the flow is still continuous at tangential collisions, but it
stops being smooth). Consequently, W . are those connected pieces of W* which
never hit

z% (LM uR™)
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in the future. (Reversing time one obtains W;: ). The basic observation in Sinai’s
approach to billiards was that these smooth pieces are D — 1-dimensional local
manifolds almost everywhere.

An additional difficulty connected to tangential singularities is that the expansion
rate in the direction orthogonal to the singularities is infinite, a phenomenon
breaking the necessary technical quantitative bounds. The way out was found in
[19] where the authors introduced additional—so called secondary—singularities.
These will further cut W, and in what follows W' will denote these smaller
pieces, themselves D — 1-dimensional local manifolds almost everywhere. (Detailed
exposition of these can be found in [25] in the planar case, and in [4] in the
multidimensional case.)

4 Statistical Properties of 2D Periodic Lorentz Processes

Given the successes of Markov partitions for smooth hyperbolic systems and of
Sinai’s theory of ergodicity for hyperbolic billiards, being a prototype of hyperbolic
systems with singularities, it is a natural idea to extend the method of Markov
partitions to Sinai billiards. Yet, when doing so there arise substantial difficulties.
The most serious one is that basic tools of hyperbolic theory: properties of the
holonomy map (also called canonical isomorphism), distorsion bounds, etc. are only
valid for smooth pieces of the invariant manifolds (maximal such components are
called local invariant manifolds and denoted by Wl'f)’cs ,cf. 3.1.3). These can, however,
be arbitrarily short implying that a Markov partition can only be infinite, not
finite. Technically this means the construction of a countable set of parallelograms
(products of Cantor sets in this case) with an appropriate Markov interlocking; this
is a property which is really hard to control.

Assume we are given a Sinai billiard. In the definition of parallelogram we make
two changes. First, in the operation [., .] we only permit Wl'éf and, second, we do
not require R = Cl(Int R) any more. Now we will denote Wg™* (x) = W' (x) N R.

Definition 6 (Bunimovich-Sinai [16]; Bunimovich-Chernov-Sinai [20]) A
cover & = {Ry,Ra,...,} of M with a countable number of parallelograms,
satisfying 1 (R; N R;) = 0 (Y1 < i < j), is a Markov partition if one has that if
x €eIntR; N f’llntRj, then

L Wi (x) C f’lW;ej(fx)
2. Wi (fx) C fWg ().

From now on we assume that D = 2 and that, unless otherwise stated, the horizon
is finite.
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4.1 Bunimovich-Sinai, 1980

Theorem 7 (Bunimovich-Sinai [16]) Assume that for the billiard in Q = T2 \
X !=1ﬁ | the strictly convex obstacles O are closed, disjoint with C3-smooth
boundaries. Then for the billiard map T there exists a countable Markov partition
of arbitrarily small diameter.

It is worth mentioning that the statement of Theorem 3 still keeps holding for the
constructed Markov partition. (We also note that a correction and a simplification of
the construction was given in [18, 49].)

In the companion paper [17] the authors elaborate on further important properties
of the constructed Markov partition and prove groundbreaking consequences for the
Lorentz process (Fig. 6). For x = (¢, v) € dM denote T"x = (g (n), v(n)) and for
x € M the—diffusively—rescaled version of the Lorentz process by

ULany e R,).

VA

La(x) =

Theorem 8 (Bunimovich-Sinai [17]) There exists a constant y € (0, 1) such that
for all sufficiently large n

|E,5 0(0)v(n))| < exp(—n”).

The proof uses Markov approximation. One of its essential elements is that
a rank function is introduced on elements of the partition: roughly speaking the
smaller the element is, the larger is its rank. Though the tail distribution for the
rank is exponentially decaying nevertheless the well-known Doeblin condition of

Fig. 6 The orbit of a Lorentz
process with finite horizon




310 D. Szasz

probability theory, ensuring exponential relaxation to equilibrium, does not hold
for one step transition probabilities. Fortunately it does hold for higher step ones,
still with the step size depending on the rank of the element of the partition. This
weaker form of Doeblin property implies that y is necessarily smaller than 1. Yet
this is a sufficiently strong decay of correlations to imply convergence to Brownian
motion. Assume v is a probability measure on M supported on a bounded domain
and absolutely continuous with respect to fi.

Theorem 9 (Bunimovich-Sinai [17]) With respect to the initial measure v, as
A— o©

La(t) = Bx(1)

where By (t) is the planar Wiener process with zero shift and covariance matrix X
and the convergence is weak convergence of measures in C[0, 1] (or in C[0, 00]).

Moreover; if the Lorentz process is not localised and the scatterer configuration
is symmetric with respect to the line qx = qy, then X' is not singular.

4.2 Bunimovich—Chernov-Sinai, 1990-1991

Ten years after the first construction Bunimovich, Chernov, and Sinai revisited
the topic in two companion papers. The authors not only simplified the original
constructions and proofs of [16, 17], but also clarified and significantly weakened
the conditions imposed. Below we summarize the most important attainments.

Wider class of billiards Consider a planar billiard in Q C T? with piecewise
C3-smooth boundary. Impose the following conditions:

1. If g € 004, N3 Qq, for some oy # oz, then the angle between 0 O, and 0 Qq,
is not zero;

2. There exists a constant Ko = Ko(Q) such that the multiplicity of the number of
curves of [ J! (7~ U %) meeting at any point of dM is at most Kon;

i=—n
Theorem 10 (Bunimovich—Chernov-Sinai [20]) Assume that a planar billiard

with finite horizon satisfies the two conditions above. Then for the billiard map T
there exists a countable Markov partition of arbitrarily small diameter.

Extending Theorems 8 and 9 and simplifying the proofs, the three authors could
get the following results. Denote by s¢3, B > 0 the class of S-Holder functions
h: aM — R (i.e., 3C(h) such that Voo < J andVx,y € 9Q, we have |h(x) —
h(y)| < C(h)|x — y|/5). We note that the sequence X, = h(T"x) (n € Z) is
stationary with respect to the invariant measure % on 9 M.
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Theorem 11 (Bunimovich—Chernov-Sinai [19]) Assume the billiard satisfies the
previous two conditions and take a function h € #p with E ah = 0. Then Vn € Z
one has

IE,0 XoXa| < C(hye V"

where a = a(Q) > 0 only depends on the billiard table.

Theorem 12 (Bunimovich—Chernov-Sinai [19]) Assume the billiard satisfies the
previous two conditions. With respect to the initial measure v, as A — 00

La(r) “= " Bg(1)

where By (t) is the planar Wiener process with zero shift and covariance matrix X
and the convergence “=" is weak convergence of finite dimensional distributions.
Moreover, if the Lorentz process is not localised, then X is not singular.

It is important to add that these two papers also discuss semi-dispersing billiards
and, in general, provide a lot of important information about the delicate geometry
of various examples. The proofs of Theorems 11 and 12 do not use the Markov
partition of Theorem 10 directly but build up a Markov approximation scheme by
using so-called approximate finite Markov-sieves. An immediate additional success
of the method of Markov sieves was a spectacular physical application. In [31, 32]
the authors could study a billiard-like models under the simultaneous action a
Gaussian thermostat and a small external field. The interesting feature of the model
is that the system is not Hamiltonian and has an attractor. Among other beautiful
results they derive a formula for the rate of entropy production and verify Einstein’s
formula for the diffusion coefficient.

S Further Progress of Markov Methods

5.1 Markov Towers

Sinai’s ideas on connecting dynamical systems with statistical physics and probabil-
ity theory have been justified by the works mentioned in Sect. 4. It became evident
that billiard models are highly appropriate for understanding classical questions of
statistical physics. Having worked out and having simplified the meticulous details
of Markov approximations, the way opened for further progress.

Young, who had also had experience with other hyperbolic systems with
singularities, like logistic maps and the Hénon map, was able to extract the common
roots of the models. She introduced a fruitful and successful system of axioms under
which one can construct Markov towers, themselves possessing a Markov partition.
A major advantage of her approach was the following: the papers discussed in
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Sect. 4 had showed that, though it was indeed possible, but at the same time rather
hard to construct Markov partitions for billiards directly. An important idea of [66]
is that one can rather use renewal properties of the systems and build Markov towers
instead. A remarkable accomplishment of the tower method was that Young could
improve the stretched exponential bound on correlation decay of Theorem 11 to the
optimal, exponential one. Since this was just one—though much important—from
the applications of her method, in [66] she restricted her discussion to the case of
planar finite-horizon Sinai billiards with C3-smooth scatterers.

Theorem 13 (Young [66]) Assume the conditions of Theorem 7. Then for any B >
0 and for any g, h € €3 there exist a > 0 and C = C(g, h) such that

1. Vn € Z one has

IE,o(g o fh — E(g)E, 0 (h)] < Ce ™,

n—1

1 istr

Jn(E gofn—”E,ﬁ(g)> S N0, 0) (n — 00)
0

where N(0,0) denotes the normal distribution with 0 mean and variance
2
o> 0.

Remark 14 Please pay attention to the differences in the assertions of Theo-
rems 8, 12, and 13. The authors of the last two works have not claimed and checked
tightness which was, indeed, settled in [17].

Beside the original paper one can also read [27] describing the ideas in a very
clear way. It is also worth noting that [67] extended the tower method to systems
where the renewal time has a tail decreasing slower than exponential. Young’s
tower method can be considered as a fulfillment of Sinai’s program. Her axioms for
hyperbolic systems with singularities serve as an autonomous—and most popular—
subject and make it possible to discuss wide-ranging delicate stochastic properties of
the systems covered, interesting either from probabilistic or dynamical or physical
point of view. Two examples from the numerous applications are [54] proving large
deviation theorems for systems satisfying Young’s axioms and [52] describing a
recurrence type result in the planar Lorentz process setup.

