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An algebraic model for topological spaces

The Abel Committee states in the citation:

... Sullivan ́s model is based on differential forms, an idea

of multivariable calculus, enabling direct connection to

geometry and analysis. This made a major part of

algebraic topology suitable for calculation, and has proved

revolutionary. ...

Algebraization of topology
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The two figures X and Y both have 5 vertices and 5 edges.

But even if the two pairs of numbers are the same, this

does not imply that the figures are the same. Admittedly, it

is not that hard to describe the difference between the two

figures, but it was still a huge step forward for topology

when Emmy Noether in the mid-1920s introduced the idea

of introducing algebras into the topology. Her suggestion

was to replace the number of certain objects with the

corresponding number of copies of Z and leave the

relationship between edges and the corners are encoded

in an function d between the two versions of 5 copies of Z:

Z5 d−→ Z5

This chain complex of the topological space can be

effectively used to calculate some topological invariants of

the two figures; For X we get the homology groups

H0(X, Z) = Z2, H1(X, Z) = Z

which express that X has two components and a loop,

while we for Y get

H0(Y, Z) = Z, H1(Y, Z) = 0

Thus Y has one component and no loops. It is implicit in

the last two statements that H0 measures the number of

components and that H1 ”counts” the number of loops.

De Rham ́s Theorem

Another example of algebraization of topology dates back

to the early 1930s and the Swiss mathematician George de

Rham. De Rham ́s theorem states that for a smooth

manifold M without boundary there is an isomorphism

between cohomology groups

Hn
dR(M) ' Hn(M, R)

for all n ≥ 0. De Rham cohomology Hn
dR(M) is given as

the quotient of closed n-forms (forms ω satisfying dω = 0)
by exact forms (written as ω = dη) of the manifold M,

while Hn(M, R) is closely related to the homology groups

of X and Y as given above. The isomorphism between the

two cohomology theories is defined such that for any

homology class [c] of M an n-form ω is mapped to the

integral of the form along the homology class:

ω 7→
∫
[c]

ω



Due to Stoke ́s theorem the map is well-defined;

dω 7→
∫
[c]

dω =
∫

∂[c]
ω = 0

The de Rham theorem links two different descriptions of

the manifold M. An isomorphism in cohomology is often

referred to as a quasi-isomorphism of the underlying

complexes:

(Ω•(M), ddR)
'−→ (C•(M), ∂)

The Rham complex is built on differential forms and

encodes properties of the differentiable structure of M.

The complex (C•(M), ∂) reflects a structure of M as put

together by simpler geometric objects, e.g. line segments,

triangles, tetrahedra, etc. In cohomology, the geometry of

each constituent will be insignificant, what is essential is

the combinatorics in the structure. Consider an ordinary

circle. If we join together two line segments, we get

something that is topologically the same as one line

segment. On the other hand, we pairwise join together the

endpoints, we get something more like a circle.

Cohomology does not care about what the line segments

look like, but it captures if we have one or two joints

between the segments.

The Sullivan model

The de Rham complex is an example of what is called a

commutative differential graded algebra (CDGA). CDGAs

are objects with a rich structure and well suited for

calculations. The de Rham theorem can be seen as a way

of linking the geometric structure as described above to

some mathematical object suitable for calculations. The

assumption of the de Rham theorem is that the geometric

object is a smooth manifold. Sullivan had an ambition of

extending the de Rham theorem to include all topological

spaces X without the necessary differential structure.

Sullivan ́s model is his answer to this challenge. In a

systematic and step-by-step manner, Sullivan builds a

CDGA based on the geometric structure of the space X.
The algebra picks out the most important properties of the

geometry such that knowledge of the algebra is actually

enough to reconstruct the object. Of course not in details,

but with emphasis of the geometric structure.

The power of this construction lies in the fact that a

geometric structure is replaced by an almost equivalent.

algebraic structure with more flexibility when it comes to

calculations.

As an example of a Sullivan model, we consider the circle

S1. There are no maps from Sn, n ≥ 2 into the circle that

can not be pulled together to a point. It means that the

Sullivan model has only one basis element a in degree 1
and trivial differential. The model is assumed to be graded

commutative thus for a1 = a2 = a we have

a2 = a1 · a2 = (−1)1·1a2 · a1 = −a2

consequently we have a2 = 0.

For the sphere S2 the situation is a little bit different. For all

n-spheres there is a generator a in degree n = 2. Contrary
to the odd case n = 1 in the even case n = 2 we have

a2 = a1 · a2 = (−1)2·2a2 · a1 = a2

Thus there are no conditions on a2. To avoid that a2

contributes to the model we introduce an element b of
degree 3, such thatdb = a2. Thus the Sullivan model for an

even sphere becomes

(∧(a, b), a2 = db, da = 0)

where deg(a) = 2 and deg(b) = 3.


