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Crystal bases

The Abel Committee writes in the citation: ”Inspired by the

study of solvable lattice models in mathematical physics,

Vladimir Drinfeld and Michio Jimbo independently

formalized quantum groups in the late ’80s. They are

deformations of the enveloping algebras of complex

semi-simple or Kac-Moody Lie algebras. Kashiwara

introduced the notion of crystal bases and proved the

existence of crystal bases for integrable highest weight

representations of quantum groups. The proof, which

proceeds by an intricate induction process now known as

the grand loop argument, is a tour de force that has not

been much simplified over time.

Kashiwara also generalized crystal bases to global bases,

which were independently discovered by George Lusztig

under the name canonical bases. This work can be

thought of as a vast and fruitful generalization of the theory

of Young diagrams and Young tableaux.”

The quantum group Uq(sl2)

Consider the vector space of 2 × 2-matrices of trace 0 over

some appropriate field K, i.e. the set{(
a11 a12
a21 a22

)
∈ K2×2 | a11 + a22 = 0

}
A basis for the vector space is given by the three matrices

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)

Trace of a 2 × 2-matrix a is the sum of the diagonal

elements, tr(a) = a11 + a22.The product ab of two matrices

a and b of trace 0 does not necessarily have trace 0, but
the bracket [a, b] = ab − ba has, since tr(ab) = tr(ba).

The vector space generated by e, f and h of trace-less

matrices is therefore closed under the bracket operation. A

vector spaces with this property is called a Lie algebra,

named after the Norwegian mathematician Sophus Lie

(1842-1899). The Lie algebra with the underlying vector

space generated by {e, f , h} is denoted sl2; it is the
tangent space of the special linear group, i.e.

2 × 2-matrices of determinant 1.

To any Lie algebra g there is an associated object, called

the universal enveloping algebra of the Lie algebra,

denoted U(g). In addition to the structure of the Lie

algebra the universal enveloping algebra is equipped with a

multiplication. The multiplication is consistent with the

bracket operation, i.e. [e, f ] = e f − f e. The universal
enveloping algebra carries the same information as the Lie

algebra, but the additional multiplication structure opens

for more flexibility in handling the object.

A quantum group is a sort of “deformation” of the universal

enveloping algebra, denoted Uq(g). The index q
paramterizes the deformations and q = 1 corresponds to

the original universal enveloping algebra. The quantum

group Uq(sl2) is generated as an algebra by a symbol t
and its invers t−1, in addition to the generators e and f of



U(g). The generators satisfies the relations:

tet−1 = q2e

t f t−1 = q−2 f

[e, f ] =
t − t−1

q − q−1

Substituting t = qh and letting q → 1, the relations are
transformed into the ordinary relations for the Lie algebra

sl2:
[h, e] = 2e, [h, f ] = −2 f [e, f ] = h

This can be justified by a straightforward computation

using the linear approximation of the exponential function.

Crystal basis theorem

Let K = Q(q) be the set of all rational functions f (q)
g(q) , where

f and g are polynomials in a variable q. Let A be the ring of

rational functions in q where the denominator g(0) 6= 0. Let
V be a K-vector space. A free A-module L such that

K ⊗A L ' V is called a lattice of V.

Let M be an integrable Uq(sl)-module, i.e. a module M
which admits a decomposition as a sum of eigenspaces of

the operator t ∈ Uq(sl).
A crystal basis of M is a pair (L, B) where L is a lattice of

M and B is a basis of the Q-vector space L/qL such that L
and B decompose similar to M and such that L and B are

respected by the Kashiwara operators ẽ and f̃ . The last
property defining a crystal basiss is that for u, v ∈ B, then
u = ẽv if and only if v = f̃ u. The Kashiwara operators are
operators on M deduced from the generators e and f .

Kashiwara ́s theorem says that any integrable Uq-module

has a crystal basis.

We shall illustrate the theory by considering a couple of

examples.

