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At the International Congress

of Mathematicians in Paris in

1900 the German mathematician

David Hilbert put forth a list of

10 unsolved problems in math-

ematics. Later he published an

extended list including 23 prob-

lems, all considered to be very

influential for 20th-century math-

ematics. Some of the problems

are still open, some has been

solved.

Hilbert ́s 21st problem

The 21st problem, already included in the first list of 10

problems, concerns the proof of the existence of linear

differential equations having a prescribed monodromy

group. In his description of the problem, Hilbert suggests

that Bernhard Riemann was well aware of this problem.

Thus, the problem has later been referred to as the

Riemann-Hilbert problem. The problem has led to several

bijective correspondences, known as Riemann-Hilbert

correspondences. A Riemann-Hilbert correspondence

establishes an equivalence between different categories,

telling us that to find a solution of the Riemann-Hilbert

problem in one setting is equivalent to finding a solution in

a somewhat different setting. Variations of the

Riemann-Hilbert problem have been proved, but the

original form, as Hilbert sated it, has been proved to be

wrong.

Hilbert presented his 21st problem as follows:

”In the theory of linear differential equations with one

independent variable z, I wish to indicate an important

problem one which very likely Riemann himself may have

had in mind. This problem is as follows: To show that there

always exists a linear differential equation of the Fuchsian

class, with given singular points and monodromic group.

The problem requires the production of n functions of the

variable z, regular throughout the complex z-plane except
at the given singular points; at these points the functions

may become infinite of only finite order, and when z
describes circuits about these points the functions shall

undergo the prescribed linear substitutions.”

Differential equations

A differential equation is an equation that gives a relation

between a function and its derivatives. Differential

equations have been studied since the seventeenth

century and they constitute an important mathematical tool

for understanding phenomena in nature. Examples of

famous differential equations are the heat equation and the

wave equation. The first one describes the propagation of

heat through a material when exposed to temperature

differences, the other one describes how waves are rolling

over the sea.

Using basic laws of nature and knowledge of the behaviour

of liquids, we can suggest a differential equation that



describes what happens in the bathtub when we remove

the stopper. The solution of the equation describes a

whirlpool motion, close to what is observed in the liquid.

The difference between the mathematical model,

expressed by the differential equation, and the real motion

of the liquid, increases as we approaches the centre of the

whirlpool. In the bathtub there is no water at all in the

centre of the whirlpool, it has already been drained out. In

the model, however, the speed of the circular motion of the

water will increase as we approach the centre. In the

centre the model will collapse. The model has a singularity

at this point.

Monodromy - changing the solution upside-down

Singularities have an interesting effect on the solutions of

the differential equation. A mathematical phenomenon

called monodromy may occur. The word monodromy is of

Greek origin and means ”running round simply” Now,

suppose we have found a solution to the differential

equation. The value of the function will vary continuously

along arbitrary curves. When we return to the starting

point, the value of the function will be the same as when

we started. i.e., as long as we do not run along a path

encircling the singularity. In that case the value might

change. This is what is called monodromy. It is a bit like

motions in a spiral staircase. As long as the full loop does

not encircle the centre of the staircase, we remain at the

same level, but encircling the centre will bring us either

upwards or downwards.

As an example, consider the differential equation

z
d f
dz

=
1
2

f

defined on the punctured complex plane, C \ {0}. If we
write z = reiθ we see that

f (z) = f (reiθ) =
√

reiθ =
√

rei θ
2

is a solution to the equation on a disc of radius 0.99 around

z = 1. Notice that the choice of radius 0.99 is just to avoid

the singularity located at the origin. Now consider four

functions, fk(z) = f (z), k = 0, 1, 2, 3 defined on discs of

radius 0.99 around 1, i, −1 and −i, respectively.
Consequetive discs intersect, and the functions agree on

the intersections. But nevertheless we have

f3(1) = f3(e2πi) = eiπ = −1 6= f0(1)

which shows that the solutions of the given differential

equation have non-trivial monodromy.

Riemann-Hiilbert correspondence

A differential equation can have different numbers and

types of singularities, and also different types of

monodromy. Hilbert was well aware of this fact. What he

wondered about was the opposite problem: Given the

monodromy and the singularities, can we always find a

differential equation? The problem has elicited many

answers during the 20th century. At the same time the

problem has been generalised in many directions. In the

original setting the problem takes place on a Riemann

sphere. In a slightly more setting the Riemann sphere is

replaced by a general Riemann surface, and moving to

higher dimensions we need to consider even more general

complex manifolds. With such level of generality for the

underlying space the differential equation has to be

replaced by the more general term of a connection on the

manifold. A proof of the Riemann-Hilbert correspondence

for algebraic connections with regular singularities is due

to Pierre Deligne. The award of the Abel Prize to Deligne in

2013 was partly based on this result. Masaki Kashiwara

provided in the early 80s a proof in the even more general

setting of regular holonomic D-modules.

To illustrate a version of the Riemann-Hilbert

correspondence we have to introduce a bit more

complicated mathematical machinery. Let M be a

differentiable manifold. There is a functor from the

category of vector bundles on M with flat connections to

the category of local systems on M, given by

(V,∇) 7→ V∇ = ker(∇)

where V is the vector bundle and ∇ is the flat connection.

The functor gives an equivalence of categories.

As an example of this version of the Riemann-Hilbert

correspondence, consider the trivial bundle O2
X on

X = Gm with connection

∇
(

f1
f2

)
= d

(
f1
f2

)
−

(
0 0
1 0

)(
f1
f2

)
dz
z

The kernel of this connection is the solution to the system

d f1 = 0

d f2 − f1
dz
z

= 0

It can be shown that the solution is given by

f1 = B
f2 = B log z + A

or (
f1
f2

)
= A

(
0
1

)
+ B

(
1

log z

)



This is an example of a local system of rank 2 and it

corresponds by the Riemann-Hilbert correspondence to

the pair (V,∇).

Notice that a local system L on a topological space X is

the same as a locally constant sheaf, i.e. a sheaf where all

stalks are the same.

Let P : OX → OX be the map P = z ∂
∂z −

1
2 , where X = C

and OX the sheaf of holomorphic functions on X. The map

P is closely related to the differential equation

z
d f
dz

=
1
2

f

defined above. The kernel of P is given by f (z) = C
√

z for
any complex number C. For any point z ∈ C \ {0} the set
of solutions to the equation is 1-dimensional. Thus the

kernel L = ker(P) is locally constant (= C) on X \ {0}, but
not on all of X ( f (0) = 0).

Denote by L the local constant stalk of the local constant

sheaf L. The monodromy of the solutions to the equation

P = 0 now gives a representation

π1(X, x) −→ Aut(L)

of the fundmental group of X on the group of

automorphisms of the stalk L, called the monodromy

representation of L and adding yet another equivalence

between categories to the list of Riemann-Hilbert

correspondences.