Unfortunately, without further assumptions the method works so far for the
planar case only. However, in their paper [8] providing an important achievement,
Balint and Téth formulated a version of the tower method for multidimensional
billiards under the additional ‘complexity’ hypothesis, whose verification for
multidimensional models is a central outstanding question of the theory.
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5.2 Standard Pairs

Another astonishing development of Markovian tools was the ‘standard pair’
method of Chernov and Dolgopyat [22]. This method has already had remarkable
applications, but so far it is not easy to see where its limits are. As to a recent
utilization we can, for instance, mention that standard pairs have also been applied
to the construction of SRB measures for smooth hyperbolic maps in any dimension;
section 3 of [33] provides a brief introduction to the tool, too. Since—for systems
with singularities—the method of standard pairs does not have until now a clear
survey exposition as [27] is for the tower method, we present very briefly a theorem
showing how it handles Markovity.

Let (M, T, 1?) be the billiard ball map—for simplicity for a planar billiard. A
standard pair is £ = (W, p) where W is an unstable curve, p is a nice probability
density on W (an unstable curve is a smooth curve in d M whose derivatives at every
point lie in the unstable cone). Decompose d M into a family of nice standard pairs.
Select a standard pair £ = (W, p) from this family. Fix a nice function A : M — R.
Then according to the well-known law of total probability

E((AoT") =Y canke,, (A) e

where ¢y, > 0, Za can = 1. The T"-image of W is cut to a finite or countable
number of pieces Wy,. Thus £y, = (Wyn, pan) are disjoint standard pairs with
T"W = Uy Wy, where py;, is the pushforward of p up to a multiplicative factor.

Theorem 15 (Chernov-Dolgopyat [22]; Growth lemma ~ Markov property) If
n > B3| loglength(?)|, then

Z Can < Pae.

length(€yn)<e

Equation 1 expressed how an unstable curve is partitioned after n iterations.
Among the arising pieces there are, of course, longer and shorter pieces. The
theorem provides a quantitative estimate for the total weight of pieces shorter
than e. This theorem—a quantitative formulation of Sinai’s traditional billiard
philosophy that ‘expansion prevails partitioning’—was not new, in various forms
it had appeared in earlier works, too. Its consequent application, however, together
with modern formulations of averaging theory and a perturbative study of dynamical
systems, was absolutely innovative and most successful.
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6 Further Successes of Markov Methods

Because of the abundance of related results my summary will be very much selec-
tive. My main guiding principle will be that I try to focus on those developments
that are either directly related to Sinai’s interests or even to the problems he raised
or alternatively show a variety of questions from physics.

6.1 Applications of the Tower Method

1. Already in 1999, Chernov [21] could extend the exponential correlation bound
of [66] to planar billiards with infinite horizon: it holds for Holder observables.
(The work also contains precious analysis of the growth lemma, of homogeneity
layers, etc.).

2. As mentioned before, the works [31, 32] treated billiards with small external
forces. Chernov, in a series of articles (that started with [29] and ended with
[28]) worked out a comprehensive theory of these models.

3. The methods initiated by Sinai also made it possible to study Sinai billiards with
small holes, a model suggested by physicists. Early answers to the questions were
treated by Markov partitions (cf. [24, 26] in case of Anosov maps) whereas later,
results for billiards were found by applying Young towers (e.g., in [36, 37]).

4. After the CLT of [17] for the Lorentz process, Sinai formulated the question: is
Pélya recurrence true for finite horizon planar billiards? Positive answers were
obtained by [34, 55] and [63]. The latter work accomplished that by proving a
local version of the CLT for the planar finite horizon Sinai billiard (cf. next point,
t00).

5. In the planar infinite horizon case the free flight function determining the Lorentz
process is not Holder (not even bounded), so the correlation bound of [21] is not
applicable to it. In fact, in this case, as forecasted in [12], the scaling of the
Lorentz process, in a limit law like that of Theorems 9 and 12, is different, and
it is o/n log n rather than /n. This was shown in [64], where, by extending the
method of [63], Pélya recurrence was also obtained via an appropriate local limit
theorem. The analogous results for the Lorentz flow with many other interesting
theorems—also in the presence of external field—were obtained in [30] (Fig.7
on next page).

6. As this was observed in [5], in limit laws for stadium billiards there may arise
limit theorems with both classical and non-classical scaling (cf. previous point).

Applications of the Method of Standard Pairs

Stating the additional step in rough terms, this method, in the context of Markov
approximation tools, can be characterized by two main intertwining advantages:
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Fig. 7 The orbit of a Lorentz process with infinite horizon

first it makes possible to treat systems with two (or several) time scales and second
it is appropriate for a perturbative description of dynamical systems, in particular,
of billiards. The basic reference is [22] though the authors started lecturing about it
as early as in 2005.2

1. Chernov and Dolgopyat [22] provides an important step in the dynamical theory
of Brownian motion: two particles move on a planar Sinai billiard table, with
one of them being an elastic disk much heavier than the other one which a point
particle. Since the motion of the heavy disk is slow, for the point particle—
in short time intervals—statistical properties hold (among the scatterers of
the original Sinai billiard plus the—temporarily fixed—heavy disk particle).
However, when the heavy particle gets close to any of the original scatterers,
then additional phenomena appear and so far this is the limit of the applicability
of the method. Balint et al. [3] is the first step toward extending the time interval
where the theory is hoped to be applicable.

2. Multiple times scales are treated by standard pairs in [39]. Even though their
model is not a billiard one—actually the dynamics is smooth—the work is
very successful in deriving a mesoscopic, stochastic process from Newtonian,
microscopic laws of motion. This task, also important in a rigorous study of a
heat transport model of physicists (cf. [44]), is the subject of [6, 7] for a billiard
model.

2See, for instance, D. Dolgopyat: Introduction to averaging. Lecture notes, Institut Henri Poincaré,
http://www?2.math.umd.edu/~dolgop/IANotes.pdf (2005).
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3. Another spectacular development was obtained in [23]. The authors were
considering a point particle moving in R? in the presence of a constant force
among periodically situated strictly convex scatterers (the horizon is assumed to
be finite). They could derive non-classical limit laws both for the velocity and the
position of the particle and moreover, they could also prove the recurrence of the
particle.

4. Sinai raised the following problem in 1981: consider a finite horizon, planar Sinai
billiard and displace one scatterer a bit. Prove for it an analogue of Theorem 12.
This problem was answered by the method of standard pairs in the companion
works [41, 42].

5. Returning to heat conduction: in [40] the authors could derive the heat equation
for a Lorentz process in a quasi one-dimensional tube being long finite and
asymptotically infinite. The boundaries, on the one hand, absorb particles
reaching them and, on the other hand, particles are also injected with energies
corresponding to different temperatures.

Closing this section, I note that despite the striking successes of Markov
approximation techniques, their applicability so far is essentially restricted to two
dimensional models, except perhaps for [33]. Sinai’s original works addressed
explicitly planar models, only. Though the tower method is extended to the
multidimensional case, the ‘complexity condition’ arising in it, has not been checked
hitherto for any multidimensional system, yet it is strongly believed that it does hold
at least in typical cases.

As mentioned earlier many successes of the theory of hyperbolic billiards were
motivated by problems of physics. The recent survey [38], however, shows that, as
usual, there are more open problems than those solved.
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The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2015 to John F. Nash, Jr., Princeton University, and Louis Nirenberg,
Courant Institute, New York University

for striking and seminal contributions to the theory of nonlinear partial differential equations
and its applications to geometric analysis

Partial differential equations are used to describe the basic laws of phenomena in
physics, chemistry, biology, and other sciences. They are also useful in the analysis
of geometric objects, as demonstrated by numerous successes in the past decades.
John Nash and Louis Nirenberg have played a leading role in the development of
this theory, by the solution of fundamental problems and the introduction of deep
ideas. Their breakthroughs have developed into versatile and robust techniques,
which have become essential tools for the study of nonlinear partial differential
equations. Their impact can be felt in all branches of the theory, from fundamental
existence results to the qualitative study of solutions, both in smooth and non-
smooth settings. Their results are also of interest for the numerical analysis of partial
differential equations. Isometric embedding theorems, showing the possibility of
realizing an intrinsic geometry as a submanifold of Euclidean space, have motivated
some of these developments. Nash’s embedding theorems stand among the most
original results in geometric analysis of the twentieth century. By proving that any
Riemannian geometry can be smoothly realized as a submanifold of Euclidean
space, Nash’s smooth (C*) theorem establishes the equivalence of Riemann’s
intrinsic point of view with the older extrinsic approach. Nash’s non-smooth
(C') embedding theorem, improved by Kuiper, shows the possibility of realizing
embeddings that at first seem to be forbidden by geometric invariants such as
Gauss curvature; this theorem is at the core of Gromov’s whole theory of convex
integration, and has also inspired recent spectacular advances in the understanding
of the regularity of incompressible fluid flow. Nirenberg, with his fundamental
embedding theorems for the sphere S? in R?, having prescribed Gauss curvature or
Riemannian metric, solved the classical problems of Minkowski and Weyl (the latter
being also treated, simultaneously, by Pogorelov). These solutions were important,
both because the problems were representative of a developing area, and because
the methods created were the right ones for further applications. Nash’s work
on realizing manifolds as real algebraic varieties and the Newlander—Nirenberg
theorem on complex structures further illustrate the influence of both laureates in
geometry. Regularity issues are a daily concern in the study of partial differential
equations, sometimes for the sake of rigorous proofs and sometimes for the precious
qualitative insights that they provide about the solutions. It was a breakthrough in
the field when Nash proved, in parallel with De Giorgi, the first Holder estimates for
solutions of linear elliptic equations in general dimensions without any regularity
assumption on the coefficients; among other consequences, this provided a solution
to Hilbert’s 19th problem about the analyticity of minimizers of analytic elliptic
integral functionals. A few years after Nash’s proof, Nirenberg, together with



