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By Alex Bellos

The Abel Committee has awarded Dennis Parnell 
Sullivan the 2022 Abel Prize for his contributions in 
the fields of topology and dynamical systems. The 
texts below give a brief explanation of some of his 
work in both of these areas.

Topology

In the 19th century, mathematicians started to look 
more closely at the essential properties of shapes.  
A new field of geometry emerged in which two 
objects are considered to be the same if one of 
them can be turned into the other by stretching or 
squeezing, but without any tearing or gluing. In this 
field, called topology, the letter ‘a’ is the same as 
the letter ‘b’, a square is the same as a circle, and a 
teacup is the same as a donut.

A basic concept in topology is the “manifold”, a 
shape that is the same everywhere, meaning that it 
has no end points, edge points, crossing points or 
branching points. The classification of manifolds – 
that is, how many different types of manifolds there 
are and what they are like – has been one of the 
fundamental areas of topological research since the 
subject’s inception. This is the area in which Dennis 
Sullivan began his career, the subject of his thesis 
and important early work.

Let’s begin our own simplified classification, starting 
with manifolds in one dimension. Shapes in one 
dimension are perhaps most easily thought of as 

shapes made from string. We can make the letter ‘a’ 
from string, but clearly it is not a manifold because it 
has two end points, at the tip and base of the letter. 
Neither are the letters ‘b’ or ‘c’. However, the letter  
‘o’ made from string is a manifold: it has no end 
points, crossing points or branches. In fact, the ‘o’, 
a closed loop, is the only one-dimensional manifold 
that can be made out of a finite amount string.

Now, we move up to two dimensions. Shapes in two 
dimensions are perhaps most easily thought of as 
shapes made from sheets. A piece of paper is a two-
dimensional sheet (if we ignore thickness), but it is 
not a manifold because it has an edge. The sphere 
(mathematically speaking, the sphere is the surface  
of a ball), however is a manifold. Wherever you are on 
a sphere your immediate surroundings look exactly 
the same.

The torus, the surface of a donut shape, is also a 
manifold. The double torus, which looks like the 
surface of a figure-of-eight pretzel, is also a manifold. 
In fact, the triple torus, the quadruple torus, and 
so on, are all manifolds. Summarising our two-
dimensional classification: the sphere, and family 
of tori, are the only two-dimensional, orientable 
manifolds that can be made with a finite amount of 
sheet material.

Onwards to three dimensions. Shapes in three 
dimensions are perhaps most easily thought of  
as shapes made out of dough. But here our visual 
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analogies break down, and we head into abstraction. 
Notice how one-dimensional, string manifolds like 
the letter ‘o’ exist in in two dimensions, and how the 
two-dimensional torus exists in three. Likewise, three-
dimensional dough manifolds exist in four dimensions 
or more. These shapes cannot be constructed in the 
three-dimensional space we live in.

The classification of dough manifolds is the subject of 
the Poincaré conjecture, which was one of the most 
famous open problems in all mathematics, until the 
Russian mathematician Grigori Perelman proved it in 
2002 and 2003. (Perelman won $1m for his proof, and 
surprised many people by turning it down.)

We continue up the dimensions. The classification of 
four-dimensional manifolds is full of open problems 
and mysteries.

Yet curiously, classification gets easier once we reach 
manifolds of dimension five and above. Topologists 
use “surgery theory” to operate on these manifolds 
and construct new ones. In lay terms, the more 
dimensions there are, the more “room” there is to 
move around. 

Dennis Sullivan’s thesis and early work was on 
surgery theory. He helped figure out what sort of 
things you could feed into the surgery program. One 
of his innovations was to organise surgery theory 
using “classifying spaces”, and to use these spaces 
as a key to understanding all high dimensional 
manifolds. His work has helped provide a full 
picture of what manifolds there are in five and more 
dimensions, and how they behave.

Dynamical systems

In the mid 1970s, computers stimulated much new 
mathematical research. It became possible, for 
example, to investigate the behaviour of systems that 
relied on many repeated calculations, some of which 
revealed fascinating and beautiful fractal shapes.

Mathematical biologists, for example, devised models 
to show how animal populations rise and fall. This 
simple formula, called the logistic map, captures how 
an animal population changes from year to year.

xn+1 = rxn (1 – xn  )

The value xn is a number between 0 and 1, and 
represents the size of an animal population at year 
n as a proportion of the maximum population. The 
value xn+1 is the size of the population at year  

n + 1. And the parameter r is the reproductive rate, or 
fertility, of the system. 

The logistic map is iterative, meaning that, starting 
with a population size in year 1, you calculate the 
population in year 2, then plug that value back into 
the equation to get year 3, then year 4, and so on. 
The equation captures both how populations grow 
proportionately (that’s the rxn part), and how they fall 
as overpopulation puts stress on limited resources 
(that’s the 1 – xn part).

The logistic map reveals unexpectedly complex 
behaviour depending on the value of r, as illustrated 
in the graph below, which plots the value of r 
along the horizontal axis and the limit value of the 
population along the vertical axis.

For example, when r is between 2.4 and 3, the 
population will eventually settle at a fixed value, 
whatever its initial size, hence the single line on  
the graph.

When r reaches 3, however, the line forks, meaning 
that the population does not eventually settle at a 
single value. Instead, the limit population oscillates 
in alternate years between two values. As r increases 
both of these branches fork again, at which point the 
population oscillates between four values.

The graph, also known as a bifurcation diagram, is 
one of the most famous mathematical images from 
the 1970s. The cascades of period doublings are an 
example of what popularly became known as chaos 
theory, in which tiny changes in initial conditions can 

Image credit: Morn, Wikipedia, https://en.wikipedia.org/
wiki/Bifurcation_diagram#/media/File:Logistic_Map_
Bifurcation_Diagram,_Matplotlib.svg



have hugely different consequences. Another lay term 
for this phenomenon is the “butterfly effect”.

The physicist Mitchell Feigenbaum discovered a 
fascinating feature of the logistic map: the ratios 
of the distances between the bifurcation points 
converge to a fixed number, 4.6692…, called the 
Feigenbaum constant. In fact, the Feigenbaum 
constant appears not only with the iterative formula 
rxn (1 – xn  ), as above, but also with other formulae. 
It is a universal feature of this kind of system, 
independent of the fine details of the formula.

Dennis Sullivan showed that the limits of cascades 
of period doublings are universal. His work in this 
area led to a deeper understanding of the concept 
of “renormalization” which now forms part of the 
foundations of the field. His novel approach revealed 

how the rich theory of complex numbers can be 
leveraged to understand the emergence of rigidity 
phenomenon in real dynamics.

Topology and dynamical systems inhabit different 
mathematical landscapes. Yet Sullivan’s work can 
be seen as part of a single and consistent visionary 
endeavour, the study of geometric structures on 
spaces, whether that space is a manifold or a fractal. 
Sullivan’s wide interests and deep insights have  
made him, in the words of his Abel Prize citation:  
“a true virtuoso.”


