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Free Boundary Problems

As on a signal the crowd silences. The two top world
tennis players are looking nervous at each other, waiting
for the decisive serve in the final match of this year‘s
Wimbledon Championships. The top ranked player pulls
her sun visor a small inch up and starts bouncing the ball.
The ball hits the well-trimmed lawn and with an almost
inaudible sound it returns back to the players hand...

Source: Screen dump of: ScienceLuxembourg
<https://youtu.be/1yTOhxplVBg>

How can it be that the ball bounces back? The picture of
the deformed ball illustrates what happens. Hitting the
ground at some speed the ball is pressed together.
Because of the rather stable shape of the ball the internal
forces of the ball will start pushing the ball back to the
original shape. The reforming process of the shape takes
place at a certain speed, caused by the elasticity of the
ball. This speed is high enough, not only to reshape the
ball, but also to give the ball some upwards speed. The
experienced tennis player knows that some kinetic energy

is lost in the inelastic collision with the ground and adjust
the bounce effort in a reasonable way.

For a physicist this explanation of what happens is
satisfactory, but the mathematician needs to go deeper. Is
it possible to establish a mathematical model for the shape
of the ball during the collision? The model should combine
the laws of motion, forces caused by the increased
pressure in the ball when pressed together and the
elasticity of the material of the ball.

Before hitting the ground, we assume that the ball is a
perfect sphere. As it hits the flat ground, the contact
surface between the ball and the ground will be flat, too.
The rest of the ball will look like a part of an oval. A major
problem in modelling the deformation is that the contact
surface between the ball and the ground will vary during
the collision, ranging from one initial point to a certain part
of the surface of the ball. Taking into account all the
physical laws known to be involved, it is still not an easy
task to set up a mathematical model for the deformation of
the ball. To find a solution of the model, i.e. to give an nice
description of the movements of every spot of the ball, is
even harder.

A major problem in finding the solution is that this is a
so-called “free boundary problem”, one of this year‘s Abel
Laureate Luis Caffarelli‘s specialties. In general, when
looking for a solution of a mathematical model, it is of
crucial importance to know the geometry of the object in
study. In particular you must be able to describe the
boundary of the object.

Suppose you put a silver spoon into your tea cup. The heat
will spread from the hot tea, through the metal, ending up
in your fingertips. To calculate the time-dependent



distribution of the heat in the spoon, based on the heat
diffusion model of Fourier, it is crucial to know the shape
and the sizes of the spoon. The same will be the case for
the bouncing ball. The distorting problem is that during the
inelastic collision, the boundary of the oval part of the ball
will change continuousely. But the variation of the
boundary depends on the physical model for the collision.
So, you end up with a connected problem, the solution of
the mathematical model which should give you the shape
of the oval part of the ball depends on the boundary of the
contact surface between the ball and the ground, and the
boundary of the contact surface depends on the solution
for the shape of the oval. This connected problems where
the solution of two partial problems mutually depend on
each other, is an example of a free boundary problem.
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There are many other examples of free boundary problems
occurring in nature, and even in our daily life. If you put an
ice cube in a glass of water, heat will be transferred from
the water to the ice, and little by little melting the ice. The
diffusion of the heat is nicely described by the heat
diffusion model where you have to consider the different
heat capacity rate of ice and water. The boundary in this
model is the surface of the ice cube, which you have to
know to find an exact solution of the problem. But the
boundary is not constant, in fact it is constantly changing,
due to the ongoing melting process.
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Again, we are faced with a connected problem; to solve
the heat diffusion problem in water and ice, exact
knowledge of the boundary of the ice cube is required. But
to get this knowledge we must solve the heat diffusion
equation under the instant boundary condition. The
melting ice cube problem is known as the two-phase
Stefan problem, named after Josef Stefan, a Slovenian
physicist who introduced the general class of such
problems around 1890.

In general, it is out of reach to give a complete solution of a
free boundary problem. As a second-best, seen from a
mathematical point of view, one would like to have some
control about how the boundary develops during te
process. For the Stefan problem this might also have a
more general interest. If you scale up the ice cube in the
glass of water, you can in fact face a global problem. An
example is the Thwaites Glacier, nicknamed the Doomsday

Glacier, in the Antarctic. Possible due to man-made
climate changes the glacier is heading towards the sea. If
the whole glacier should collapse into the ocean the sea
level would globally increase by 65 cm. In addition, ice
cubes of different sizes would for a period of time float
around in the oceans. The size of the glacier is comparable
to Great Britain and a possible collapse would definitely
actualize a more thorough study of the Stefan problem.

In a paper from 1977; “The regularity of free boundaries in
higher dimension”, Luis Caffarelli gave a ground-breaking
contribution to the understanding of the boundaries of the
free boundary problems. He showed that the shape of the
boundary during the process will exhibit a certain
mathematical regularity. For the melting ice cube we can
think of this as that the surface of the ice will continue to
be rather smooth, and not develop into some sort of
porous medium.
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Introduction

The problem of studying the regularity of the frec boundary thet aeises when con-
sidering the energy minimizing function over the set of those functions bigger than & given
“obatacle” has besn the subject of intensive research in the laet decade. Let me mention
H. Lewy and G. Stampacchia [14], . Kinderlehrer [11], J. C. Nitsche [16] and N. M.
Riviere and the author [5] among others. In two dimensions, by the use of analytio reflec-
tion techniques dus mainly to H. Lewy [13], much was achieved. "

Recently, the suthor was able to prove, in o three dimensional filteation problem [4],
that the resulting free surface is of elass €% and all the second derivatives of the variational
solution are continuous up to the free boundary, on the non-coineidence set. This fact has
not only the virtue of proving that the varistional solution is a classical one. but also veri-
fies the hypothesis necessary to apply a recent result due to D. Kinderlehrer and L. Niren-
beeg, [12] to conclude that the free boundary is as smooth s the chatacle. Neverthaless,
in that paper {[4]), strong use waa made of the geometry of the problem; this implied that
the free boundary was Lipschitz., Also it was apparently essential that the Laplacian of
the ohstacle was constant.

In the first part of this paper we plan to treat the general non-linear free boundary
problem as presented in H. Brezis-D. Kinderlehrer [2). Our main purpose is to prove that
if X, is a point of denaity for the ecineid set, in & neighborhood of X the free boundary
is & (7 qurface and all the seeond derivatives of the selution are econtinuous up te it. In

the seecnd part we will stady the parabolic case (one phase Stelan problem) as presented
by G. Duvant [7] or A, Friedman and D). Kinderlehrer [§]. There we prove that if for a
fixed time, ¢, the point X, is & density point for the coincidence set {the ice) then in &
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Caffarelli‘'s 1977-paper became one of the starting points
of an extensive research towards a better understanding of
the regularity of solutions of a variety of mathematical
models, including the Navier-Stokes equations, the
Obstacle problem and the Monge-Ampere equation, to all
of which Luis Caffarelli has given important contributions
and been a leading star