IIT 2015 John F. Nash, Jr. and Louis Nirenberg 349

Agmon and Douglis, established several innovative regularity estimates for solu-
tions of linear elliptic equations with L? data, which extend the classical Schauder
theory and are extremely useful in applications where such integrability conditions
on the data are available. These works founded the modern theory of regularity,
which has since grown immensely, with applications in analysis, geometry and
probability, even in very rough, non-smooth situations. Symmetry properties also
provide essential information about solutions of nonlinear differential equations,
both for their qualitative study and for the simplification of numerical computations.
One of the most spectacular results in this area was achieved by Nirenberg in
collaboration with Gidas and Ni: they showed that each positive solution to a large
class of nonlinear elliptic equations will exhibit the same symmetries as those that
are present in the equation itself. Far from being confined to the solutions of the
problems for which they were devised, the results proved by Nash and Nirenberg
have become very useful tools and have found tremendous applications in further
contexts. Among the most popular of these tools are the interpolation inequalities
due to Nirenberg, including the Gagliardo—Nirenberg inequalities and the John—
Nirenberg inequality. The latter governs how far a function of bounded mean
oscillation may deviate from its average, and expresses the unexpected duality of
the BM O space with the Hardy space H'. The Nash-De Giorgi—Moser regularity
theory and the Nash inequality (first proven by Stein) have become key tools in the
study of probabilistic semigroups in all kinds of settings, from Euclidean spaces to
smooth manifolds and metric spaces. The Nash—Moser inverse function theorem is a
powerful method for solving perturbative nonlinear partial differential equations of
all kinds. Though the widespread impact of both Nash and Nirenberg on the modern
toolbox of nonlinear partial differential equations cannot be fully covered here, the
Kohn—Nirenberg theory of pseudo-differential operators must also be mentioned.
Besides being towering figures, as individuals, in the analysis of partial differential
equations, Nash and Nirenberg influenced each other through their contributions
and interactions. The consequences of their fruitful dialogue, which they initiated in
the 1950s at the Courant Institute of Mathematical Sciences, are felt more strongly
today than ever before.
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John F. Nash, Jr. and Louis Nirenberg at the Abel Monument, 2015. (Photo: Harald Hanche-Olsen)
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John Forbes Nash

My beginning as a legally recognized individual occurred on June 13, 1928 in
Bluefield, West Virginia, in the Bluefield Sanitarium, a hospital that no longer exists.
Of course I can’t consciously remember anything from the first 2 or 3 years of my
life after birth. (And, also, one suspects, psychologically, that the earliest memories
have become “memories of memories” and are comparable to traditional folk tales
passed on by tellers and listeners from generation to generation.) But facts are
available when direct memory fails for many circumstances.

My father, for whom I was named, was an electrical engineer and had come
to Bluefield to work for the electrical utility company there which was and is the
Appalachian Electric Power Company. He was a veteran of WW1 and had served
in France as a lieutenant in the supply services and consequently had not been in
actual front lines combat in the war. He was originally from Texas and had obtained
his B.S. degree in electrical engineering from Texas Agricultural and Mechanical
(Texas A. and M.).

My mother, originally Margaret Virginia Martin, but called Virginia, was herself
also born in Bluefield. She had studied at West Virginia University and was a
school teacher before her marriage, teaching English and sometimes Latin. But my
mother’s later life was considerably affected by a partial loss of hearing resulting
from a scarlet fever infection that came at the time when she was a student at WVU.

From Les Prix Nobel. The Nobel Prizes 1994, Editor Tore Frangsmyr, [Nobel Foundation],
Stockholm, 1995. © The Nobel Foundation 1994.
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Her parents had come as a couple to Bluefield from their original homes in
western North Carolina. Her father, Dr. James Everett Martin, had prepared as a
physician at the University of Maryland in Baltimore and came to Bluefield, which
was then expanding rapidly in population, to start up his practice. But in his later
years Dr. Martin became more of a real estate investor and left actual medical
practice. I never saw my grandfather because he had died before I was born but
I have good memories of my grandmother and of how she could play the piano at
the old house which was located rather centrally in Bluefield.

A sister, Martha, was born about two and a half years later than me on November
16, 1930.

I went to the standard schools in Bluefield but also to a kindergarten before
starting in the elementary school level. And my parents provided an encyclopedia,
Compton’s Pictured Encyclopedia, that I learned a lot from by reading it as a child.
And also there were other books available from either our house or the house of the
grandparents that were of educational value.

Bluefield, a small city in a comparatively remote geographical location in the
Appalachians, was not a community of scholars or of high technology. It was a
center of businessmen, lawyers, etc. that owed its existence to the railroad and
the rich nearby coal fields of West Virginia and western Virginia. So, from the
intellectual viewpoint, it offered the sort of challenge that one had to learn from the
world’s knowledge rather than from the knowledge of the immediate community.

By the time I was a student in high school I was reading the classic “Men of
Mathematics” by E.T. Bell and I remember succeeding in proving the classic Fermat
theorem about an integer multiplied by itself p times where p is a prime.

I also did electrical and chemistry experiments at that time. At first, when asked
in school to prepare an essay about my career, [ prepared one about a career as an
electrical engineer like my father. Later, when I actually entered Carnegie Tech. in
Pittsburgh I entered as a student with the major of chemical engineering.

Regarding the circumstances of my studies at Carnegie (now Carnegie Mellon
U.), I was lucky to be there on a full scholarship, called the George Westinghouse
Scholarship. But after one semester as a chem. eng. student I reacted negatively to
the regimentation of courses such as mechanical drawing and shifted to chemistry
instead. But again, after continuing in chemistry for a while I encountered difficul-
ties with quantitative analysis where it was not a matter of how well one could think
and understand or learn facts but of how well one could handle a pipette and perform
a titration in the laboratory. Also the mathematics faculty were encouraging me to
shift into mathematics as my major and explaining to me that it was not almost
impossible to make a good career in America as a mathematician. So I shifted again
and became officially a student of mathematics. And in the end I had learned and
progressed so much in mathematics that they gave me an M.S. in addition to my
B.S. when I graduated.

I should mention that during my last year in the Bluefield schools that my
parents had arranged for me to take supplementary math. courses at Bluefield
College, which was then a 2-year institution operated by Southern Baptists. I didn’t
get official advanced standing at Carnegie because of my extra studies but I had
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advanced knowledge and ability and didn’t need to learn much from the first math.
courses at Carnegie.

When I graduated I remember that I had been offered fellowships to enter as a
graduate student at either Harvard or Princeton. But the Princeton fellowship was
somewhat more generous since I had not actually won the Putnam competition
and also Princeton seemed more interested in getting me to come there. Prof.
A.W. Tucker wrote a letter to me encouraging me to come to Princeton and from
the family point of view it seemed attractive that geographically Princeton was
much nearer to Bluefield. Thus Princeton became the choice for my graduate study
location.

But while I was still at Carnegie I took one elective course in “International
Economics” and as a result of that exposure to economic ideas and problems, arrived
at the idea that led to the paper “The Bargaining Problem” which was later published
in Econometrica. And it was this idea which in turn, when I was a graduate student
at Princeton, led to my interest in the game theory studies there which had been
stimulated by the work of von Neumann and Morgenstern.

As a graduate student I studied mathematics fairly broadly and I was fortunate
enough, besides developing the idea which led to “Non-Cooperative Games”, also
to make a nice discovery relating to manifolds and real algebraic varieties. So I
was prepared actually for the possibility that the game theory work would not be
regarded as acceptable as a thesis in the mathematics department and then that I
could realize the objective of a Ph.D. thesis with the other results.

But in the event the game theory ideas, which deviated somewhat from the
“line” (as if of “political party lines”) of von Neumann and Morgenstern’s book,
were accepted as a thesis for a mathematics Ph.D. and it was later, while I was
an instructor at M.I.T., that I wrote up Real Algebraic Manifolds and sent it in for
publication.

I went to ML.L.T. in the summer of 1951 as a “C.L.E. Moore Instructor”.  had been
an instructor at Princeton for 1 year after obtaining my degree in 1950. It seemed
desirable more for personal and social reasons than academic ones to accept the
higher-paying instructorship at M.I.T.

I was on the mathematics faculty at M.I.T. from 1951 through until I resigned
in the spring of 1959. During academic 1956—1957 I had an Alfred P. Sloan grant
and chose to spend the year as a (temporary) member of the Institute for Advanced
Study in Princeton.

During this period of time I managed to solve a classical unsolved problem
relating to differential geometry which was also of some interest in relation to the
geometric questions arising in general relativity. This was the problem to prove the
isometric embeddability of abstract Riemannian manifolds in flat (or “Euclidean”)
spaces. But this problem, although classical, was not much talked about as an
outstanding problem. It was not like, for example, the 4-color conjecture.

So as it happened, as soon as I heard in conversation at M.I.T. about the question
of the embeddability being open I began to study it. The first break led to a curious
result about the embeddability being realizable in surprisingly low-dimensional
ambient spaces provided that one would accept that the embedding would have only
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limited smoothness. And later, with “heavy analysis”, the problem was solved in
terms of embeddings with a more proper degree of smoothness.

While I was on my “Sloan sabbatical” at the IAS in Princeton I studied another
problem involving partial differential equations which I had learned of as a problem
that was unsolved beyond the case of 2 dimensions. Here, although I did succeed in
solving the problem, I ran into some bad luck since, without my being sufficiently
informed on what other people were doing in the area, it happened that I was
working in parallel with Ennio de Giorgi of Pisa, Italy. And de Giorgi was first
actually to achieve the ascent of the summit (of the figuratively described problem)
at least for the particularly interesting case of “elliptic equations”.

It seems conceivable that if either de Giorgi or Nash had failed in the attack on
this problem (of a priori estimates of Holder continuity) then that the lone climber
reaching the peak would have been recognized with mathematics’ Fields medal
(which has traditionally been restricted to persons less than 40 years old).

Now I must arrive at the time of my change from scientific rationality of thinking
into the delusional thinking characteristic of persons who are psychiatrically
diagnosed as “schizophrenic” or “paranoid schizophrenic”. But I will not really
attempt to describe this long period of time but rather avoid embarrassment by
simply omitting to give the details of truly personal type.

While I was on the academic sabbatical of 19561957 I also entered into
marriage. Alicia had graduated as a physics major from M.I.T. where we had met
and she had a job in the New York City area in 1956-1957. She had been born in
El Salvador but came at an early age to the U.S. and she and her parents had long
been U.S. citizens, her father being an M.D. and ultimately employed at a hospital
operated by the federal government in Maryland.

