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Japan is awarded the Abel

Prize for 2025,

“for his fundamental contribu-

tions to algebraic analysis and

representation theory, in par-

ticular the development of the

theory of D-modules and the

discovery of crystal bases.”

D for differential

The Abel Committee states in the citation: “D-modules

provide an algebraic language for studying systems of

linear partial differential equations. The 1970 master’s

thesis of Kashiwara develops the theory of analytic

D-modules, introducing the fundamental notion of

characteristic variety, and proving a vast generalization of

the Cauchy-Kovalevskaya theorem. This demonstrated

early on the power of algebraic methods in tackling

problems of an analytic nature.”

The Airy equation is named after Sir George Biddell Airy

(1801–1892), a royal astronomer at Cambridge. The Airy

equation is an ordinary differential equation;

d2y
dx2 − xy = 0

with several applications. The equation has two

independent non-elementary solutions called the Airy and

the Bairy functions (notice the mathematical humorous

naming). We can transform the Airy equation into a system

of linear partial differential equations, using the algebraic

language of D-modules. A necessary step is to introduce

the Weyl algebra;

W = R〈x, y〉/(xy − yx + 1)

in two non-commuting variables x and y, named after the

German mathematician Hermann Weyl (1885–1955), and

introduced to study the Heisenberg uncertainty principle in

quantum mechanics. A D-module is a module M over the

Weyl algebra, i.e. a vector space over R with an action of

the Weyl algebra.

As an example we consider the D-module structure of the

ordinary polynomial ring in one variable; M = R[x]. The
two variables x and y of W acts very differently on M; as x
acts by ordinary multiplication, the element y is more like a

derivation operator. In fact, it would have been more

appropriate to write y = d
dx , and as a consequence we

have

y · f (x) = f ′(x)

The relation xy − yx + 1 = 0 reflects the product rule for

derivation. To see this, write the relation as yx = xy + 1



and consider its action on a polynomial f (x). By
substituting y = d

dx in the equation we get

d
dx

x f (x) = x
d

dx
f (x) + f (x)

which corresponds exactly to the product rule for

derivation.

Next we transform the Airy equation into a W-linear

operator

φ : W2 → W2

by letting (
f
g

)
7→

(
y −1
−x y

)(
f
g

)
Let V be the cokernel of the map φ.

A solution of the Airy equation in the polynomial ring R[x]
is equivalent to an element in HomW(V, R[x]), given by a
vector ( f , g) ∈ R[x]2 such that(

y −1
−x y

)(
f
g

)
=

(
0
0

)
i.e. g = y f = f ′ and

yg − x f = g′ − x f = f ′′ − x f = 0

which is precisely the original Airy equation. This gives a

nice example of how a problem of analysis is transformed

into an algebraic setting, by the D-module technology.

Kashiwara also used the theory of D-modules to solve

other problems. The Abel committee mentions some of

these achievements in the citation:

”Kashiwara formulated and proved a vastly generalized

Riemann-Hilbert correspondence, i.e., the equivalence

between regular holonomic D-modules and perverse

sheaves (obtained independently by Zoghman Mebkhout).”

”The Kazhdan-Lusztig conjecture in representation theory

can be viewed as connecting characters of representations

to intersection cohomology groups. It was proved by

Kashiwara together with Jean-Luc Brylinski, in a striking

application of the Rieman-Hilbert correspondence.”

The beauty of a crystal base

In addition to D-modules, the Abel committee highlights

the notion of crystal base: ”Inspired by the study of

solvable lattice models in mathematical physics, Vladimir

Drinfeld and Michio Jimbo independently formalized

quantum groups in the late ’80s. Quantum groups are

deformations of the universal enveloping algebras of

complex semi-simple or Kac-Moody Lie algebras.

Kashiwara introduced the notion of crystal bases and

proved the existence of crystal bases for integrable highest

weight representations of quantum groups.”

