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Michel Talagrand is an expert at understanding 
and taming complicated random processes. 
Randomness can arise in a wide range of ways, 
and Talagrand has explored many different types. 
One of the most common, and arguably most 
important, types of randomness arises from 
“Gaussian processes”. The Gaussian distribution 
has been a constant feature of Talagrand’s career 
so it’s worth considering it as a tangible example 
when exploring his work.

A Gaussian distribution (sometimes called the 
“normal distribution” or “bell curve”) occurs with 
surprising frequency in the world around us. The 
mass of babies at birth, the test results students 
get at school and the ages athletes retire at are all 
seemingly random things which neatly follow the 
Gaussian distribution. These are characterised by 

having an average in the middle which most values 
are close to, and then decreasing numbers of cases 
as values move further above and below the average.

When observing a random process there are some 
things which it could be nice to know. For example, 
if you take the average of the values being produced, 
how close is that likely to be to the true average value 
of the underlying Gaussian process? How big or small 
are the possible values in the future likely to be?

Talagrand produced rigorous and tight thresholds 
with specific uncertainties so when these kind of 
random, stochastic processes are observed we know 
exactly how confident we can reasonably be about 
what the process will do going forward.

Viewing Talagrand’s work through the example 
of a single Gaussian distribution is an extreme 
oversimplification of how general and wide ranging 
his results were. More complicated situations 
involve several different random variables, with 
different distributions that combine in complicated 
ways. Instead of being a simple distribution, if each 
random variable is considered to be an independent 
axis, the total probability space which results is 
a multi-dimensional object, beyond direct human 
comprehension.

Talagrand was able to probe and understand these 
higher dimensional spaces. Asking probabilities 
questions about these spaces is akin to trying to 
find their higher dimensional volumes, and area of 
mathematics called “measure theory”. In simple 2D 
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space, we can understand area as the sum of the 
areas if we split a distribution up into tiny squares 
and then count all of them. In higher dimensions, it 
is not that simple to work out the measure of a set of 
points. The Banach –Tarski paradox is a famous result 
that if you are not careful: a ball can be split into 
pieces which actually total twice its original volume.

The challenge becomes finding spaces which are 
well behaved enough to have a meaningful measure, 
and then set bounds on what that measure can be. 
Talagrand was able to do this with spaces beyond 
what human intuition is capable of dealing with. 
These higher dimension shapes can behave in very 
surprising ways.

Talagrand’s work converting these objects into 
probability insights often involve knowing where the 
hyper-volume was likely to be concentrated around. 
Which for something like a ball, it would seem 
obvious: a ball is defined as all the points within  
the radius distance of a central point. But that can  
be deceiving.

Imaging a 2D ball, a circular disk, trapped between 
four unit disks, surrounded by a box (see Figure 1). 
The biggest radius that central circle can possibly 
have is 0.41421, which is much smaller than the unit 
circles around it.

sphere the same size as them: with a radius of 1. By 
10D that central sphere is so big it reaches outside 
the box and by 26D it is twice as wide as the box.

The ‘shape’ and distribution of content within a higher 
dimension sphere does not match what we expect. In 
one (technically incorrect but still slightly illuminating) 
sense, spheres are more spiky than we think, with 
thin extremities which can reach through and pack 
around other objects. In another less incorrect sense: 
spheres in this high dimensions becomes all outer 
shell and very little internal, central volume.

Talagrand worked with shapes such as these, finding 
new and novel ways to put limits on where the bulk of 
a probability distribution could be.

The ubiquity of Gaussian processes means there 
are many possible applications of Talagrand’s work. 
One specific one is the condensed matter physics 
problem of a “spin glass”. This is an arrangement 
of matter which is not a ‘glass’ like in a window, but 
rather a random structure of magnetic moments.

Spin glasses sit between the highly organised 
magnetic properties of ferromagnet materials and  
the random arrangement of paramagnetic materials.  
If a ferromagnetic substance is heated and an 
external magnetic field used to align all the internal 
magnetic moment, this neat alignment will persist 
even after the substance is cooled. A paramagnetic 
substance will exponentially lose its internal magnetic 
field once the external field is removed. A spin glass 
however, will also lose its own magnetic arrangement 
but at a rate and in a way which currently defies  
our understanding.

The internal magnetic structures within a spin 
glass are arranged randomly, but with some 
order which causes their complex behaviours. 

In 3D we can pack a box with eight unit spheres (see 
Figure 2) and the smallest sphere which can sit in the 
very middle would have a radius of 0.73205. Which 
is slightly bigger than the 2D case. But our human 
intuition is that while there may be a bit more wriggle 
room with the extra dimensions, ultimately the central 
sphere will remain bounded.

This is absolutely not the case. In 4D the sixteen unit 
spheres in a box allow enough space for a central 

Figure 1: The 2D example.

Figure 2: The 3D example.



Physicists developed theories and limits on how 
this randomness would behave. Talagrand was able 
to come in and, despite ignoring the physics, use 
mathematics to provide a solid proof that the limits 
were indeed correct.

Michel Talagrand work in probability theory and 
related areas has produced several key insights 
and proofs using novel techniques. These would 
be beautiful in their own mathematical right, but the 
direct application to physical systems makes these 
results extra meaningful.