The mental disturbances originated in the early months of 1959 at a time when
Alicia happened to be pregnant. And as a consequence I resigned my position
as a faculty member at M.I.T. and, ultimately, after spending 50 days under
“observation” at the McLean Hospital, travelled to Europe and attempted to gain
status there as a refugee.

I later spent times of the order of 5-8 months in hospitals in New Jersey, always
on an involuntary basis and always attempting a legal argument for release.

And it did happen that when I had been long enough hospitalized that I would
finally renounce my delusional hypotheses and revert to thinking of myself as a
human of more conventional circumstances and return to mathematical research. In
these interludes of, as it were, enforced rationality, I did succeed in doing some
respectable mathematical research. Thus there came about the research for “Le
Probleéme de Cauchy pour les Equations Différentielles d’un Fluide Général”; the
idea that Prof. Hironaka called “the Nash blowing-up transformation”; and those of
“Arc Structure of Singularities” and “Analyticity of Solutions of Implicit Function
Problems with Analytic Data”.

But after my return to the dream-like delusional hypotheses in the later 1960s
I became a person of delusionally influenced thinking but of relatively moderate
behavior and thus tended to avoid hospitalization and the direct attention of
psychiatrists.
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Thus further time passed. Then gradually I began to intellectually reject some of
the delusionally influenced lines of thinking which had been characteristic of my
orientation. This began, most recognizably, with the rejection of politically-oriented
thinking as essentially a hopeless waste of intellectual effort.

So at the present time I seem to be thinking rationally again in the style that is
characteristic of scientists. However this is not entirely a matter of joy as if someone
returned from physical disability to good physical health. One aspect of this is that
rationality of thought imposes a limit on a person’s concept of his relation to the
cosmos. For example, a non-Zoroastrian could think of Zarathustra as simply a
madman who led millions of naive followers to adopt a cult of ritual fire worship.
But without his “madness” Zarathustra would necessarily have been only another of
the millions or billions of human individuals who have lived and then been forgotten.

Statistically, it would seem improbable that any mathematician or scientist, at the
age of 66, would be able through continued research efforts, to add much to his or
her previous achievements. However I am still making the effort and it is conceivable
that with the gap period of about 25 years of partially deluded thinking providing
a sort of vacation my situation may be atypical. Thus I have hopes of being able to
achieve something of value through my current studies or with any new ideas that
come in the future.
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Abstract The life and work of John Forbes Nash, Jr.

A few years ago another journalist and I went to St. Petersburg to track down the
Russian mathematician who had solved the Poincare Conjecture. Described in the
media as a hermit with wild hair and long nails, Grigori Perelman had dropped out
of the mathematics community, and given every indication of intending to turn down
a Fields medal. His extraordinary decision to refuse the ne plus ultra of honors for a
young mathematician—and a Chinese-American rival’s attempt to claim credit for
solving the 200-year-old problem—was a terrific story. .. but only if we could find
Perelman and convince him to talk to us.

After four frustrating days of searching St. Petersburg we had found no one who
had seen Perelman in years or had any clue to his whereabouts. The notes we left
outside what we thought might be his apartment remained untouched. A neighbor
told us that she had never seen the flat’s occupant. But then, by chance, after we
had given up, we stumbled onto his mother’s apartment. .. A moment or two later, |
was introducing myself to the alleged “hermit,” a scholarly looking, youngish man
neatly dressed in a sports jacket and Italian loafers. We had apparently interrupted
him while he was watching a soccer match on big TV.

I started to say that we were doing a piece for the New Yorker magazine when
Perelman interrupted: “You’re a writer?”” he asked in flawless English. “I didn’t read
the book, but I saw the movie with Russell Crowe.”

I shall not look upon his like again.
Hamlet, Act 1, Scene 2

A father once asked me after a talk if John Nash’s life was more important than
that of his son who also suffered from schizophrenia. Of course not, I answered. But

S. Nasar (<)
Graduate School of Journalism, Columbia University, New York, NY, USA
e-mail: sznl @columbia.edu

© Springer Nature Switzerland AG 2019 357
H. Holden, R. Piene (eds.), The Abel Prize 2013-2017,
https://doi.org/10.1007/978-3-319-99028-6_17


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99028-6_17&domain=pdf
mailto:szn1@columbia.edu
https://doi.org/10.1007/978-3-319-99028-6_17

358 S. Nasar

some lives resonate more, touch more of us. John Nash’s life was one of these partly
because it was so many things: a drama about the mystery of the human mind, an
epic of a creative genius, a tale of triumph over incredible adversity, and, not least,
a love story.

At one point in the movie, when it looked as if things were all over for Nash, his
wife Alicia took his hand, placed it over her heart, and said, “I have to believe that
something extraordinary is possible.”

Something extraordinary was possible.

Those of you who are mathematicians have probably studied or used one of
Nash’s stunning contributions to mathematics. I’'m going to tell you about the man.
Not, almost certainly, what he would have said about himself had he lived to write
an autobiographical essay, but some of the things I learned, first, as a New York
Times reporter, then, his un-authorized biographer, and, later, simply as a friend.

Before I studied economics, I majored in literature. Starting with the myths of
Icarus and Faust, there are many, many stories about the meteoric rise and equally
meteoric fall of a remarkable individual. There are very few stories—much less true
ones—with a genuine third act. But Nash’s life had such a third act.

That third act drew me to his story in the first place. In the early 1990s at the
Times, I heard a rumor that a mad mathematician at Princeton University was
probably on a short list for a Nobel prize in economics. Nash was hardly a household
name, but everyone who had studied economics, as I did in graduate school, was
familiar with game theory and the so-called “Nash equilibrium.”

Two or three phone calls later, I had learned that by the time he was 30 years
old, Nash was a celebrity in the rarified world of mathematics. As a brilliant student
at Princeton in the late 1940s, and a rising star on the MIT faculty in the 1950s,
before he had succumbed to the most devastating of mental illnesses, he made major
contributions not only in game theory for which he would one day win a Nobel, but
to several branches of pure mathematics.

Over the next three decades, the ideas Nash had when he was in his twenties
had become influential in disciplines as disparate as economics and biology,
algebraic geometry and partial differential equations. But, Nash, the man, was all
but forgotten.

Generations of students at Princeton University knew him only as the Phantom
of Fine Hall, a silent, ghost-like figure who left mysterious messages on the
blackboards of Fine Hall. A lot of people like me who knew of Nash’s work simply
assumed that he had died long ago.

I was naturally intrigued to learn that Nash was alive, apparently recovered from
a disease widely considered incurable, and possibly soon to be the recipient of the
ultimate intellectual honor. That someone who had been lost for so long could be
found again—that someone who had fallen so far could come back—struck me as
incredible, something plucked from a fairy tale, a Greek myth, or a Shakespeare
tragedy.

He was a man. Take him as all in all
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John with sister Martha circa 1939. (Courtesy of Martha Nash Legg and John D. Stier)

Act One of Nash’s life is the story of creative genius. John Forbes Nash Jr. was
born in Bluefield in West Virginia coal country on the eve of the Great Depression.
He was a peculiar, solitary, precocious child. Other children called him Bug Brains.
He amused himself in un-childlike ways. At 10, he was doing sophisticated chemical
experiments and tricking other children with electrical shocks. At 15, he was
building pipe bombs. .. and simultaneously re-proving classical theorems by great
mathematicians of the past such as Fermat and Gauss.

The summer that World War II ended, the 16 year old Nash went off to Carnegie
Tech in Pittsburgh, Pennsylvania to become an engineer like his father. Within
months, his professors spotted him as “a young Gauss”—a mathematical prodigy
of extraordinary promise.

Three years later they sent him off to Princeton with what was likely the shortest
letter of recommendation in the university’s history. It consisted of a single line:
“This man is a genius.”

By the late 1940s, Princeton had become home to the popes of Twentieth-century
science: Albert Einstein, Kurt Goedel, Robert Oppenheimer, John von Neumann. A
classmate of Nash’s, the mathematician John Milnor, recalled, “The notion was that
the human mind could accomplish anything with mathematical ideas.”

Nash attracted attention as soon as he landed at the center of the mathematical
universe. “Genius” was not then the overused term that it has since become. The old
Webster’s Dictionary defined genius as “transcendent mental superiority,” but added
that such superiority had to be of a “peculiar, distinctive or identifying character.”

At 19, Nash was conspicuous for his movie star looks and his Olympian
manner. Over 6ft tall and heavily muscled, he spoke in a soft southern drawl.
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His manners and dress were also southern, slightly formal. But his classmates
considered him “weird” “haughty” “spooky.” He wore his fingernails unusually
long. His conversation had a stilted, ornamental quality. He avoided classes as a
matter of principle. He rarely opened a book, telling classmates that he did not wish
to endanger his originality. On the few occasions when he was spotted in the Fine
Hall library, he would be lying on one of the tables, his arms folded behind his head,
staring up at the ceiling.

Like the Cambridge mathematician GH Hardy, Nash thought of mathematics
as a ferociously competitive sport. “I imagine that by now you are indeed used to
miscalculation,” sneers the Russell Crowe’s character to a rival. “What if you never
come up with your original idea? What if you lose?,” says the other man as he beats
Nash at Go. For Nash, who craved recognition, mathematics was about winning.
He wasn’t alone either. “Competitiveness, It was sort of like breathing,” another
graduate student told me. “We thrived on it.” Nash may have skipped lectures, but
he never missed afternoon tea. That’s where the graduate students and professors
played Kriegspiel and Go and traded put downs and mathematical gossip. “Trivial”
was Nash’s pet putdown. “Hacker” was another. Ranking students and professors—
with himself in the Number One spot—was a favorite pastime. He was by no means
a brilliant chess player, only an unusually aggressive one. “He managed not just to
overwhelm me but to destroy me by pretending to have made a mistake,” recalled a
man who had made the mistake of challenging Nash to a game.

