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No-wandering-domains

The Abel Committee states in the citation:

... In dynamics, Sullivan introduced a dictionary between

Kleinian groups and iterated rational maps, pivoting on the

theory of measurable complex structures. He proved that

rational maps have no wandering domains, solving a 60

years old conjecture of Fatou ...

Orbits of dynamical systems

A dynamical system is a mathematical model that describes

the time evolution of a physical system. A dynamical system

has two main components:

- A set of states for the system, each state being a spec-

ification of the values of all the parameters included in

the model

- A rule that describes the dynamics of the system, i.e.

how the system moves from one state to the next

An orbit of a dynamical system is an ordered set of states

where the next state is the one that the law of dynamics

assigns to the previous one.

Weather prediction is a dynamical system. A state of the

weather system is a list of meteorological data, such as tem-

perature, air pressure, humidity, wind-speed and -direction,

and possibly other parameters. Based on one specific state,

meteorologists can, by relying on the laws of nature, make

a qualified prediction of what the same parameters will look

like a moment later. Powerful computers can repeat this

process thousands of times and on that basis come up with

relatively accurate weather forecasts.

Weather prediction is a complicated dynamical system.

To illustrate concepts related to the theory of dynamical

systems, we consider a less complex system. States are

real numbers and the dynamics is given by the function

f (x) = x2 − 1. An orbit of the dynamical system is com-

pletely determined by an initial value x0 and iterations of

the function f , i.e. x0, f (x0), f 2(x0), . . . . For an initial point
x0 = 2, iteration of the function f (x) = x2 − 1 will set up

the path

{2, 3, 8, 63, 3968, . . . }

which implies that f n(x0) → ∞ when n → ∞. If, on the

other hand, we choose the initial point x0 = 1, the orbit will
be eventually periodic

{1, 0,−1, 0,−1, . . . }

since f (−1) = 0 and f (0) = −1. If we change the initial

point, to x0 = 0.9 the orbit becomes

{0.9,−0.19,−0.96,−0.07,−0.99, . . . }

This orbit will eventually converge to the periodic orbit

{−1, 0}.

Since the function is the same for all orbits, the orbits must

be uniquely determined by their initial point. A classification

of the orbits is thus the same as a classification of the initial

points.

Different initial points can generate very different orbits.

We have seen that the initial point x0 = 2 will force the

iteration to go to ∞, in contrast to the initial point x0 = 0.9
where the orbit converges towards a periodic orbit. The



latter will in fact be the case for all initial points in the interval

−1 −
√

5
2

< x0 <
1 +

√
5

2

except for z = 1−
√

5
2 where the function has a fixed point

f (z) = z.

We split the set of initial points into two categories, tame

and wild. The tame points are characterized by the fact

that the orbits of nearby points share many of their essen-

tial properties. Points in the interval −1−
√

5
2 < x0 < 1+

√
5

2 ,

where all orbits, except one, converges towards the peri-

odic orbit {−1, 0}, share this property. We call the set of

tame points the Fatou set of the dynamical system. The

complement of the Fatou set, consisting solely of the wild

points, is called the Julia set. An example of a point in the

Julia set for the iteration f (x) = x2 − 1 is the fixed point

z = 1−
√

5
2 . The orbit of z consists of z only, but if we start the

iteration away from z, but still close, the iterations will keep
on moving away from z and eventually converge towards

the periodic orbit {−1, 0}. An alternative description is that

an initial point z of the Julia set is unstable with respect to
the type of orbit it generates.
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Figure 1: Illustration of the dynamical system given by

f (z) = z2 − 1, z ∈ C ∪ {∞}. The white curve is the Ju-

lia set, while the purple and the green sets are the two

components of the Fatou set. The purple shows all initial

points where the iterations will go towards ∞, while initial

points in the green set form orbits that eventually converges

towards the periodic orbit {−1, 0}.

The Fatou no-wandering-domain Conjecture

In the 1920s, Pierre Fatou put forward his conjecture about

the tame points of a rational dynamical system over the

extended complex plane Ĉ = C∪ {∞}. Sullivan proved the

conjecture in 1985 and thereby changed the status of the

result from Fatou’s conjecture to Sullivan’s theorem.

Theorem (Sullivan, 1985). If f : Ĉ → Ĉ is a rational map

of degree d ≥ 2, then every component U of the Fatou set

F( f ) is eventually periodic.
The term no-wandering-domain refers to the fact that

periodic components are not wandering; a wandering com-

ponent U satisfies U ∩ f p(U) = ∅ for all p ≥ 2. An example

of a wandering component is found for the iteration given by

f (z) = z + 2π sin z. The white fields in the figure illustrates

a wandering component of the Fatou set; the orbit of the

point z0 = π
2 is given by

π

2
,

5π

2
,

9π

2
, . . .

Notice that the function f (z) = z + 2π sin z is not rational
and thus does not violate Sullivan’s theorem.
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Figure 2: Illustration of the dynamical system given by

f (z) = z + 2π sin z, z ∈ C ∪ {∞}.

Sullivan’s proof of the no-wandering-domain theorem

builds on deep insight into the geometry of the extended

complex plane and functions defined on it. An assumption

that there exists wandering components for a rational func-

tion of degree d ≥ 2 leads to the existence of infinitely many

linearly independent rational functions of degree d ≥ 2.
However, it is well known that the vector space of ratio-

nal functions of degree d ≥ 2 are finite dimensional, and

the contradiction gives us the necessary evidence that the

theorem is true.


