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If you predict that today’s weather will be the same as

yesterday’s weather, you will succeed with a probability of

approximately 0.5. If you in addition incorporate some old

weather sayings, like “Red sky at night, sailors delight. Red

sky in morning, sailors take warning,” you will noticeably

increase your fortune-telling abilities. But still, if you plan to

cross the sea, you would probably prefer a more

knowledge-based forecast. So, you look up at the Internet

or listen to your radio to read or hear what the

meteorologist can tell you about challenges you will face

on your imminent journey.

Putting on your sunglasses and rejoice that the wind is

blowing just right in the mainsail, you send a warm thought

to the meteorologist who fed her computer with a lot of

data and some physical laws to give you a close to perfect

description of today’s nice weather.

Weather forecast, as well as many other models for how

nature behaves, is based on what is called a “partial

differential equation”, or a PDE for short. The general setup

for a PDE as a mathematical model for something we

observe in nature, is the correspondence between an

acting force and a resulting reaction. The reaction can

either be described as a time-based process, or just as a

geometric configuration with no time involved. The acting

force can originate from different sources, a gravitational

field, pressure or a temperature gradient. In additional to

the source of the acting force, the geometry of the object

in study plays a major role.

Source: Rune Mathisen. (https://ndla.no/article/10454)

The behaviour of a gas flowing through a pipe is highly

dependent of the shape of the pipe. If we narrow the pipe,

the gas will flow faster, and obstacles will cause

turbulence. Or, dipping a metal frame into a soapy water,

suitable for blowing soap bubbles, the soap film will form a

surface of minimal area with the shape of the frame as the

only constraint.

Source: Soapbubble.dk

The gas flow through a pipe is modelled by what is called

the Navier-Stokes equations. The equations come from

applying Isaac Newton’s second law to fluid motion,

together with assumptions about how the molecules in the

fluid interacts.

A solution of the Navier-Stokes equations is a velocity field,

describing the velocity of the fluid at any time and any



point. Boundedness of this solution means that the speed

of any part of the fluid will never exceed a certain given

value. In the physical world this not an issue since infinite

speed is an impossibility. But we can still ask the truly

physical question; does there exist a limit for the speed of a

tornado, or will we constantly observe new speed records?

Mathematically this question is rephrased as a question of

boundedness of solutions. Do the Navier-Stokes equations

develop unbounded solutions in finite time? This question

is called the Navier-Stokes existence and smoothness

problem. The Clay Mathematics Institute has called this

problem one of the seven most important open problems

in mathematics and has offered a US$1 million prize for a

solution or a counterexample.

The Navier-Stokes equations involve time as a parameter,

i.e. the equation models what happens in time based on

acting forces and geometry. An example of a physical

phenomenon which is modelled by a PDE, but which not

involves time as a parameter, is the minimal surface

phenomenon. When you dip a steel wire frame in soapy

water, if you are lucky, you will catch a soap film attached

to the frame. Since the soap molecules prefer to stick

together as much as possible, the soap film will always

exhibit a minimal surface. This means that provided the

film is attached to the frame, it is not possible to find a

surface of smaller area.

Even if we consider the formation of the minimal surface as

a purely geometric result, there is of course a

time-dependent process that takes place after dipping the

steel wire frame in the soapy water. The soap molecules

work fast, reaching their final position in just a fraction of a

second. In the process they move a bit around, playing

their game with all the other molecules, and finally settle

down. They have reached a state of equilibrium. Thus, the

solution of the time-independent model can also be

considered as the equilibrium state of a time-dependent

process.

A common problem for all mathematical models is to find

solutions. Suppose you put up a mathematical model for

something that takes place in nature and you are clever

enough to find solutions to the involved equations. Then

you actually will be in position to predict something about

the future based on scientific reasoning. Your predictions

will be far more valuable than if you were just guessing.

In general it is very difficult to find the solutions. In many

cases it is hard even to prove that there exist solutions.

And if you know that there exists solutions, they may have

bad properties. Luis Caffarelli has dedicated his

professional life to study the nature of the solutions of

various partial differential equations. Thanks to his efforts

and to the contribution of many other mathematicians, our

insight in the nature of the solutions has increased

significantly over the last 50 years. Tthe Abel Prize

committee writes in their citation for this year’s Abel Prize:

“Combining brilliant geometric insight with ingenious

analytical tools and methods, he [CaffarellI] has had and

continues to have an enormous impact on the field”.