Outside of the common room, Nash was always pacing. Always whistling Bach.
Or riding a bicycle peremptorily commandeered from one of the racks outside the
graduate students’ residence in tight, concentric circles. Always, it seemed, he was
working inside his own head. Lloyd Shapley, a game theoriest and friendly rival
of Nash’s at Princeton who won a Nobel in 2012, admitted, “He was obnoxious,
immature, a brat. What redeemed him was a keen, logical, beautiful mind.”

His ambition was awesome. Milnor, a freshman the year that Nash entered the
Ph.D. program, ‘It was as if he wanted to rediscover, for himself, 300 years of
mathematics.” Always on the lookout for a straight line to fame, Nash would corner
visiting lecturers, clipboard and writing pad in hand. “He was very much aware of
unsolved problems,” said Milnor. “He really cross-examined people.”

But he was also bursting with his own ideas. Norman Steenrod, Nash’s faculty
adviser, recalled:

“During his first year of graduate work, he presented me with a characterization
of a simple closed curve in the plane. This was essentially the same one given
by Wilder in 1932. Some time later he devised a system of axioms for topology
based on the primitive concept of connectedness. I was able to refer him to papers
by Wallace. During his second year, he showed me a definition of a new kind of
homology group which proved to be the same as the Reidemeister group based on
homotopy chains.”

One afternoon during Nash’s first term at Princeton, John von Neumann, the
great, the Hungarian polymath best known as a father of the atomic bomb and the
digital computer, was in the common room when he noticed two students hunched
over a thombus covered in hexagons and black and white go stones . “What they
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were playing, he asked a colleague?” “Nash,” came the answer, “Nash.” Parker Bros.
later called Nash’s nifty game, which was invented independently by the Danish
mathematician and poet Piet Hein, “Hex.”

Nash proved a beautiful and surprising theorem showing that the player who
makes the first move can always win. But his own story proves that in real life—as
opposed to the game—outcomes aren’t necessarily determined by the first move, or
the second, or even the 50th.

Rebecca West, the English novelist and lover of H. G. Wells, once described
genius as “the abnormal justifying itself.” Excluded and isolated the genius tries to
win acceptance, she speculated, by “some magnificent act of creation.” For John
Nash several such magnificent acts were to follow before the curtain fell.

Nash’s playful foray into mathematical games foreshadowed a far more serious
involvement in a novel branch of mathematics. Today, the language of game theory
permeates the social sciences. In 1948, game theory was brand-new and very much
in the air at Princeton’s Fine Hall.

The notion that games could be used to analyze strategic thinking has a long
history. Such games as Kriegspiel, a form of blind chess, were used to train Prussian
officers. And renowned mathematicians like Emile Borel, Ernst Zermelo, and Hugo
Steinhaus studied parlor games to derive novel mathematical insights. The first
formal attempt to create a theory of games was von Neumann’s 1928 article, “Zur
Theorie der Gesellschaftsspiele,” in which he developed the concept of strategic
interdependence.

But game theory as a basic paradigm for studying decision making in situations
where one actor’s best options depend on what others do did not come into its
own until World War II when the British navy used it to improve its hit rate in
the campaign against German submarines. Social scientists discovered it in 1944
when von Neumann and the Princeton economist Oskar Morgenstern published
their masterpiece, Theory of Games and Economic Behavior, the first attempt to
derive logical and mathematical rules about social dynamics, strategies involving
conflict and cooperation. The authors predicted that game theory would eventually
do for the study of market what calculus had done for physics in Newton’s day.
Von Neumann’s interest in the field lent it irresistible cache for Nash and his fellow
graduate students in mathematics.

Nash wrote his first major paper—his now-classic article on bargaining—while
attending Albert Tucker’s weekly game theory seminar during his first year at
Princeton. That is also where he met von Neumann and Morgenstern for the first
time. But he had come up with the basic idea as an undergraduate at Carnegie Tech
in the only economics course—international trade—he ever took.

Bargaining had long posed a conundrum for economists. Despite the rise of
the marketplace with millions of buyers and sellers who never interact directly,
one-on-one deals—between individuals, corporations, governments, or unions—
have always been a ubiquitous feature economic life. Yet, before Nash, economists
assumed that the outcome of a two-way bargaining was determined by psychology
and was therefore outside the realm of economics. (Think of Donald Trump’s The
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Art of the Deal.) They had no formal framework for thinking about how parties to a
bargain would interact or how they would split the pie.

Obviously, each participant in a negotiation expects to benefit more by coop-
erating than by acting alone. Equally obviously, the terms of the deal depend on
the bargaining power of each. Beyond this, economists had little to add. No one
had discovered principles by which to winnow unique predictions from a large
number of potential outcomes. Little if any progress had been made since Edgeworth
conceded, in 1881, “The general answer is ...contract without competition is
indeterminate.”

In their game theory opus, von Neumann and Morgenstern suggested that “a
real understanding” of bargaining lay in defining bilateral exchange as a “game
of strategy.” But they, too, came up empty. It is easy to see why: real-life
negotiators have an overwhelming number of potential strategies to choose from—
what offers to make, when to make them, what information, threats, or promises to
communicate, and so on.

Nash took a novel tack: he simply finessed the process. He visualized a deal as
the outcome of either a process of negotiation or else independent strategizing by
individuals each pursuing his own interest. Instead of defining a solution directly, he
asked what reasonable conditions any division of gains from a bargain would have
to satisfy. He then posited four conditions and, using an ingenious mathematical
argument, showed that, if the axioms held, a unique solution existed that maximized
the product of the participants’ utilities.

Essentially, he reasoned, how gains are divided reflects how much the deal
is worth to each party and what other alternatives each has. By formulating the
bargaining problem simply and precisely, Nash showed that a unique solution
exists for a large class of such problems. His approach has become the standard
way of modeling the outcomes of negotiations in a huge theoretical literature
spanning many fields, including labor-management negotiations and international
trade agreements.

Nash was naturally irreverent and iconoclastic. When Princeton asked him, on
his graduate school application, for his religion, he wrote “Shinto.” When he cast
about for a thesis topic, he zeroed in on a problem that he knew had eluded the great
von Neumann.

A mere 14 months after he enrolled at Princeton, Nash discovered the original
idea that got him a Princeton doctorate in 1950 a few days short of his 21st birthday
and would ultimately lead to a Nobel. Ironically, it failed to impress Princeton’s
pure mathematicians. Most considered game theory slightly déclassé because it was
actually. .. useful.

Since 1950, the Nash equilibrium has become “the analytical structure for
studying all situations of conflict and cooperation.” Nash made his breakthrough at
the beginning of his second year at Princeton. As soon as he described his idea David
Gale, a fellow graduate student, the latter insisted Nash “plant a flag” by submitting
the result as a note to the Proceedings of the National Academy of Sciences. In the
note, “Equilibrium Points in n-Person Games,” Nash gives the general definition of
equilibrium for a large class of games and provides a proof using the Kakutani fixed
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Graduation from Princeton 1950. (Courtesy of Martha Nash Legg and John D. Stier)

point theorem to establish that equilibria in randomized strategies must exist for any
finite normal form game.

After wrangling for months with Al Tucker, his thesis adviser, Nash provided
an elegantly concise doctoral dissertation which contained a second, alternative
proof, using the Brouwer fixed point theorem. In his thesis, titled “Non-Cooperative
Games,” Nash drew the all-important distinction between games where players act
on their own “without collaboration or communication with any of the others,” and
ones where players have opportunities to share information, make deals, and join
coalitions. Nash’s theory of games—especially his notion of equilibrium for such
games—significantly extended the boundaries of economics as a discipline.

All social, political, and economic theory is about interaction among individuals,
each of whom pursues his own objectives (whether altruistic or selfish). Before
Nash, economics had only one way of formally describing how economic agents
interact, namely, the impersonal market. Classical economists like Adam Smith
assumed that each participant regarded the market price beyond his control and
simply decided how much to buy or sell. By some means—i.e., Smith’s famous
Invisible Hand—a price emerged that brought overall supply and demand into
balance.
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Even in economics, the market paradigm sheds little light on less impersonal
forms of interaction between individuals with greater ability to influence outcomes.
For example, even in markets with vast numbers of buyers and sellers, individuals
have information that others do not, and decide how much to reveal or conceal and
how to interpret information revealed by others. And in sociology, anthropology, and
political science, the market as explanatory mechanism was even more undeveloped.
A new paradigm was needed to analyze a wide array of strategic interactions and to
predict their results.

Nash’s solution concept for games with many players provided that alternative.
Economists usually assume that each individual will act to maximize his or her
own objective. The concept of the Nash equilibrium, as Roger Myerson has pointed
out, is essentially the most general formulation of that assumption. Nash formally
defined equilibrium of a non-cooperative game to be “a configuration of strategies,
such that no player acting on his own can change his strategy to achieve a better
outcome for himself.” The outcome of such a game must be a Nash equilibrium
if it is to conform to the assumption of rational individual behavior. That is, if the
predicted behavior doesn’t satisfy the condition for Nash equilibrium, then there
must be at least one individual who could achieve a better outcome if she were
simply made aware of her own best interests.

In one sense, Nash made game theory relevant to economics by freeing it from
the constraints of von Neumann and Morgenstern’s two-person, zero-sum theory.
By the time he was writing his thesis, even the strategists at RAND had come to
doubt that nuclear warfare, much less post-war reconstruction, could usefully be
modeled as a game in which the enemy’s loss was a pure gain for the other side.

Nash had the critical insight that most social interactions involve neither pure
competition nor pure cooperation but rather a mix of both. From a perspective of half
a century later, Nash did much more than that. After Nash, the calculus of rational
choice could be applied to situations beyond the market itself to analyze the system
of incentives created by any social institution. Myerson’s eloquent assessment of
Nash’s influence on economics is worth quoting at length:

Before Nash, price theory was the one general methodology available to eco-
nomics. The power of price theory enabled economists to serve as highly valued
guides in practical policy making to a degree that was not approached by scholars in
any other social science. But even within the traditional scope of economics, price
theory has serious limits. Bargaining situations where individuals have different
information ...the internal organization of a firm ...the defects of a command
economy ...crime and corruption that undermine property rights. ...and so on.