Lie algebras are named after the Norwegian mathematician

Sophus Lie (1842-1899). Inspired by Niels Henrik Abel ́s

work on symmetries of algebraic equations, Lie studied

continuous symmetries of differential equations, referred to

as transformation groups. Later on the groups have been

called Lie groups. An important example of a Lie group is

SL2, the set of 2 × 2-matrices of determinant 1 over some

appropriate ground field. The set has a group structure,

meaning that we can multiply matrices of determinant 1

and the product will still have determinant 1. At the same

time SL2 is the space of all 4-vectors (a11, a12, a21, a22)
where a11a22 − a12a21 = 1, which defines a 3-dimensional

manifold. So a Lie group is at the same time a group and a

manifold, and the two structures are closely tied together.

To any Lie group there is associated a Lie algebra,

describing the tangent space structure of the Lie group.

The corresponding Lie algebra of the Lie group SL2 is

denoted sl2, and it is given by

sl2 =

{(
a11 a12
a21 a22

)
∈ R2×2 ∣∣ a11 + a22 = 0

}
An important part of the structure of a Lie algebra is the

bracket [−,−] : sl2 × sl2 → sl2. The abstract definition of
the bracket is modelled on the more familiar commutator

notion [a, b] = ab − ba. It satisfies the equalities [a, a] = 0,
[a, b] = −[b, a] and a third equality called the Jacobi

identity. The Lie algebra sl2 is a 3-dimensional vector

space, but we only need two generators to describe it as a

Lie algebra. Let

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h = [e, f ] =

(
1 0
0 −1

)
The three elements {e, f , h} constitutes a basis for the
underlying vector space, but for the Lie algebra, with the

bracket included in the definition, only the two generators e
and f are needed.
To any Lie algebra g there is an associated object, called

the universal enveloping algebra of the Lie algebra,

denoted U(g). In the universal enveloping algebra we

introduce multiplication as part of the structure, consistent

with the bracket operation, i.e. [e, f ] = e f − f e. The
universal enveloping algebra carries the same information

as the Lie algebra, but the additional multiplication

structure opens for more flexibility in handling the object.

The universal enveloping algebra U(g) contains some

invisible secrets. To enlighten the secrets we let the

universal enveloping algebra be part of a more general

structure by introducing a new type of object, called a

quantum group, denoted Uq(g). A quantum group has a

built-in parameter q, and when specialzing the parameter

to q = 1, the quantum group reduces to the universal

enveloping algebra U(g). The secrets we are looking for

can be found in Uq(g) and be understood in U(g) by



studying what happens when q → 1. The symbol q is the
main ingredient in this quantization process, playing the

same role in a mathematical context as Planck ́s constant

} plays in quantum mechanics.

The quantum group Uq(sl2) is no more a Lie algebra, but

has a richer structure, mathematicians would call it a Hopf

algebra. The quantum group is generated by t, t−1 in

addition to e and f , subject to the relations:

tet−1 = q2e

t f t−1 = q−2 f

[e, f ] =
t − t−1

q − q−1

If we let t = qh and use the approximation ex ≈ 1 + x, the
limit as h → 0 (i.e. q → 1) returns the relations of the
original Lie algebra.

[h, e] = 2e, [h, f ] = −2 f [e, f ] = h

A general tool to study intricate structures like the quantum

group Uq(sl2) is to consider its representations. The idea

of a representation is to substitute elements in the

quantum group by matrices. The representation does not

have to be faithfull, meaning that more elements can be

replaced by the same matrix, but nevertheless the

representations will illustrate the structure or at least parts

of the structure of the object it represents.

It has been a long-lasting challenge to find suitable bases

for representations of Lie algebras. Suitable in the

meaning, easy to handle and mirroring the interesting and

maybe even the secret properties of the Lie algebra.

Kashiwara presented in an article from 1990 a way of

constructing a basis for a representation, called a crystal

base. The construction goes via an appropriate basis for a

representation of the associated quantum group. When we

let q → 1 the basis is, by construction, also a basis for the

representation at q = 1, i.e. a representation of the Lie
algebra sl2. Kashiwara ́s result ensures that such nice
bases exist and that they have the right properties. As a

bonus the constructed bases can be given a rather simpel

combinatorial description, using so-called Young diagrams,

a concept introduced by Alfred Young at Cambridge

University, already in 1900.