A 2-dimensional representation V = K2 of Uq(sl) with
basis {v1, v−1} over K = Q(q) is given by

e · v1 = 0 f · v1 = v−1 t±1 · v1 = q±1v1

e · v−1 = v1 f · v−1 = 0 t±1 · v−1 = q∓1v−1

Relative to the basis {v1, v−1} the action is given by

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, t =

(
q 0
0 q−1

)
which is easily seen to respect the relations of the

generators of Uq(sl2), given above. The basis {v1, v−1}
satisfies all requirements for a crystal basis, and the

combinatorics of the basis is illustrated by the graph

v1 v−1

where the arrows to the right represents f̃ and arrows to

the left represents ẽ.
To explore more details in Kashiwara ́s work on crystal

bases we need to consider a more elaborate example. So

we consider the Uq(sl2)-module W = V ⊗ V where V is as

above.

A basis for W as a vector space over K is given by

{v1 ⊗ v1, v−1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v−1}

The action of Uq(sl2) on W is given by the coproduct

∆ : Uq(sl2) → Uq(sl2)⊗ Uq(sl2), defined on the generators

as follows:

∆(e) = e ⊗ t−1 + 1 ⊗ e
∆( f ) = f ⊗ 1 + t ⊗ f

∆(t±1) = t±1 ⊗ t±1

The table gives the explicit details of the action of e, f and t
on the basis elements:

e f t
v1 ⊗ v1 0 v−1 ⊗ v1 q2v1 ⊗ v1

+qv1 ⊗ v−1
v1 ⊗ v−1 v1 ⊗ v1 v−1 ⊗ v−1 v1 ⊗ v−1
v−1 ⊗ v1 q−1v1 ⊗ v1 q−1v−1 ⊗ v−1 v−1 ⊗ v1
v−1 ⊗ v−1 qv1 ⊗ v−1 0 q−2v−1 ⊗ v−1

+v−1 ⊗ v1

The basis has some good properties, but some important

details are missing, e.g. there is a serious problem for

q → 0.
Thus we have to modify the basis. Let

u0 = qv−1 ⊗ v1 − v1 ⊗ v−1

u1 = v1 ⊗ v1

An easy computation shows that e · u0 = e · u1 = 0, and u0
and u1 are eigenvectors for t with weight (eigenvalues) 1
and q2 respectively. Furthermore we have

f · u0 = 0, f · u1 = v−1 ⊗ v1 + qv1 ⊗ v−1

and f · u1 is a eigenvector for t of weight 1. Iterating the

action of f we get an element

f (2) · u1 =
1

q + q−1 f 2 · u1 = v−1 ⊗ v−1

of weight q−2. Thus we can weight-decompose W as a

sum of eigenspaces for the operator t as

W = W(q−2)⊕ W(0)⊕ W(q2)

where W(q−2) has rank 1, generated by f (2) · u1, W(0) has
rank 2, with generators u0 and f · u1 and finally the highest



weight module W(q2) of rank 1 generated by u1. A

computation shows that

v1 ⊗ v1 = u1

v−1 ⊗ v1 =
q

q2 + 1
u0 +

1
q2 + 1

f · u1

v1 ⊗ v−1 = − 1
q2 + 1

u0 +
q

q2 + 1
f · u1

v−1 ⊗ v−1 = f (2) · u1

and

B = {u0, u1, u2 = f · u1, u3 = f (2) · u1}

is another basis for W. And this basis is perfect. It is made

up by eigenvectors for t, we can let q → 0 to get a basis for

a 4-dimensional vector space over Q, and it has the right

properties with respect to the action of the Kashiwara

operators ẽ and f̃ . The Kashiwara operators act on the
basis B by the rule

ẽ(u0) = ẽ(u1) = 0, ẽ(u2) = u1, ẽ(u3) = u2

f̃ (u0) = ẽ(u3) = 0, ẽ(u1) = u2, ẽ(u2) = u3

The basis B satisfies all requirements for a crystal basis,

and the combinatorics of the basis is illustrated by the

graph
u1 u2 u3

together with a singleton u0. The arrows to the right

represents f̃ and arrows to the left represents ẽ. The two
components of the graph illustrate that W is made up by

two irreducible representations, one 3-dimensional

generated by u1, u2 and u3, and one 1-dimensional

generated by u0.