The broader analytical perspective of non-cooperative game theory has liberated
practical economic analysis from these methodological restrictions. Methodological
limitations no longer deter us from considering market and non-market systems
on an equal footing, and from recognizing the essential interconnections between
economic, social, and political institutions in economic development. By accepting
non-cooperative game theory as a core analytical methodology alongside price
theory, economic analysis has returned to the breadth of vision that characterized
the ancient Greek social philosophers who gave economics its name.
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Von Neumann, the dominant figure in mathematics at the time, didn’t think
much of the Nash equilibrium. When Nash met with him, the Hungarian polymath
dismissed the younger man’s result as “trivial.” The second edition of The Theory
of Games and Economic Behavior included only a perfunctory mention of “non-
cooperative games” in the Preface. Nash didn’t care: “If you’re going to develop
exceptional ideas, it requires a type of thinking that is not simply practical thinking.”

His doctorate in his pocket, Nash headed off to RAND, the ultra-secret cold
war think tank, in the summer of 1950. He would be part of “the Air Force’s
big-brain-buying venture”—whose stars would eventually serve as models for Dr.
Strangelove—for the next 4 years, spending every other summer in Santa Monica.
With the Cold War and the nuclear arms race in full swing, game theory was
considered RAND’s secret weapon in a war of wits against the Soviet Union. “We
hope [the theory of games] will work, just as we hoped in 1942 that the atomic bomb
would work,” a Pentagon official told Fortune magazine.

At Rand, Nash got an excited reception. Researchers like Kenneth Arrow, who
later won a Nobel for his social choice theory, were already chafing at RAND’s
“preoccupation with the two-person zero-sum game.” As weapons became ever
more destructive, all-out war could not be seen as a situation of pure conflict in
which opponents shared no common interests. Nash’s model thus seemed more
promising than von Neumann'’s.

Probably the single most important work Nash did at RAND involved an
experiment. Designed with a team that included Milnor and published as “Some
Experimental n-Person Games,” it anticipated by several decades the now-thriving
field of experimental economics. At the time the experiment was regarded as a
failure, Alvin Roth has pointed out, casting doubt on the predictive power of game
theory. But it later became a model because it drew attention to two aspects of
interaction.

First, it highlighted the importance of information possessed by participants.
Second, it revealed that players’ decisions were, more often than not, motivated
by concerns about fairness. Despite the experiment’s simplicity, it showed that
watching how people actually play a game drew researchers’ attention to elements of
interaction—such as signaling and implied threats—that weren’t part of the original
model. Nash, whose own interests were rapidly shifting away from game theory
to pure mathematics, became fascinated with computers at RAND. Of the dozen
or so working papers he wrote during his summers in Santa Monica, none is more
visionary than one, written in his last summer at the think tank, called “Parallel
Control.”

Yet the image that stuck with one of his Rand colleagues for decades afterwards
was of Nash running down a street trying to kick some pigeons.

Nash left California determined to prove his prowess as a pure mathematician.
Even before completing his doctoral thesis, he turned his attention to the trendy
topic of geometric objects called manifolds. Manifolds play a role in many physical
problems, including cosmology. Right off the bat, he made what he called “a
nice discovery relating to manifolds and real algebraic varieties.” Hoping for an
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appointment at Princeton, he returned there for a post-doctoral year and devoted
himself to working out the details of the difficult proof.

Many breakthroughs in mathematics come from seeing unsuspected connections
between objects that appear intractable and ones that are already well understood.
Dismissing conventional wisdom, Nash argued that manifolds were closely related
to a simpler class of objects called algebraic varieties. Loosely speaking, Nash
asserted that for any manifold it was possible to find an algebraic variety one of
whose parts corresponded in some essential way to the original object. To do this,
he showed, one has to go to higher dimensions.

Nash’s theorem was initially greeted with skepticism. Experts found the notion
that every manifold could be described by a system of polynomial equations simply
implausible. “I didn’t think he would get anywhere,” said his Princeton adviser.

Nash completed “Real Algebraic Manifolds,” his favorite paper and the only one
he later considered nearly perfect, in the fall of 1951. Its significance was instantly
recognized. “Just to conceive the theorem was remarkable,” said Michael Artin, an
algebraic geometer at MIT. Artin and Barry Mazur, who was a protégé of Nash’s
as an undergraduate at MIT and later proved the generalized Schoenflies conjecture
used Nash’s result to resolve a basic problem in dynamics, the estimation of periodic
points. Artin and Mazur proved that any smooth map from a compact manifold to
itself could be approximated by a smooth map such that the number of periodic
points of period p grows at most exponentially with p. The proof relied on Nash’s
work by translating the dynamic problem into an algebraic one of counting solutions
to polynomial equations.

Nash’s hoped-for appointment at Princeton did not materialize. Instead, he was
forced to accept an offer at MIT, America’s leading engineering school but far from
the great research university that it was to become. Once there someone dared him to
solve a deep problem that had baffled mathematicians since the nineteenth century.
So he did.

In 1955, he told a disbelieving audience at the University of Chicago where he
had been invited to give a talk, “I did this because of a bet.” Two years earlier,
a skeptical rival challenged him. “If you’re so good, why don’t you solve the
embedding problem?”

He did. In this instance, he simplified a complex problem that seemed to defy
solution by pursuing a strategy that the ‘experts’ pronounced impossible, if not
outlandish. A colleague recalled: ‘Everyone else would climb a peak by looking for
a path somewhere on the mountain, Nash would climb another mountain altogether
and from a distant peak would shine a searchlight back on the first peak.’

When Nash announced that “he had solved it, modulo details,” the consensus
around Cambridge, Massachusetts was that “he is getting nowhere.” The precise
question that Nash was posing—*“Is it possible to embed any Riemannian manifold
in a Euclidian space?”’—was a challenge that had frustrated the efforts of eminent
mathematicians for three-quarters of a century.

By the early 1950s, interest was shifting to geometric objects in higher dimen-
sions, partly because of the large role played by distorted time and space rela-
tionships in Einstein’s theory of relativity. Embedding means presenting a given
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geometric object as a subset of a space of possibly higher dimension, while
preserving its essential topological properties. Take, for instance, the surface of a
balloon, which is two-dimensional. You cannot put it on a blackboard, which is two-
dimensional, but you can make it a subset of a space of three or more dimensions.
John Conway, the Princeton mathematician who invented the cellular automaton, the
Game of Life, called Nash’s result “one of the most important pieces of mathematical
analysis in this century.”

Nash’s theorem stated that any surface that embodied a special notion of smooth-
ness could actually be embedded in a Euclidean space. He showed, essentially,
that you could fold a manifold like a handkerchief without distorting it. Nobody
would have expected Nash’s theorem to be true. In fact, most people who heard the
result for the first time couldn’t believe it. “It took enormous courage to attack these
problems,” said Paul Cohen, famous for his work on the continuum hypothesis, who
knew Nash at MIT.

After the publication of “The Imbedding Problem for Riemannian Manifolds” in
the Annals of Mathematics, the earlier perspective on partial differential equations
was completely altered. “Many of us have the power to develop existing ideas,”
said Mikhail Gromov, a geometer and Abel laureate whose work was influenced by
Nash. “We follow paths prepared by others. But most of us could never produce
anything comparable to what Nash produced. It’s like lightening striking . . . there
has been some tendency in recent decades to move from harmony to chaos. Nash
said that chaos was just around the corner.”

A few years after he published his embedding paper, Nash once again stunned
the mathematics profession by solving an equally difficult, contemporary problem.

Nominally attached to the Institute for Advanced Study in Princeton during a
leave from MIT in the academic year 1956-1957, Nash gravitated to the grittier
Courant Institute at New York University, “the national capital of applied mathe-
matical analysis.” At Courant, then housed in a former hat factory off Washington
Square in Greenwich Village, a group of young mathematicians, including Louis
Nirenberg who later shared the 2015 Abel prize with Nash, was responsible for
the rapid progress stimulated by World War II in the field of partial differential
equations. Such equations were useful in modeling a wide variety of physical
phenomena, from air passing under the wings of a jet to heat passing through metal.

By the mid-1950s, mathematicians knew simple routines for solving ordinary dif-
ferential equations using computers. But straightforward methods for solving most
nonlinear partial differential equations—the kind potentially useful for describing
large or abrupt changes—did not exist. Stanislaw Ulam, inventor of the Monte
Carlo method and, with Edward Teller, the first hydrogen bomb design, complained
that such systems of equations were “baffling analytically,” noting that they defied
“even qualitative insights by present methods.” Nash proved basic local existence,
uniqueness, and continuity theorems (and also speculated about relations with
statistical mechanics, singularities, and turbulence.) He used novel methods of his
own invention.

Nash was convinced that deep problems would never yield to a frontal attacks.
Taking an ingeniously roundabout approach, he first transformed the non-linear
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equations into linear ones and then attacked them with non-linear means. Today
rocket scientists on Wall Street use Nash inspired methods for solving a particular
class of parabolic partial differential equations that arise in finance problems. When
he returned to MIT the following fall, there were still gaps in the proof. “It was as
if he was a composer and could hear the music, but he didn’t know how to write
it down,” a colleague recalled. Instead of struggling on alone, Nash organized a
team of mathematicians to help him get the paper ready for publication. “It was like
building the atom bomb ... a kind of factory,” said one of them later. The complete
proof was published in 1958 in “Continuity of Solutions of Parabolic and Elliptic
Equations.”

To his peers, Nash’s was a “bad boy, but a great one.” As his 30th birthday
approached, he was about to become a full professor. He was singled out by
Fortune magazine as the most brilliant of the younger generation of American
mathematicians. He seemed poised to make more groundbreaking contributions.
He told colleagues of “an idea of an idea” about a possible solution to the Riemann
hypothesis, the deepest puzzle in all of mathematics. He set out “to revise quantum
theory,” along lines he had once, as a first-year graduate student, described to
Einstein. Writing to Robert Oppenheimer, the physicist who directed the Manhattan
Project and subsequently ran the Institute for Advanced Study, in 1957, Nash
had proclaimed, “To me one of the best things about the Heisenberg paper is its
restriction to observable quantities . ..I want to find a different and more satisfying
under-picture of a non-observable reality.”

