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The Abel Committee has awarded Luis A. Caffarelli 
the 2023 Abel Prize for his seminal contributions to 
the study of nonlinear partial differential equations. 
The text below gives a brief explanation of some of 
the work he has done in this area.

The discovery in the seventeenth century that 
the universe can be described by mathematical 
equations marked the beginning of modern science. 
Isaac Newton’s second law of motion was an early 
example of such an equation: it states that the force 
on an object is equal to the mass of that object times 
its acceleration, usually expressed by the formula 
F = ma. Not only were Newton’s laws a conceptual 
leap forward, but they also required a new type of 
mathematics.

This new mathematics, developed by Newton and 
Gottfried Leibniz, became popularly known as the 
infinitesimal calculus, and introduced the idea of 
an instantaneous “rate of change”. Since these 
instantaneous rates of change are calculated by 
considering infinitesimal differences, equations in 
calculus became known as differential equations. 
They come in two classes: ordinary differential 
equations, which feature a single variable, and partial 
differential equations (PDEs), which feature more than 
one variable.

PDEs are ubiquitous across science. They underlie 
our understanding of the physical world, beautifully 

modelling phenomena from heat to sound to 
electromagnetism to quantum mechanics. PDEs also 
arise in the social sciences, explaining the behaviour, 
for example, of epidemics, interest rates and stock 
options. Indeed, wherever there is a system involving 
multiple variables undergoing continuous change, you 
will find PDEs.
 
The power of a differential equation is that it predicts 
the future. For example, if I throw a ball I know – 
thanks to Newton’s second law – that it will travel 
through the air in the shape of a parabola. I also 
know that if I throw the ball with a bit more power, 
or at a slightly different angle, that the ball will still 
travel in the shape of a parabola, even though it may 
be a slightly bigger or smaller one. In other words, 
Newton’s second law is well-behaved: if I adjust the 
input values slightly, there are no nasty surprises 
in the output. The research of Luis Caffarelli asks 
similar questions of PDEs: when you adjust the input, 
do they also always act in the expected way, or are 
there values that trigger unstable, irregular or erratic 
behaviour?

Caffarelli’s first area of investigation was the obstacle 
problem, a classic example in the field of nonlinear 
PDEs, which asks what is the equilibrium position 
when an elastic membrane pushes against a rigid 
obstacle, such as, for example, when a balloon 
presses against a wall. This work led him to the wider 
area of “free boundary problems”, so-called because 
the boundary under discussion – such as where the 
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membrane meets the obstacle, or where the balloon 
meets the wall – is unknown at the outset and is 
what needs to be determined. Other examples of free 
boundary problems include ice melting into water, or 
water seeping through a porous medium. In the case 
of ice melting into water, the free boundary is the 
interface between the ice and the water, and can be 
used to model other examples of phase transitions in 
physics, biology and finance.

Caffarelli revolutionised the study of free boundary 
problems in the 1970s, after which he turned his 
attention to probably the most famous PDEs in 
all mathematics, the Navier-Stokes equations. 
Formalised in the mid-nineteenth century, these two 
equations describe the motion of viscous fluids, such 
as how water flows down a stream or oil down a pipe. 
The first equation, marked i) below, states the fluid  
is incompressible. 

The second equation, marked ii), is an application of 
Newton’s second law: it says that the mass times the 
acceleration (on the left of the equals sign) is equal to 
the force (on the right), which is broken down into the 
internal forces (pressure and viscosity) and external 
forces (usually gravity, hence the abbreviated g ).

Physicists and engineers use the Navier-Stokes 
equations to predict the behaviour of fluid flows 
every day, and they work extremely well. Yet despite 
their practical importance, the equations are not 
fully understood. For example, it is an open question 
whether or not the equations are always ‘smooth’ 
or whether they will sometimes ‘blow up’, meaning 
that if you smoothly tweak the pressure, viscosity 
and so on, it is not known whether the velocities 
within the fluid will always change smoothly, or if the 
equations may throw up a point at which the velocity 
spikes to infinity. In the real world, velocity can never 
be infinity, so the discovery of singularities with 
infinite velocity would mean that the equations are 
somehow inadequate models of physical behaviour. 
The question of the smoothness of the Navier-Stokes 
equations has gained notoriety in recent years, since 
it is a Millennium Problem, one of the six problems 
the Clay Mathematics Institute has decided it will  
give a $1 million prize to the first person to provide  
a solution.    

In 1982 Caffarelli, together with Robert Kohn 
and Louis Nirenberg, proved that if the Navier-
Stokes equations do produce singularities, they 
will disappear instantly because the singularities 
produced cannot fill a curve in space time (meaning 
the three dimensions of space and the one dimension 
of time treated as four dimensions.) The 1982 paper 
remains the closest anyone has got to proving or 
disproving the smoothness of the Navier-Stokes 
equations, even after another four decades of intense 
research in this area.

PDEs arise when scientists try to describe natural 
laws, but they are studied by mathematicians for their 
own internal consistency and beauty. Luis Caffarelli 
has made his life’s work the desire to establish 
that these tools have a rigorous mathematical 
foundation. He has been hugely influential in taming 
their wildness, making sure PDEs are meaningful 
representations of reality.

i ) Navier-Stokes equations – first equation

ii) Navier-Stokes equations – second equation




