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As on a signal the crowd silences. The two top world

tennis players are looking nervous at each other, waiting

for the decisive serve in the final match of this year‘s

Wimbledon Championships. The top ranked player pulls

her sun visor a small inch up and starts bouncing the ball.

The ball hits the well-trimmed lawn and with an almost

inaudible sound it returns back to the players hand...

Source: Screen dump of: ScienceLuxembourg

<https://youtu.be/1yT0hxplVBg>

How can it be that the ball bounces back? The picture of

the deformed ball illustrates what happens. Hitting the

ground at some speed the ball is pressed together.

Because of the rather stable shape of the ball the internal

forces of the ball will start pushing the ball back to the

original shape. The reforming process of the shape takes

place at a certain speed, caused by the elasticity of the

ball. This speed is high enough, not only to reshape the

ball, but also to give the ball some upwards speed. The

experienced tennis player knows that some kinetic energy

is lost in the inelastic collision with the ground and adjust

the bounce effort in a reasonable way.

For a physicist this explanation of what happens is

satisfactory, but the mathematician needs to go deeper. Is

it possible to establish a mathematical model for the shape

of the ball during the collision? The model should combine

the laws of motion, forces caused by the increased

pressure in the ball when pressed together and the

elasticity of the material of the ball.

Before hitting the ground, we assume that the ball is a

perfect sphere. As it hits the flat ground, the contact

surface between the ball and the ground will be flat, too.

The rest of the ball will look like a part of an oval. A major

problem in modelling the deformation is that the contact

surface between the ball and the ground will vary during

the collision, ranging from one initial point to a certain part

of the surface of the ball. Taking into account all the

physical laws known to be involved, it is still not an easy

task to set up a mathematical model for the deformation of

the ball. To find a solution of the model, i.e. to give an nice

description of the movements of every spot of the ball, is

even harder.

A major problem in finding the solution is that this is a

so-called “free boundary problem”, one of this year‘s Abel

Laureate Luis Caffarelli‘s specialties. In general, when

looking for a solution of a mathematical model, it is of

crucial importance to know the geometry of the object in

study. In particular you must be able to describe the

boundary of the object.

Suppose you put a silver spoon into your tea cup. The heat

will spread from the hot tea, through the metal, ending up

in your fingertips. To calculate the time-dependent



distribution of the heat in the spoon, based on the heat

diffusion model of Fourier, it is crucial to know the shape

and the sizes of the spoon. The same will be the case for

the bouncing ball. The distorting problem is that during the

inelastic collision, the boundary of the oval part of the ball

will change continuousely. But the variation of the

boundary depends on the physical model for the collision.

So, you end up with a connected problem, the solution of

the mathematical model which should give you the shape

of the oval part of the ball depends on the boundary of the

contact surface between the ball and the ground, and the

boundary of the contact surface depends on the solution

for the shape of the oval. This connected problems where

the solution of two partial problems mutually depend on

each other, is an example of a free boundary problem.

There are many other examples of free boundary problems

occurring in nature, and even in our daily life. If you put an

ice cube in a glass of water, heat will be transferred from

the water to the ice, and little by little melting the ice. The

diffusion of the heat is nicely described by the heat

diffusion model where you have to consider the different

heat capacity rate of ice and water. The boundary in this

model is the surface of the ice cube, which you have to

know to find an exact solution of the problem. But the

boundary is not constant, in fact it is constantly changing,

due to the ongoing melting process.

Again, we are faced with a connected problem; to solve

the heat diffusion problem in water and ice, exact

knowledge of the boundary of the ice cube is required. But

to get this knowledge we must solve the heat diffusion

equation under the instant boundary condition. The

melting ice cube problem is known as the two-phase

Stefan problem, named after Josef Stefan, a Slovenian

physicist who introduced the general class of such

problems around 1890.

In general, it is out of reach to give a complete solution of a

free boundary problem. As a second-best, seen from a

mathematical point of view, one would like to have some

control about how the boundary develops during te

process. For the Stefan problem this might also have a

more general interest. If you scale up the ice cube in the

glass of water, you can in fact face a global problem. An

example is the Thwaites Glacier, nicknamed the Doomsday

Glacier, in the Antarctic. Possible due to man-made

climate changes the glacier is heading towards the sea. If

the whole glacier should collapse into the ocean the sea

level would globally increase by 65 cm. In addition, ice

cubes of different sizes would for a period of time float

around in the oceans. The size of the glacier is comparable

to Great Britain and a possible collapse would definitely

actualize a more thorough study of the Stefan problem.

In a paper from 1977; “The regularity of free boundaries in

higher dimension”, Luis Caffarelli gave a ground-breaking

contribution to the understanding of the boundaries of the

free boundary problems. He showed that the shape of the

boundary during the process will exhibit a certain

mathematical regularity. For the melting ice cube we can

think of this as that the surface of the ice will continue to

be rather smooth, and not develop into some sort of

porous medium.

The front page of Caffarelli‘s 1977-paper

Caffarelli‘s 1977-paper became one of the starting points

of an extensive research towards a better understanding of

the regularity of solutions of a variety of mathematical

models, including the Navier-Stokes equations, the

Obstacle problem and the Monge-Ampere equation, to all

of which Luis Caffarelli has given important contributions

and been a leading star