To most observers, Nash’s private life seemed as enviable as his professional
accomplishments. He had succeeded in getting a stunningly beautiful, intelligent
glamorous woman to fall madly in love with him. “An El Salvadoran princess with
a sense of noblesse oblige,” Alicia Larde was one of just 16 women in a class of 800
at MIT. She was a physics major and, a trifle incongruously, a cheerleader. They
married in 1958 and within a few months they were expecting a baby. Despite her
delicate build, high heels and Elizabeth-Taylor-Butterfield-8 looks, Alicia possessed
“a certain steely resolve.” She would need all of the metal she had.

Beneath the shiny facade of John Nash’s successes lurked chaos and confusion.
A neglected illegitimate son. A secret former lover. Ambivalence toward his new
marriage and his wife’s pregnancy. An undercurrent of anxiety about his abilities as
a mathematician.

The first signs of Nash’s slide from eccentricity to psychosis were so ambiguous
that most of his colleagues assumed he was making one of his weird private jokes.
On New Year’s Eve, 1958, Nash showed up at a costume party wearing a diaper and
spent the night sitting in Alicia’s lap, alternately sucking on a pacifier and taking
swigs from a baby’s bottle filled with bourbon and milk. One morning, he walked
into the math common room carrying a copy of the New York Times and announced
that a story on the front page contained encrypted messages from inhabitants of
another galaxy that only he could decipher. Another time, he pulled one of his
doctoral students aside to hand him an intergalactic driver’s license and offer him a
seat on Nash’s newly organized world government. . .
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Left to right: Unidentified person, John, Alicia, Felix and Eva Browder. (From Vanity Fair.
Courtesy of John D. Stier)

Initially Alicia tried to cover up or explain away her husband’s increasingly
bizarre behavior. But soon things spun out of control. In February Nash gave a
highly anticipated lecture at Columbia University, claiming that he’d solved the
Riemann Hypothesis, the third of the trio of “greatest” then-unsolved mathematics
problems. The lecture began normally enough, but soon degenerated into a dis-
jointed series of non-sequiturs.

Something was clearly horribly wrong. Alicia had little choice but to turn to
psychiatrists at MIT who urged her to commit her husband to a hospital for
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John with John David. (Courtesy of John D. Stier)



John Nash, His Life 371

observation. .. against his will if necessary. Nash insisted that he was persecuted
not ill. It was a tough call.

In May, 1959, a few weeks before his 31st birthday, two Cambridge police
officers took Nash to McLean Hospital, the asylum outside Boston that became
the setting for Girl, Interrupted. The doctors there diagnosed him with the most
devastating and intractable of mental illnesses, paranoid schizophrenia.

A Harvard mathematician who visited Nash at Maclean asked him, “How could
you, a mathematician committed to rationality, how could you believe that aliens
from outer space were recruiting you to save the world?”” Nash replied, “These ideas
came to me the same way my mathematical ideas did, so I took them seriously.”

The inability to distinguish between delusion and reality, between voices and
ones own thoughts, is the tragedy of schizophrenia. We now know that it is a brain
disorder, rooted in biology like diabetes or cancer. But when Nash got sick psychi-
atry was relatively primitive and so were the available treatment. Psychoanalysis,
which has since been discredited as an effective treatment for schizophrenia, was in
vogue. Psychotic illnesses were supposed to be the fault of bad mothers.

Many of Nash’s colleagues and students were appalled by Alicia’s decision to
have Nash hospitalized. They feared the effects of treatment and confinement on the
beautiful mind. Others, however, were shocked by his condition. One recalled his
last visit:

“Robert Lowell, the poet, walked in, manic as hell. There’s Mrs. Nash, sitting
there, pregnant as hell. [Lowell] looks at her and starts quoting the begat sequences
in the Bible... And there was John, very quiet and almost not moving. He wasn’t
even listening. He was totally withdrawn. I focused mostly on his wife and the
coming child. I’ve had that picture in my mind for years. “It’s all over for him,” I
thought.”

For a very, very long time, it looked as if it was all over for Nash.

O, what a noble mind is here o’erthrown!

Act Two of Nash’s life is the all too common story of a life wrecked by a chronic
disease for which there is no adequate treatment, much less cure.

At times Nash believed he was the Prince of Peace, at others a Palestinian
refugee. He heard voices and sensed divine revelation. He abandoned mathemat-
ics for numerology and prophecy. He wrote letters compulsively to government
officials, newspapers and former colleagues. He scribbled mysterious messages on
blackboards. He was obsessed with complicated calculations such as converting
Nelson Rockefeller’s name into base 26 and factoring the result.

He was repeatedly hospitalized, always involuntarily. He was subjected to
extreme and futile treatments like insulin shock therapy. He resigned from MIT
in order to pursue a quest to give up his US citizenship to become a citizen of the
world.

Yet for several years, during temporary remissions, he continued to do math-
ematics.. “Le probleme de Cauchy pour les équations différentielles d’une fluide
générale,” which appeared in 1962, is described as “basic and noteworthy” by The
Encyclopedic Dictionary of Mathematics and inspired a good deal of subsequent
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work by others. He continued to tackle new subjects. Heisuke Hironaka, an algebraic
geometer at Harvard and Fields medalist, eventually wrote up a 1964 conjecture as
“Nash Blowing Up.” In 1966, Nash published “Analyticity of Solutions of Implicit
Function Problems with Analytic Data,” which pursued his ideas about partial
differential equations to their natural conclusion. And in 1967 he completed a much-
cited draft, “Arc Structure of Singularities,” that was eventually published in a 1995
special issue of the Duke Journal of Mathematics.

By the time Nash turned 40, an age at which most mathematicians are at their
most productive, almost everything that had once made his life worthwhile was lost.
He couldn’t work. He had virtually no income. His health suffered. Before long, his
front teeth were rotted down nearly to the gums. Old acquaintances avoided him on
the street. He was shooed out of stores and coffee shops. Outside Princeton, scholars
who built on his work didn’t realize he was still alive.

But as Nash sank deeper into obscurity, his ideas were becoming more and more
influential. While he was lost in his dreams, his name surfaced more and more
often in journals and textbooks in fields as far-flung as economics and biology,
mathematics and political science: “Nash equilibrium,” “Nash bargaining solution,”
“Nash program,” “De Georgi—Nash,” “Nash embedding,” “Nash—Moser theorem,”
“Nash blowing up.”

Nash’s contributions to pure mathematics—embedding of Riemannian mani-
folds, existence of solutions of parabolic and elliptic partial differential equations—
paved the way for important new developments. By the 1980s, his early work in
game theory had permeated economics and helped create new fields within the
discipline, including experimental economics. Philosophers, biologists, and political
scientists adopted his insights. The growing impact of his ideas was not limited
to academe. Advised by game theorists, governments around the world began to
auction “public” goods from oil drilling rights to radio spectra, reorganize markets
for electricity, and devise systems for matching doctors and hospitals. In business
schools, game theory was becoming a staple of management training.

During Nash’s “lost years,” the brilliant ideas Nash had in his twenties about
conflict and cooperation had been widely adopted in the world of economics. . . Nash
published only four game theory papers, but had a bigger impact on economics
than any other game theorist. Before Nash, economists could analyze only two
kinds of market environments, neither representative: monopolies or markets with
so many buyers and sellers that no single individual or firm can affect the behavior
of competitors. Most modern markets—cars, oil, airlines, utilities, pharma, housing,
healthcare, social media—fall somewhere in between these extremes. Because
players must take each others’ strategies into account, predicting how they will
behave is more complicated. The Nash equilibrium made it possible to cut through
the infinite I think therefore he thinks that I think that he thinks. .. hence the game
theory revolution of the 1970s. The impact wasn’t confined to economics either but
extended to political science, psychology, sociology, and biology.

The contrast between the influential ideas and the bleak reality of Nash’s
existence was extreme. The usual honors passed him by. He wasn’t affiliated with
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a university. He had virtually no income. He haunted the Princeton campus, in the
thrall of a delusion that he was “a religious figure of great, but secret importance.”

I shall not look upon his like again.

Then, after three decades, something extraordinary happened. Act Three began.
Freeman Dyson told me later, “It was beautiful. Slowly, he just somehow woke up.”

People ask how Nash could recover from an illness almost universally regarded
as a life sentence. Was it with the help of “the modern drugs,” as Russell Crowe
says in the movie? It was not. Like one in ten individuals who suffer from chronic
schizophrenia, typically for decades, Nash recovered thanks to the natural chemistry
of aging. He also attributed his remission to his own struggle against his delusions
and hallucinations which he referred to as “going on a diet of the mind,” and the
support of a few people who refused to give up on him.

In 1994, Nash’s extraordinary story was about to become public with the
announcement of the Nobel Prize in economics.

Incidentally, Nash was almost denied the Nobel. One hour before the prize was
scheduled to be announced, it was nearly voted down in an unprecedented refusal of
many members of the Swedish Academy of Sciences to affirm the prize committee’s
choice. They feared that giving the prize to a “madman” would sully the Nobel
“brand” and spoil the televised prize ceremony hosted by the King and Queen of
Sweden in December. Ultimately, those who insisted that a mental illness ought not
be a greater bar to the prize than, say, cancer or heart disease, prevailed, but only
narrowly.

A small band of contemporaries had always recognized the importance of Nash’s
work. By the late 1980s, their ranks were swelled by younger scholars who launched
a fight to get Nash long-overdue recognition. The prize, that Nash shared with game
theorists and experimental economists Reinhard Selten of the University of Bonn
and John Harsanyi of the University of California at Berkeley was more than an
intellectual triumph. A Nobel rarely changes winners’ lives profoundly. Nash was
an exception. “We helped lift him into daylight,” said Assar Lindbeck, chairman of
the Nobel prize committee. “We resurrected him in a way.”

When Nash met Russell Crowe for the first time, he told the actor, “You’re going
to have to go through all these transformations.” But the transformation in Nash’s
own life was as remarkable as any the actor portrayed on the screen. He could
not, of course, recover the lost years. He could however repair broken ties with his
sister Martha, and his older son John David, travel to conferences, have dinner with
friends, see his first Broadway play. He could enjoy the thrill of having a passport,
and a drivers license again, of getting a credit card. Then there were the little things
like being able to afford a $2 latte at Starbucks. “Lots of academics do that,” he told
me. “If I was really poor, I couldn’t.”

To get your life back is a marvelous thing, he told an audience at the world
psychiatry conference, but he could never recover the lost years of creativity. Still,
he was able to get a grant from the National Science Foundation to develop a
new “evolutionary” solution concept for cooperative games. He worked with some
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John, Russell Crowe and Ron Howard. (Photo: C. J. Mozzochi)

graduate students. He published papers on ideal money and coalition formation in
experimental games.

Most Nobel laureates, while celebrated within their disciplines, remain invisible
to the public at large. Recognition not only redeemed the man—bringing him back
to society and mathematics—but turned Nash into something of a cultural hero.
Since winning the Nobel, the mathematician who spent his life “thinking, always
thinking” has been mobbed by reporters and fans from Boston to Mumbai to Beijing.

His story particularly appealed to young people. One of my favorite letters was
this one:

Dear Mr. Nash,

Hi! I am 9 years old. My name is Ellie Stilson. I am a girl. I really admire you. You are
my roll (sic) model for a lot of things. I think you are the smartest person who ever lived. I
really wish to be like you. I would love to study math. The only problem with that is that I
am not very good at math. I can do it. I like it. I am just not good at it. Was that what it was
like for you when you were a kid? Please write back. Love, Ellie P.S. I LOVE your name.

The most unforgettable, though, was addressed to me, arrived in a dirty envelope
with no return address and it was scrawled on neon orange paper. It was signed
“Berkeley Baby.” It would never have made it past the New York Times mailroom
after the anthrax scare.

The sender turned out to be the former night rewrite editor on the metro desk,
a rising young star at the New York Times in the mid-1970s before he, too,
was diagnosed with paranoid schizophrenia. Since then, he had adopted the name
Berkeley Baby and lived on the streets of Berkeley, California near the university,
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a forlorn figure not unlike the Phantom of Fine Hall. He wrote, “John Nash’s story
give me hope that one day the world will come back to me too.” Reading that line
always made me cry.

Extraordinary things happen when individuals make extraordinary choices. That
is why I dedicated the biography to Alicia Nash. To me, she is very much the hero
of Nash’s life.

She set out to marry a golden boy who she was convinced was a genius who
would be famous one day. Only a few months after the wedding, however, Alicia’s
girlish notions of romance were shattered by her husband’s illness. She acted
courageously—and with great compassion. But half a dozen years after Nash got
sick, when the husband she was trying to help began to regard her, because of his
paranoia, as his worst enemy—she determined to raise their son on her own and got
a divorce.

But she never let him go. Five years after they separated, when Nash had
no one on earth left to whom he could turn, he wrote to Alicia from a state
hospital in Virginia. I beg you “to save me from future hospitalizations and from
homelessness.” Thirty five and still lovely with most of her life still ahead, she took
him in.

What made Alicia do it? It wasn’t, I think, masochism, as some suggested. It was
love. Not the romantic kind of love, but down to earth, grown up love. She couldn’t
bear to turn him away. It was “a pretty lean life,” her sister-in-law Martha told me.
For years, Alicia got up at 4:30 in the morning and commuted 2 h into Manhattan.
She did it to support John and their son Johnny, who, at age 15, was diagnosed with
the same illness that afflicted his father. She did it to keep her small family together.

Alicia understood—years before research confirmed her intuition—that Nash’s
only hope lay in living at home in a community where at least a few people knew
who he’d been. Nash may have all but disappeared from the world, but Alicia never
lost sight of who he was. She saw past the mismatched clothes and expressionless
demeanor. For her, Nash was always “a very fine man,” someone who had made
great contributions, someone for whom “something extraordinary” was always
possible.

Recognition is a cure for many ills, but love gave Nash something to come back
to: ahome, family, a reason to live after his grandiose delusions faded. Alicia was the
rock on which he rebuilt his life. Together they experienced the extremes of human
existence: genius and madness, sickness and health, obscurity and fame. Together
they cared for their disabled son, renewed family ties and friendships, savored what
Joan Didion, in her New York Review of Books piece on Nash, called “life’s bright
pennies.”

In 2001, after a nearly 40 year gap in their marriage, John and Alicia said “I do” a
second time. “The divorce shouldn’t have happened,” Nash said. Alicia added, “We
saw this as a kind of retraction of that. After all we’ve been together most of our
lives.” When the mayor of Princeton Junction pronounced them man and wife, I
asked Nash to kiss his bride again for the camera. He looked up, grinning: “A second
take? Just like the movies!”
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It was Alicia who wanted Nash’s story to be told. He was more ambivalent. A
friend once asked him about Alicia’s whereabouts. “Having dinner with Sylvia,”
he answered. After a pause he added without much conviction, “I hope they aren’t
talking about me.” Well, 20 years later, people are still talking about him and no
doubt will be for a very long time to come.

In 2015 Nash received an honor that meant even more to him than the economics
Nobel, the Niels Henrik Abel’s Prize in Mathematics. He shared it, as I mentioned,
with an old friend from the Courant Institute, Louis Nirenberg. After the ceremony
in Oslo, that Nash’s older son, John David, was able to attend, Louis, John and Alicia
traveled back to the U.S. together. Their flight was cancelled and they were booked
on a later one. When they arrived at Newark airport, the Nashes discovered that the
driver who usually picked them up had already left. After bidding Louis goodbye,
they took one of the cabs lined up outside of the arrivals terminal. Princeton Junction
is less than an hour from Newark, but they never made it home. On the New Jersey
turnpike, their taxi crashed into the guard rail at high speed, hitting another car. Nash
and his wife were both pronounced dead at the scene. He was 86 years old. Alicia
was 82.

John Nash’s life was tragic, sublime and, now, suddenly, over. The third act
shouldn’t have ended the way it did. Nonetheless that act, like the whole drama,
was truly grand. We will not see the like of him again, but his story belongs to the
ages.
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Louis Nirenberg

I was born in Hamilton, Ontario, Canada, in 1925. My parents emigrated there from
Ukraine, where my father was a Hebrew teacher. When my parents married they
immediately crossed the border into Romania, illegally and were promptly arrested.
Relatives managed to get them out of jail, and they slowly made their way across
Europe, to Antwerp, Belgium, where they hoped to get immigration visas to the US.
After a long time, during which my mother worked as a seamstress they decided to
go to Canada, and my father continued teaching there.

I can’t say when my interest in mathematics began. My father tried to teach me
Hebrew but I foolishly resisted, and he finally hired a friend to give me lessons. The
friend happened to love mathematical puzzles, and half of each lesson was devoted
to them. Perhaps that was the beginning of mathematics for me. To my shame, I
never learned Hebrew. When I was 5, or so, my family moved to St. Catherine’s,
Ontario. There, my older sister taught me what she was learning at school, so I
knew how to read when I entered school. Because of the economic depression we
could not manage in St. Catherine’s, and in 1933 we moved to Montreal.

There, my father had a difficult time finding a position, and he supported the
family by giving private lessons. My parents tried selling things, and I have a
recollection of going from house to house trying to sell light bulbs. Eventually my
parents opened a small gift shop, where they sold English China, crystal etc.

During the depression, to be a high school teacher was considered a very good
position, and the excellent high school I went to, in 1937, Baron Byng, had very
good teachers. Also, my fellow students were extremely bright. My favorite subjects
were Euclidean geometry and physics. The physics teacher even had a PhD. I
decided I would like to study physics. I had no idea that mathematics was a living
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subject. Some years ago a Montreal newspaper wrote about the school (long closed)
and about some of the graduates who later had distinguished careers. (I was not
mentioned.) During my last year in high school I applied for a scholarship to McGill
University, but did not succeed. The high school at that time ended with 11th grade.
But the school offered 12th grade—equivalent to a first year at college—and I
attended that, and this time I received a scholarship to go to McGill in the second
year. There, I entered in the Honors course in Mathematics and Physics, in 1942.
At the time, young refugees from Europe who had been kept in internment camps
in Canada were allowed to leave if they were accepted at some university. Several
entered the honors course at the same time as myself. One was Jim Lambek; he
knew more mathematics than I did. Eventually he became a mathematician, and
spent most of his academic career at McGill.

Louis around 1942 (3rd row, 2nd from right). (Photo: private)

The program at McGill was quite good, though there were no research physicists
or mathematicians there at the time, with an exception, Professor Gordon Pall. He
worked in number theory, and was very kind and encouraging. I graduated in 1945,
just when the war in Europe ended. I was determined to do graduate work in physics,
but somehow no one suggested that I apply to any university.

That summer I got a job in a National Research Council Lab in Montreal, where
they were doing research on atomic energy. A son of Richard Courant, Ernst, was
working at the lab. Courant was a famous mathematician. He had been the head
of the Mathematics Institute in Gottingen, Germany, until he was dismissed by the
Nazis. Ernst’s wife, Sarah, also worked at the lab. She was from Montreal, and 1
knew her. One day she said that they were going to New York to visit Courant,
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and I asked her if she would ask him to suggest somewhere where I might apply to
study theoretical physics. On her return she said that Courant had suggested that I
might come to New York University, where he had set up a graduate mathematics
department 10 years earlier, to get a master’s degree in mathematics, and then,
perhaps, go on to study physics. I went for an interview by Courant and Professor
Kurt Friedrichs, and was offered an assistantship. (Later I was told that when
Courant saw my record at McGill he commented “This guy has only As. There must
be something wrong with him.”) So, in September I arrived as a graduate student in
mathematics at New York University. I never left. My entire professional career was
there.

Incredible luck. I have always been grateful to Sarah Courant. I must say, I feel
that I have had a very lucky life.

Friedrichs had been a student of Courant in Gottingen, and came to Americ